Skip to main content
Log in

Neurobehavioral Effects and Biomarkers of Sleep Loss in Healthy Adults

  • Sleep (M Thorpy and M Billiard, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article reviews the neurobehavioral deficits resulting from sleep loss in adults, various countermeasures to mitigate these effects, and biomarkers to identify individual differences in neurobehavioral responses.

Recent Findings

Total sleep deprivation and chronic sleep restriction increase the homeostatic sleep drive and diminish waking neurobehavioral functioning, producing deficits in attention, memory and cognitive speed, increases in sleepiness and fatigue, and unstable wakefulness. Recovery sleep, extension of sleep, and use of caffeine and/or naps are all effective countermeasures to mitigate these responses. Candidate gene and various “omics” approaches have identified biomarkers that may predict such responses.

Summary

Sleep loss is increasingly prevalent and produces reliable, differential neurobehavioral deficits across individuals. Recent research has identified biomarkers to predict these responses, though future work is warranted, such that precise determination of who will develop neurobehavioral decrements from sleep loss will be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Goel N, Basner M, Dinges DF. Phenotyping of neurobehavioral vulnerability to circadian phase during sleep loss. Methods Enzymol. 2015;552:285–308.

    Article  PubMed  Google Scholar 

  2. Achermann P, Dijk DJ, Brunner DP, Borbély AA. A model of human sleep homeostasis based on EEG slow-wave activity; quantitative comparison of data and simulations. Brain Res Bull. 1993;31:97–113.

    Article  CAS  PubMed  Google Scholar 

  3. Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1:195–204.

    PubMed  Google Scholar 

  4. Mallis MM, Mejdal S, Nguyen TT, Dinges DF. Summary of the key features of seven biomathematical models of human fatigue and performance. Aviat Space Environ Med. 2004;75:A4–14.

    PubMed  Google Scholar 

  5. Daan S, Beersma DGM, Borbély AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol. 1984;246:R161–78.

    CAS  PubMed  Google Scholar 

  6. Achermann P, Borbély AA. Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process. Biol Cybern. 1994;71:115–21.

    Article  CAS  PubMed  Google Scholar 

  7. Edgar DM, Dement WC, Fuller CA. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci. 1993;13:1065–79.

    CAS  PubMed  Google Scholar 

  8. Doran SM, Van Dongen HPA, Dinges DF. Sustained attention performance during sleep deprivation: evidence of state instability. Arch Ital Biol. 2001;139:253–67.

    CAS  PubMed  Google Scholar 

  9. Goel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2009;29:320–39.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep. 2015;38:843–4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mukherjee S, Patel SR, Kales SN, Ayas NT, Strohl KP, Gozal D, et al. An official American Thoracic Society statement: the importance of healthy sleep. Recommendations and future priorities. Am J Respir Crit Care Med. 2015;191:1450–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hirshkowitz M, Whiton K, Albert SA, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1:40–3.

    Article  Google Scholar 

  13. Ford ES, Cunningham TJ, Croft JB. Trends in self-reported sleep duration among US adults from 1985 to 2012. Sleep. 2015;38:829–32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft JB. Prevalence of healthy sleep duration among adults—United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65:137–41.

    Article  PubMed  Google Scholar 

  15. Van Dongen HPA, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26:117–26.

    Article  PubMed  Google Scholar 

  16. Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP, et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep-dose response study. J Sleep Res. 2003;12:1–12.

    Article  PubMed  Google Scholar 

  17. Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction in humans. J Clin Sleep Med. 2007;3:519–28.

    PubMed  PubMed Central  Google Scholar 

  18. Silva GE, Goodwin JL, Sherrill DL, Arnold JL, Bootzin RR, Smith T, et al. Relationship between reported and measured sleep times: the sleep heart health study (SHHS). J Clin Sleep Med. 2007;3:622–30.

    PubMed  PubMed Central  Google Scholar 

  19. Lauderdale DS, Knutson KL, Yan LL, Liu K, Rathouz PJ. Self-reported and measured sleep duration: how similar are they? Epidemiology. 2008;19:838–45.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Krueger PM, Friedman EM. Sleep duration in the United States: a cross-sectional population-based study. Am J Epidemiol. 2009;169:1052–63.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ferrie JE, Shipley MJ, Cappuccio FP, Brunner E, Miller MA, Kumari M, et al. A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort. Sleep. 2007;30:1659–66.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, et al. Meta-analysis of short duration and obesity in children and adults. Sleep. 2008;31:619–26.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis. 2009;51:294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beccuti G, Pannain S. Sleep and obesity. Curr Opin Clin Nutr Metab Care. 2011;14:402–12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lim J, Dinges DF. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull. 2010;136:375–89.

    Article  PubMed  PubMed Central  Google Scholar 

  26. • Lowe CJ, Safati A, Hall PA. The neurocognitive consequences of sleep restriction: a meta-analytic review. Neurosci Biobehav Rev. 2017;80:586–604. This meta-analytic review evaluated the effects of experimentally manipulated sleep restriction on neurobehavioral functioning using a sample of 61 studies, from 71 different populations. It concluded short-term sleep restriction significantly impairs waking neurobehavioral functioning.

    Article  PubMed  Google Scholar 

  27. Lamond N, Jay SM, Dorrian J, Ferguson SA, Jones C, Dawson D. The dynamics of neurobehavioural recovery following sleep loss. J Sleep Res. 2007;16:33–41.

    Article  PubMed  Google Scholar 

  28. Philip P, Sagaspe P, Prague M, Tassi P, Capelli A, Bioulac B, et al. Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness. Sleep. 2012;35:997–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Banks S, Van Dongen HPA, Maislin G, Dinges DF. Neurobehavioral dynamics following chronic sleep restriction: dose-response effects of one night for recovery. Sleep. 2010;33:1013–26.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McCauley P, Kalachev LV, Smith AD, Belenky G, Dinges DF, Van Dongen HPA. A new mathematical model for the homeostatic effects of sleep loss on neurobehavioral performance. J Theor Biol. 2009;256:227–39.

    Article  PubMed  Google Scholar 

  31. Axelsson J, Kecklund G, Åkerstedt T, Donofrio P, Lekander M, Ingre M. Sleepiness and performance in response to repeated sleep restriction and subsequent recovery during semi-laboratory conditions. Chronobiol Int. 2008;25:297–308.

    Article  PubMed  Google Scholar 

  32. Pejovic S, Basta M, Vgontzas AN, Kritikou I, Shaffer ML, Tsaoussoglou M, et al. Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance. Am J Physiol Endocrinol Metab. 2013;305:E890–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rupp TL, Wesensten NJ, Bliese PD, Balkin TJ. Banking sleep: realization of benefits during subsequent sleep restriction and recovery. Sleep. 2009;32:311–21.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cohen DA, Wang W, Wyatt JK, Kronauer RE, Dijk DJ, Czeisler CA, et al. Uncovering residual effects of chronic sleep loss on human performance. Sci Transl Med. 2010;2:14ra3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. • St Hilaire MA, Rüger M, Fratelli F, Hull JT, Phillips AJ, Lockley SW. Modeling neurocognitive decline and recovery during repeated cycles of extended sleep and chronic sleep deficiency. Sleep. 2017;40 https://doi.org/10.1093/sleep/zsw009. This study investigated the effects of three cycles of two 3-hour time-in-bed (TIB) opportunities, interspersed with one 10-hour TIB opportunity, on neurobehavioral performance. PVT performance deteriorated cumulatively following each cycle of two 3-hour sleep opportunities, and improved following each 10-hour sleep opportunity; performance declined cumulatively throughout the experiment.

  36. Spaeth AM, Goel N, Dinges DF. Cumulative neurobehavioral and physiological effects of chronic caffeine intake: individual differences and implications for the use of caffeinated energy products. Nutr Rev. 2014;72:34–47.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Crawford C, Teo L, Lafferty L, Drake A, Bingham JJ, Gallon MD, et al. Caffeine to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field. Nutr Rev. 2017;75:17–35.

    Article  PubMed  Google Scholar 

  38. •• Faraut B, Andrillon T, Vecchierini MF, Leger D. Napping: a public health issue. From epidemiological to laboratory studies. Sleep Med Rev. 2017;35:85–100. This is a comprehensive review of a broad range of napping studies for both the field and laboratory, including those studies implementing naps as countermeasures for the adverse effects of sleep loss.

    Article  PubMed  Google Scholar 

  39. Trotti LM. Waking up is the hardest thing I do all day: sleep inertia and sleep drunkenness. Sleep Med Rev. 2017;35:76–84.

    Article  PubMed  Google Scholar 

  40. •• Arnal PJ, Sauvet F, Leger D, van Beers P, Bayon V, Bougard C, et al. Benefits of sleep extension on sustained attention and sleep pressure before and during total sleep deprivation and recovery. Sleep. 2015;38:1935–43. Using a randomized, cross-over design, this study investigated the effects of six nights of sleep extension on sustained attention and sleep pressure before and during total sleep deprivation and after subsequent recovery sleep. Sleep extension protected against Psychomotor Vigilance Test lapses and microsleep degradation during total sleep deprivation. These beneficial effects persisted after one night of recovery sleep.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rajdev P, Thorsley D, Rajaraman S, Rupp TL, Wesensten NJ, Balkin TJ, et al. A unified mathematical model to quantify performance impairment for both chronic sleep restriction and total sleep deprivation. Theor Biol. 2013;331:66–77.

    Article  Google Scholar 

  42. Yarnell AM, Deuster P. Sleep as a strategy for optimizing performance. J Spec Oper Med. 2016;16:81–5.

    PubMed  Google Scholar 

  43. Parker RS, Parker P. The impact of sleep deprivation in military surgical teams: a systematic review. J R Army Med Corps. 2017;163:158–63.

  44. Ebben MR. Nonpharmacologic management of excessive daytime sleepiness. Sleep Med Clin. 2017;12:479–87.

    Article  PubMed  Google Scholar 

  45. Roehrs T, Timms V, Zwyghuizen-Doorenbos A, Roth T. Sleep extension in sleepy and alert normals. Sleep. 1989;12:449–57.

    Article  CAS  PubMed  Google Scholar 

  46. Roehrs T, Shore E, Papineau K, Rosenthal L, Roth T. A two-week sleep extension in sleepy normals. Sleep. 1996;19:576–82.

    Article  CAS  PubMed  Google Scholar 

  47. Kamdar BB, Kaplan KA, Kezirian EJ, Dement WC. The impact of extended sleep on daytime alertness, vigilance, and mood. Sleep Med. 2004;5:441–8.

    Article  PubMed  Google Scholar 

  48. Mah CD, Mah KE, Kezirian EJ, Dement WC. The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep. 2011;34:943–50.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schwartz J, Simon RD Jr. Sleep extension improves serving accuracy: a study with college varsity tennis players. Physiol Behav. 2015;151:541–4.

    Article  CAS  PubMed  Google Scholar 

  50. Lucassen EA, Piaggi P, Dsurney J, de Jonge L, Zhao XC, Mattingly MS, et al. Sleep extension improves neurocognitive functions in chronically sleep-deprived obese individuals. PLoS One. 2014;9:e84832.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Taub JM, Globus GG, Phoebus E, Drury R. Extended sleep and performance. Nature. 1971;233:142–3.

    Article  CAS  PubMed  Google Scholar 

  52. Harrison Y, Horne J. Long term extension to sleep—are we really chronically sleep deprived? Psychophysiology. 1996;33:22–30.

    Article  CAS  PubMed  Google Scholar 

  53. Reynold AM, Bowles ER, Saxena A, Fayad R, Youngstedt SD. Negative effects of time in bed extension: a pilot study. J Sleep Med Disord. 2014;1:1.

    Google Scholar 

  54. Horne J, Anderson C, Platten C. Sleep extension versus nap or coffee, within the context of ‘sleep debt’. J Sleep Res. 2008;17:432–6.

    Article  PubMed  Google Scholar 

  55. Goel N, Banks S, Mignot E, Dinges DF. PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS One. 2009;4:e5874.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Van Dongen HPA, Baynard MD, Maislin G, Dinges DF. Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability. Sleep. 2004;27:423–33.

    PubMed  Google Scholar 

  57. Van Dongen HP, Maislin G, Dinges DF. Dealing with interindividual differences in the temporal dynamics of fatigue and performance: importance and techniques. Aviat Space Environ Med. 2004;75:A147–54.

    PubMed  Google Scholar 

  58. Goel N, Banks S, Mignot E, Dinges DF. DQB1*0602 predicts interindividual differences in physiologic sleep, sleepiness and fatigue. Neurology. 2010;75:1509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goel N, Banks S, Lin L, Mignot E, Dinges DF. Catechol-O-methyltransferase Val158Met polymorphism associates with individual differences in sleep physiologic responses to chronic sleep loss. PLoS One. 2011;6:e29283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goel N, Dinges DF. Behavioral and genetic markers of sleepiness. J Clin Sleep Med. 2011;7:S19–21.

    PubMed  PubMed Central  Google Scholar 

  61. Rupp TL, Wesensten NJ, Balkin TJ. Trait-like vulnerability to total and partial sleep loss. Sleep. 2012;35:1163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kuna ST, Maislin G, Pack FM, et al. Heritability of performance deficit accumulation during acute sleep deprivation in twins. Sleep. 2012;35:1223–33.

    PubMed  PubMed Central  Google Scholar 

  63. •• Goel N. Genetic markers of sleep and sleepiness. Sleep Med Clin. 2017;12:289–99. This paper reviews the genetic underpinnings of chronotype and of sleep, including sleepiness, sleep quality and latency, and sleep timing and duration in healthy adult sleepers, drawing upon candidate gene and genome-wide association (GWA) studies.

    Article  PubMed  Google Scholar 

  64. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, et al. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol. 2007;17:613–8.

    Article  CAS  PubMed  Google Scholar 

  65. Groeger JA, Viola AU, Lo JC, von Schantz M, Archer SN, Dijk DJ. Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. Sleep. 2008;31:1159–67.

    PubMed  PubMed Central  Google Scholar 

  66. Viola AU, James LM, Archer SN, Dijk DJ. PER3 polymorphism and cardiac autonomic control: effects of sleep debt and circadian phase. Am J Physiol Heart Circ Physiol. 2008;295:H2156–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lo JC, Groeger JA, Santhi N, Arbon EL, Lazar AS, Hasan S, et al. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS One. 2012;7:e45987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rupp TL, Wesensten NJ, Newman R, Balkin TJ. PER3 and ADORA2A polymorphisms impact neurobehavioral performance during sleep restriction. J Sleep Res. 2013;22:160–5.

    Article  PubMed  Google Scholar 

  69. Vandewalle G, Archer SN, Wuillaume C, Balteau E, Degueldre C, Luxen A, et al. Functional magnetic resonance imaging-assessed brain responses during an executive task depend on interaction of sleep homeostasis, circadian phase, and PER3 genotype. J Neurosci. 2009;29:7948–56.

    Article  CAS  PubMed  Google Scholar 

  70. Vandewalle G, Archer SN, Wuillaume C, Balteau E, Degueldre C, Luxen A, et al. Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis. J Biol Rhythms. 2011;26:249–59.

    Article  PubMed  Google Scholar 

  71. Maire M, Reichert CF, Gabel V, Viola AU, Strobel W, Krebs J, et al. Sleep ability mediates individual differences in the vulnerability to sleep loss: evidence from a PER3 polymorphism. Cortex. 2014;52:47–59.

    Article  CAS  PubMed  Google Scholar 

  72. Maire M, Reichert CF, Gabel V, Viola AU, Phillips C, Krebs J, et al. Fighting sleep at night: brain correlates and vulnerability to sleep loss. Ann Neurol. 2015;78:235–47.

    Article  CAS  PubMed  Google Scholar 

  73. Mignot E, Young T, Lin L, Finn L. Nocturnal sleep and daytime sleepiness in normal subjects with HLA-DQB1*0602. Sleep. 1999;22:347–52.

    CAS  PubMed  Google Scholar 

  74. Dauvilliers Y, Tafti M. Molecular genetics and treatment of narcolepsy. Ann Med. 2006;38:252–62.

    Article  CAS  PubMed  Google Scholar 

  75. Mignot E, Lin L, Finn L, Lopes C, Pluff K, Sundstrom ML, et al. Correlates of sleep-onset REM periods during the Multiple Sleep Latency Test in community adults. Brain. 2006;129:1609–23.

    Article  PubMed  Google Scholar 

  76. Tunbridge EM, Harrison PJ, Weinberger DR. Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry. 2006;60:141–51.

    Article  CAS  PubMed  Google Scholar 

  77. Bodenmann S, Rusterholz T, Dürr R, Stoll C, Bachmann V, Geissler E, et al. The functional Val158Met polymorphism of COMT predicts interindividual differences in brain α oscillations in young men. J Neurosci. 2009;29:10855–62.

    Article  CAS  PubMed  Google Scholar 

  78. Bodenmann S, Xu S, Luhmann U, Arand M, Berger W, Jung HH, et al. Pharmacogenetics of modafinil after sleep loss: catechol-O-methyltransferase genotype modulates waking functions but not recovery sleep. Clin Pharmacol Ther. 2009;85:296–304.

    Article  CAS  PubMed  Google Scholar 

  79. Bodenmann S, Landolt HP. Effects of modafinil on the sleep EEG depend on Val158Met genotype of COMT. Sleep. 2010;33:1027–35.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rétey JV, Adam M, Honegger E, Khatami R, Luhmann UF, Jung HH, et al. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A. 2005;102:15676–81.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bachmann V, Klaus F, Bodenmann S, Schäfer N, Brugger P, Huber S, et al. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex. 2012;22:962–70.

    Article  PubMed  Google Scholar 

  82. Mazzotti DR, Guindalini C, de Souza AA, Sato JR, Santos-Silva R, Bittencourt LR, et al. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample. PLoS One. 2012;7:e44154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reichert CF, Maire M, Gabel V, Hofstetter M, Viola AU, Kolodyazhniy V, et al. The circadian regulation of sleep: impact of a functional ADA-polymorphism and its association to working memory improvements. PLoS One. 2014;9:e113734.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Reichert CF, Maire M, Gabel V, Viola AU, Kolodyazhniy V, Strobel W, et al. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism. J Biol Rhythms. 2014;29:119–30.

    Article  CAS  PubMed  Google Scholar 

  85. Rétey JV, Adam M, Khatami R, Luhmann UF, Jung HH, Berger W, et al. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther. 2007;81:692–8.

    Article  PubMed  Google Scholar 

  86. Bodenmann S, Hohoff C, Freitag C, Deckert J, Rétey JV, Bachmann V, et al. Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation. Br J Pharmacol. 2012;165:1904–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Holst SC, Bersagliere A, Bachmann V, Berger W, Achermann P, Landolt HP. Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans. J Neurosci. 2014;34:566–73.

    Article  CAS  PubMed  Google Scholar 

  88. • Holst SC, Müller T, Valomon A, Seebauer B, Berger W, Landolt HP. Functional polymorphisms in dopaminergic genes modulate neurobehavioral and neurophysiological consequences of sleep deprivation. Sci Rep. 2017;7:45982. This study shows DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and theta-to-alpha power ratio, indicating striato-thalamo-cortical dopaminergic pathways modulate some of the neurobehavioral consequences of sleep deprivation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, et al. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. Sleep. 2014;37:1327–36.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Satterfield BC, Wisor JP, Field SA, Schmidt MA, Van Dongen HP. TNFα G308A polymorphism is associated with resilience to sleep deprivation-induced psychomotor vigilance performance impairment in healthy young adults. Brain Behav Immun. 2015;47:66–74.

    Article  CAS  PubMed  Google Scholar 

  91. Bachmann V, Klein C, Bodenmann S, Schäfer N, Berger W, Brugger P, et al. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep. 2012;35:335–44.

    PubMed  PubMed Central  Google Scholar 

  92. •• Goel N. “Omics” approaches for sleep and circadian rhythm research: biomarkers for identifying differential vulnerability to sleep loss. Curr Sleep Med Rep. 2015;1:38–46. This article provides a comprehensive overview of various “omics” approaches and their utility for identifying individual differences in response to sleep deprivation.

    Article  Google Scholar 

  93. •• Zhang SL, Bei L, Goel N, Bailey A, Jang CJ, Bushman FD, et al. Human and rat gut microbiome composition is maintained following sleep restriction. Proc Natl Acad Sci U S A. 2017;114:E1564–71. This study found no significant changes in the human fecal microbiome after chronic sleep restriction, despite deficits in cognitive functioning. These results suggest pathways independent of gut microbial composition affect changes in cognition during chronic sleep restriction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Preparation of this manuscript was supported by National Aeronautics and Space Administration NNX14AN49G (to NG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namni Goel.

Ethics declarations

Conflict of Interest

Namni Goel declares no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human subjects performed by the author have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Sleep

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, N. Neurobehavioral Effects and Biomarkers of Sleep Loss in Healthy Adults. Curr Neurol Neurosci Rep 17, 89 (2017). https://doi.org/10.1007/s11910-017-0799-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0799-x

Keywords

Navigation