Skip to main content

Advertisement

Log in

Recent Advances in Neonatal Seizures

  • Epilepsy (CW Bazil, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article strives to review and summarize selected recent literature and topics contributing to a greater understanding of the diagnosis and treatments of neonatal seizures that have emerged in the past several years.

Recent Findings

Continuous EEG is recommended as the gold standard for neonatal seizure monitoring as it can provide additional information that may stratify patients by etiology, as well as identify at-risk groups of newborns for neuromonitoring. Investigations are moving beyond traditional antiepileptic agents in search of treatments with better efficacy and with less concern for developmental effects. Targeted therapies for seizures resulting from particular genetic conditions are increasing, highlighting the importance of early genetic diagnosis. Better understanding of the risk of post-neonatal epilepsy based on etiology is emerging with new epidemiological studies.

Summary

Evidence is growing for deleterious effects of seizures on outcomes, elevating the importance of seizure detection and effective treatment. Advances in utilization of continuous EEG monitoring have improved the accuracy of seizure detection and have identified at-risk groups of newborns for neuromonitoring. Ultimately, the goal in management of neonatal seizures is not only clinical stabilization in the acute period but also to influence neurodevelopmental outcome and modify the risk of future epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Vasudevan C, Levene M. Epidemiology and aetiology of neonatal seizures. Semin Fetal Neonatal Med. 2013;18:185–91.

    Article  PubMed  Google Scholar 

  2. Wilmshurst JM, Gaillard WD, Vinayan KP, et al. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia. 2015;56:1185–97.

    Article  PubMed  Google Scholar 

  3. Loman AM, ter Horst HJ, Lambrechtsen FA, Lunsing RJ. Neonatal seizures: aetiology by means of a standardized work-up. Eur J Paediatr Neurol. 2014;18:360–7.

    Article  PubMed  Google Scholar 

  4. Donovan MD, Griffin BT, Kharoshankaya L, Cryan JF, Boylan GB. Pharmacotherapy for neonatal seizures: current knowledge and future perspectives. Drugs. 2016;76(6):647–61.

    Article  CAS  PubMed  Google Scholar 

  5. Tymofiyeva O, Hess CP, Xu D, Barkovich AJ. Structural MRI connectome in development: challenges of the changing brain. Br J Radiol. 2014;87:20140086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Briggs SW, Galanopoulou AS. Altered GABA signaling in early life epilepsies. Neural Plast. 2011;2011:527605.

    PubMed  PubMed Central  Google Scholar 

  7. Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93:F187–191.

    Article  CAS  PubMed  Google Scholar 

  8. Nash KB, Bonifacio SL, Glass HC, et al. Video-EEG monitoring in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neurology. 2011;76:556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maartens IA, Wassenberg T, Buijs J, et al. Neurodevelopmental outcome in full-term newborns with refractory neonatal seizures. Acta Paediatr. 2012;101:e173–178.

    Article  PubMed  Google Scholar 

  10. Pisani F, Cerminara C, Fusco C, Sisti L. Neonatal status epilepticus vs recurrent neonatal seizures: clinical findings and outcome. Neurology. 2007;69:2177–85.

    Article  PubMed  Google Scholar 

  11. Srinivasakumar P, Zempel J, Trivedi S, et al. Treating EEG seizures in hypoxic ischemic encephalopathy: a randomized controlled trial. Pediatrics. 2015;136:e1302–1309.

    Article  PubMed  Google Scholar 

  12. Shetty J. Neonatal seizures in hypoxic-ischaemic encephalopathy—risks and benefits of anticonvulsant therapy. Dev Med Child Neurol. 2015;57 Suppl 3:40–3.

    Article  PubMed  Google Scholar 

  13. Bittigau P, Sifringer M, Genz K, et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci U S A. 2002;99:15089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ikonomidou C. Triggers of apoptosis in the immature brain. Brain Dev. 2009;31:488–92.

    Article  PubMed  Google Scholar 

  15. Shellhaas RA, Chang T, Tsuchida T, et al. The American Clinical Neurophysiology Society’s Guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28:611–7.

    Article  PubMed  Google Scholar 

  16. Pisani F, Facini C, Pavlidis E, Spagnoli C, Boylan G. Epilepsy after neonatal seizures: literature review. Eur J Paediatr Neurol. 2015;19:6–14.

    Article  PubMed  Google Scholar 

  17. Rakshasbhuvankar A, Paul S, Nagarajan L, Ghosh S, Rao S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure. 2015;33:90–8.

    Article  PubMed  Google Scholar 

  18. Shellhaas RA, Soaita AI, Clancy RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120:770–7.

    Article  PubMed  Google Scholar 

  19. Boylan GB, Stevenson NJ, Vanhatalo S. Monitoring neonatal seizures. Semin Fetal Neonatal Med. 2013;18:202–8.

    Article  PubMed  Google Scholar 

  20. Wietstock SO, Bonifacio SL, Sullivan JE, Nash KB, Glass HC. Continuous video electroencephalographic (EEG) monitoring for electrographic seizure diagnosis in neonates: a single-center study. J Child Neurol. 2016;31:328–32.

    Article  CAS  PubMed  Google Scholar 

  21. Glass HC, Shellhaas RA, Wusthoff CJ, et al. Contemporary profile of seizures in neonates: a prospective cohort study. J Pediatr. 2016;174:98–103. e101.

    Article  PubMed  Google Scholar 

  22. Weeke LC, Boylan GB, Pressler RM, et al. Role of EEG background activity, seizure burden and MRI in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischaemic encephalopathy in the era of therapeutic hypothermia. Eur J Paediatr Neurol 2016. doi:10.1016/j.ejpn.2016.06.003. This article highlights the role of EEG and MRI in prediction of outcome of patients with HIE who have undergone hypothermia, which may affect both testing modalities

  23. Cnossen MH, van Ommen CH, Appel IM. Etiology and treatment of perinatal stroke; a role for prothrombotic coagulation factors? Semin Fetal Neonatal Med. 2009;14:311–7.

    Article  CAS  PubMed  Google Scholar 

  24. Cowan F, Mercuri E, Groenendaal F, et al. Does cranial ultrasound imaging identify arterial cerebral infarction in term neonates? Arch Dis Child Fetal Neonatal Ed. 2005;90:F252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinez-Biarge M, Cheong JL, Diez-Sebastian J, Mercuri E, Dubowitz LM, Cowan FM. Risk factors for neonatal arterial ischemic stroke: the importance of the intrapartum period. J Pediatr. 2016;3:62–68.e1.

    Article  Google Scholar 

  26. Low E, Mathieson SR, Stevenson NJ, et al. Early postnatal EEG features of perinatal arterial ischaemic stroke with seizures. PLoS One. 2014;9:e100973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Naim MY, Gaynor JW, Chen J, et al. Subclinical seizures identified by postoperative electroencephalographic monitoring are common after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2015;150:169–78. discussion 178-180.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pisani F, Facini C, Pelosi A, Mazzotta S, Spagnoli C, Pavlidis E. Neonatal seizures in preterm newborns: a predictive model for outcome. Eur J Paediatr Neurol. 2016;20:243–51.

    Article  PubMed  Google Scholar 

  29. Sheth RD, Hobbs GR, Mullett M. Neonatal seizures: incidence, onset, and etiology by gestational age. J Perinatol. 1999;19:40–3.

    Article  CAS  PubMed  Google Scholar 

  30. Vesoulis ZA, Inder TE, Woodward LJ, Buse B, Vavasseur C, Mathur AM. Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatr Res. 2014;75:564–9.

    Article  PubMed  Google Scholar 

  31. Guidelines on Neonatal Seizures. Geneva: World Health Organization; 2011.

  32. Painter MJ, Scher MS, Stein AD, et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med. 1999;341:485–9.

    Article  CAS  PubMed  Google Scholar 

  33. van den Broek MP, van Straaten HL, Huitema AD, et al. Anticonvulsant effectiveness and hemodynamic safety of midazolam in full-term infants treated with hypothermia. Neonatology. 2015;107:150–6.

    Article  PubMed  CAS  Google Scholar 

  34. Boylan GB, Rennie JM, Chorley G, et al. Second-line anticonvulsant treatment of neonatal seizures: a video-EEG monitoring study. Neurology. 2004;62:486–8.

    Article  CAS  PubMed  Google Scholar 

  35. Silverstein FS, Ferriero DM. Off-label use of antiepileptic drugs for the treatment of neonatal seizures. Pediatr Neurol. 2008;39:77–9.

    Article  PubMed  Google Scholar 

  36. Lynch NE, Stevenson NJ, Livingstone V, Murphy BP, Rennie JM, Boylan GB. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia. 2012;53:549–57.

    Article  PubMed  Google Scholar 

  37. Edwards AD, Brocklehurst P, Gunn AJ, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ. 2010;340:c363.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lynch NE, Stevenson NJ, Livingstone V, et al. The temporal characteristics of seizures in neonatal hypoxic ischemic encephalopathy treated with hypothermia. Seizure. 2015;33:60–5.

    Article  PubMed  Google Scholar 

  39. Low E, Boylan GB, Mathieson SR, et al. Cooling and seizure burden in term neonates: an observational study. Arch Dis Child Fetal Neonatal Ed. 2012;97:F267–272.

    Article  PubMed  Google Scholar 

  40. Srinivasakumar P, Zempel J, Wallendorf M, Lawrence R, Inder T, Mathur A. Therapeutic hypothermia in neonatal hypoxic ischemic encephalopathy: electrographic seizures and magnetic resonance imaging evidence of injury. J Pediatr. 2013;163:465–70.

    Article  PubMed  Google Scholar 

  41. Harbert MJ, Tam EW, Glass HC, et al. Hypothermia is correlated with seizure absence in perinatal stroke. J Child Neurol. 2011;26:1126–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mruk AL, Garlitz KL, Leung NR. Levetiracetam in neonatal seizures: a review. J Pediatr Pharmacol Ther. 2015;20:76–89.

    PubMed  PubMed Central  Google Scholar 

  43. Khan O, Chang E, Cipriani C, Wright C, Crisp E, Kirmani B. Use of intravenous levetiracetam for management of acute seizures in neonates. Pediatr Neurol. 2011;44:265–9.

    Article  PubMed  Google Scholar 

  44. Yau ML, Fung EL, Ng PC. Response of levetiracetam in neonatal seizures. World J Clin Pediatr. 2015;4:45–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Abend NS, Gutierrez-Colina AM, Monk HM, Dlugos DJ, Clancy RR. Levetiracetam for treatment of neonatal seizures. J Child Neurol. 2011;26:465–70.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ramantani G, Ikonomidou C, Walter B, Rating D, Dinger J. Levetiracetam: safety and efficacy in neonatal seizures. Eur J Paediatr Neurol. 2011;15:1–7.

    Article  PubMed  Google Scholar 

  47. Maitre NL, Smolinsky C, Slaughter JC, Stark AR. Adverse neurodevelopmental outcomes after exposure to phenobarbital and levetiracetam for the treatment of neonatal seizures. J Perinatol. 2013;33:841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Glass HC, Poulin C, Shevell MI. Topiramate for the treatment of neonatal seizures. Pediatr Neurol. 2011;44:439–42.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Weeke LC, Toet MC, van Rooij LG, et al. Lidocaine response rate in aEEG-confirmed neonatal seizures: retrospective study of 413 full-term and preterm infants. Epilepsia. 2016;57:233–42.

    Article  CAS  PubMed  Google Scholar 

  50. Weeke LC, Schalkwijk S, Toet MC, van Rooij LG, de Vries LS, van den Broek MP. Lidocaine-associated cardiac events in newborns with seizures: incidence, symptoms and contributing factors. Neonatology. 2015;108:130–6.

    Article  CAS  PubMed  Google Scholar 

  51. Kirmse K, Kummer M, Kovalchuk Y, Witte OW, Garaschuk O, Holthoff K. GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat Commun. 2015;6:7750.

    Article  CAS  PubMed  Google Scholar 

  52. Pressler RM, Boylan GB, Marlow N, et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol. 2015;14:469–77. This study examined bumetanide as a novel therapeutic approach for seizures targeted to neonatal physiology, but reported negative results.

    Article  CAS  PubMed  Google Scholar 

  53. Thoresen M, Sabir H. Epilepsy: neonatal seizures still lack safe and effective treatment. Nat Rev Neurol. 2015;11:311–2.

    Article  CAS  PubMed  Google Scholar 

  54. Pressler RM, Boylan GB, Marlow N, et al. Bumetanide for neonatal seizures-back from the cotside. Nat Rev Neurol. 2015;11:724.

    Article  PubMed  Google Scholar 

  55. Glass HC. Bumetanide for treatment of seizures in neonates. Lancet Neurol. 2015;14:456–7.

    Article  CAS  PubMed  Google Scholar 

  56. Jamuar SS, Lam AT, Kircher M, et al. Somatic mutations in cerebral cortical malformations. N Engl J Med. 2014;371:733–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. D’Gama AM, Geng Y, Couto JA, et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol. 2015;77:720–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mirzaa GM, Poduri A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am J Med Genet C: Semin Med Genet. 2014;166C:156–72.

    Article  CAS  Google Scholar 

  59. Barcia G, Fleming MR, Deligniere A, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44:1255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim GE, Kronengold J, Barcia G, et al. Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep. 2014;9:1661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Milligan CJ, Li M, Gazina EV, et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol. 2014;75:581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bearden D, Strong A, Ehnot J, DiGiovine M, Dlugos D, Goldberg EM. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol. 2014;76:457–61. This study examined is proof of principle that in vitro functional characterization of genetic mutation associated with epilepsy can lead to precision therapy.

    Article  CAS  PubMed  Google Scholar 

  63. Grinton BE, Heron SE, Pelekanos JT, et al. Familial neonatal seizures in 36 families: clinical and genetic features correlate with outcome. Epilepsia. 2015;56:1071–80.

    Article  CAS  PubMed  Google Scholar 

  64. Zara F, Specchio N, Striano P, et al. Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance. Epilepsia. 2013;54:425–36.

    Article  CAS  PubMed  Google Scholar 

  65. Weckhuysen S, Ivanovic V, Hendrickx R, et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology. 2013;81:1697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saitsu H, Kato M, Koide A, et al. Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol. 2012;72:298–300.

    Article  CAS  PubMed  Google Scholar 

  67. Milh M, Boutry-Kryza N, Sutera-Sardo J, et al. Similar early characteristics but variable neurological outcome of patients with a de novo mutation of KCNQ2. Orphanet J Rare Dis. 2013;8:80.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kato M, Yamagata T, Kubota M, et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia. 2013;54:1282–7.

    Article  CAS  PubMed  Google Scholar 

  69. Weckhuysen S, Mandelstam S, Suls A, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol. 2012;71:15–25.

    Article  CAS  PubMed  Google Scholar 

  70. Numis AL, Angriman M, Sullivan JE, et al. KCNQ2 encephalopathy: delineation of the electroclinical phenotype and treatment response. Neurology. 2014;82:368–70.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schroeder BC, Kubisch C, Stein V, Jentsch TJ. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature. 1998;396:687–90.

    Article  CAS  PubMed  Google Scholar 

  72. Miceli F, Soldovieri MV, Ambrosino P, et al. Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits. Proc Natl Acad Sci U S A. 2013;110:4386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Orhan G, Bock M, Schepers D, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol. 2014;75:382–94.

    Article  CAS  PubMed  Google Scholar 

  74. Miceli F, Soldovieri MV, Ambrosino P, et al. Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. J Neurosci. 2015;35:3782–93.

    Article  CAS  PubMed  Google Scholar 

  75. Dedek K, Fusco L, Teloy N, Steinlein OK. Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res. 2003;54:21–7.

    Article  CAS  PubMed  Google Scholar 

  76. Borgatti R, Zucca C, Cavallini A, et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology. 2004;63:57–65.

    Article  CAS  PubMed  Google Scholar 

  77. Steinlein OK, Conrad C, Weidner B. Benign familial neonatal convulsions: always benign? Epilepsy Res. 2007;73:245–9.

    Article  CAS  PubMed  Google Scholar 

  78. Miceli F, Striano P, Soldovieri MV, et al. A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability. Epilepsia. 2015;56:e15–20.

    Article  CAS  PubMed  Google Scholar 

  79. Pisano T, Numis AL, Heavin SB, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia. 2015;56:685–91.

    Article  CAS  PubMed  Google Scholar 

  80. Howell KB, McMahon JM, Carvill GL, et al. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology. 2015;85:958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boerma RS, Braun KP, van de Broek MP, et al. Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics. 2016;13:192–7.

    Article  CAS  PubMed  Google Scholar 

  82. Larsen J, Carvill GL, Gardella E, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology. 2015;84:480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ohba C, Kato M, Takahashi S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia. 2014;55:994–1000.

    Article  CAS  PubMed  Google Scholar 

  84. Nakamura K, Kato M, Osaka H, et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology. 2013;81:992–8.

    Article  CAS  PubMed  Google Scholar 

  85. Matalon D, Goldberg E, Medne L, Marsh ED. Confirming an expanded spectrum of SCN2A mutations: a case series. Epileptic Disord. 2014;16:13–8.

    PubMed  Google Scholar 

  86. Stamberger H, Nikanorova M, Willemsen MH, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology. 2016;86:954–62.

    Article  CAS  PubMed  Google Scholar 

  87. Rehman A, Archbold JK, Hu SH, Norwood SJ, Collins BM, Martin JL. Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly. IUCrJ. 2014;1:505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Atwal PS, Scaglia F. Molybdenum cofactor deficiency. Mol Genet Metab. 2016;117:1–4.

    Article  CAS  PubMed  Google Scholar 

  89. Schwahn BC, Van Spronsen FJ, Belaidi AA, et al. Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet. 2015;386:1955–63.

    Article  CAS  PubMed  Google Scholar 

  90. van Karnebeek CD, Tiebout SA, Niermeijer J, et al. Pyridoxine-dependent epilepsy: an expanding clinical spectrum. Pediatr Neurol. 2016;59:6–12.

    Article  PubMed  Google Scholar 

  91. van Karnebeek CD, Jaggumantri S. Current treatment and management of pyridoxine-dependent epilepsy. Curr Treat Options Neurol. 2015;17:335.

    PubMed  Google Scholar 

  92. Gallagher RC, Van Hove JL, Scharer G, et al. Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Ann Neurol. 2009;65:550–6.

    Article  CAS  PubMed  Google Scholar 

  93. Cirillo M, Venkatesan C, Millichap JJ, Stack CV, Nordli Jr DR. Case report: intravenous and oral pyridoxine trial for diagnosis of pyridoxine-dependent epilepsy. Pediatrics. 2015;136:e257–261.

    Article  PubMed  Google Scholar 

  94. Bok LA, Maurits NM, Willemsen MA, et al. The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy. Epilepsia. 2010;51:2406–11.

    Article  PubMed  Google Scholar 

  95. Bok LA, Halbertsma FJ, Houterman S, et al. Long-term outcome in pyridoxine-dependent epilepsy. Dev Med Child Neurol. 2012;54:849–54.

    Article  PubMed  Google Scholar 

  96. Basura GJ, Hagland SP, Wiltse AM, Gospe Jr SM. Clinical features and the management of pyridoxine-dependent and pyridoxine-responsive seizures: review of 63 North American cases submitted to a patient registry. Eur J Pediatr. 2009;168:697–704.

    Article  PubMed  Google Scholar 

  97. Coughlin 2nd CR, van Karnebeek CD, Al-Hertani W, et al. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: neurodevelopmental outcome. Mol Genet Metab. 2015;116:35–43.

    Article  CAS  PubMed  Google Scholar 

  98. Mills PB, Surtees RA, Champion MP, et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5’-phosphate oxidase. Hum Mol Genet. 2005;14:1077–86.

    Article  CAS  PubMed  Google Scholar 

  99. Hoffmann GF, Schmitt B, Windfuhr M, et al. Pyridoxal 5’-phosphate may be curative in early-onset epileptic encephalopathy. J Inherit Metab Dis. 2007;30:96–9.

    Article  CAS  PubMed  Google Scholar 

  100. Pisani F, Spagnoli C. Neonatal seizures: a review of outcomes and outcome predictors. Neuropediatrics. 2016;47:12–9.

    Article  PubMed  Google Scholar 

  101. Soltirovska-Salamon A, Neubauer D, Petrovcic A, Paro-Panjan D. Risk factors and scoring system as a prognostic tool for epilepsy after neonatal seizures. Pediatr Neurol. 2014;50:77–84.

    Article  PubMed  Google Scholar 

  102. Galanopoulou AS, Moshe SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med. 2011;5:615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Simonato M, Brooks-Kayal AR, Engel Jr J, et al. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol. 2014;13:949–60.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fox CK, Glass HC, Sidney S, Smith SE, Fullerton HJ. Neonatal seizures triple the risk of a remote seizure after perinatal ischemic stroke. Neurology. 2016;86:2179–86. This article highlights the risk of post-neonatal epilepsy, up to the first decade, specifically in neonates with perinatal ischemic stroke, the second most common cause of neonatal seizures.

    Article  PubMed  Google Scholar 

  105. Suppiej A, Mastrangelo M, Mastella L, et al. Pediatric epilepsy following neonatal seizures symptomatic of stroke. Brain Dev. 2016;38:27–31.

    Article  PubMed  Google Scholar 

  106. Clancy RR, Legido A. Postnatal epilepsy after EEG-confirmed neonatal seizures. Epilepsia. 1991;32:69–76.

    Article  CAS  PubMed  Google Scholar 

  107. Pisani F, Piccolo B, Cantalupo G, et al. Neonatal seizures and postneonatal epilepsy: a 7-y follow-up study. Pediatr Res. 2012;72:186–93.

    Article  PubMed  Google Scholar 

  108. Venkatesan C, Millichap JJ, Krueger JM, et al. Epilepsy following neonatal seizures secondary to hemorrhagic stroke in term neonates. J Child Neurol. 2016;31:547–52.

    Article  PubMed  Google Scholar 

  109. Martinez-Biarge M, Diez-Sebastian J, Kapellou O, et al. Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology. 2011;76:2055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. da Jung E, Ritacco DG, Nordli DR, Koh S, Venkatesan C. Early anatomical injury patterns predict epilepsy in head cooled neonates with hypoxic-ischemic encephalopathy. Pediatr Neurol. 2015;53:135–40.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Twomey E, Twomey A, Ryan S, Murphy J, Donoghue VB. MR imaging of term infants with hypoxic-ischaemic encephalopathy as a predictor of neurodevelopmental outcome and late MRI appearances. Pediatr Radiol. 2010;40:1526–35.

    Article  PubMed  Google Scholar 

  112. Jose A, Matthai J, Paul S. Correlation of EEG, CT, and MRI brain with neurological outcome at 12 months in term newborns with hypoxic ischemic encephalopathy. J Clin Neonatol. 2013;2:125–30.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffani L. McDonough.

Ethics declarations

Conflict of Interest

Tristan T. Sands and Tiffani L. McDonough declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sands, T.T., McDonough, T.L. Recent Advances in Neonatal Seizures. Curr Neurol Neurosci Rep 16, 92 (2016). https://doi.org/10.1007/s11910-016-0694-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0694-x

Keywords

Navigation