Skip to main content

Advertisement

Log in

Emerging Approaches for Targeting Metabolic Vulnerabilities in Malignant Glioma

  • Neuro-oncology (L A Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Malignant gliomas are intractable and among the most lethal human malignancies. Like other cancers, metabolic reprogramming is a key feature of glioma and is thought to accommodate the heightened nutrient requirements for tumor cell proliferation, growth, and survival. This metabolic rewiring, driven by oncogenic signaling and molded by the unique environment of the brain, may impose vulnerabilities that could be exploited therapeutically for increased tumor control. In this review, we discuss the prominent metabolic features of malignant glioma, the key pathways regulating glioma metabolism, and the potential therapeutic opportunities for targeting metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi:10.1056/NEJMra0708126.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi:10.1056/NEJMoa043330.

    Article  CAS  PubMed  Google Scholar 

  3. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8. doi:10.1038/nature07385.

  4. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. doi:10.1016/j.cell.2013.09.034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Prados MD, Byron SA, Tran NL, Phillips JJ, Molinaro AM, Ligon KL, et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-oncology. 2015;17(8):1051–63. doi:10.1093/neuonc/nov031.

    Article  PubMed  Google Scholar 

  6. Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL, et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2012;2(5):458–71. doi:10.1158/2159-8290.CD-11-0284.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I, et al. De-repression of PDGFRbeta transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013;3(5):534–47. doi:10.1158/2159-8290.CD-12-0502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343(6166):72–6. doi:10.1126/science.1241328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hamanaka RB, Chandel NS. Targeting glucose metabolism for cancer therapy. J Exp Med. 2012;209(2):211–5. doi:10.1084/jem.20120162.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427–33. doi:10.1016/j.tibs.2010.05.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Jelluma N, Yang X, Stokoe D, Evan GI, Dansen TB, Haas-Kogan DA. Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res MCR. 2006;4(5):319–30. doi:10.1158/1541-7786.MCR-05-0061.

    Article  CAS  PubMed  Google Scholar 

  12. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I, et al. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;8:589. doi:10.1038/msb.2012.20.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kennedy CR, Tilkens SB, Guan H, Garner JA, Or PM, Chan AM. Differential sensitivities of glioblastoma cell lines towards metabolic and signaling pathway inhibitions. Cancer Lett. 2013;336(2):299–306. doi:10.1016/j.canlet.2013.03.020.

    Article  CAS  PubMed  Google Scholar 

  14. Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol. 2015;129(1):115–31. doi:10.1007/s00401-014-1352-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Oudard S, Arvelo F, Miccoli L, Apiou F, Dutrillaux AM, Poisson M, et al. High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss. Br J Cancer. 1996;74(6):839–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chinnaiyan P, Kensicki E, Bloom G, Prabhu A, Sarcar B, Kahali S, et al. The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res. 2012;72(22):5878–88. doi:10.1158/0008-5472.CAN-12-1572-T.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16(10):1373–82. doi:10.1038/nn.3510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 2007;18(4):1437–46. doi:10.1091/mbc.E06-07-0593.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988–1004. doi:10.1038/nrd1902.

    Article  CAS  PubMed  Google Scholar 

  20. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15(11):1406–18. doi:10.1101/gad.889901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208(2):313–26. doi:10.1084/jem.20101470.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272(28):17269–75.

    Article  CAS  PubMed  Google Scholar 

  23. Parmenter TJ, Kleinschmidt M, Kinross KM, Bond ST, Li J, Kaadige MR, et al. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discov. 2014;4(4):423–33. doi:10.1158/2159-8290.CD-13-0440.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501. doi:10.1038/nrc839.

    Article  CAS  PubMed  Google Scholar 

  25. Carriere A, Cargnello M, Julien LA, Gao H, Bonneil E, Thibault P, et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol. 2008;18(17):1269–77. doi:10.1016/j.cub.2008.07.078.

    Article  CAS  PubMed  Google Scholar 

  26. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85. doi:10.1016/j.cmet.2006.02.002.

    Article  PubMed  Google Scholar 

  27. Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013;18(5):726–39. doi:10.1016/j.cmet.2013.09.013. The authors show that mTORC2, a central signaling node downstream of RTK-PI3K signaling, can regulate GBM glycolytic flux further demonstrating a critical link between aberrant signal transduction and tumor metabolism.

    Article  CAS  PubMed  Google Scholar 

  28. Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-Oncology. 2010;12(11):1102–12. doi:10.1093/neuonc/noq080.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–3. URL: http://www.nature.com/nature/journal/v452/n7184/suppinfo/nature06734_S1.html.

  30. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008;452(7184):181–6. URL: http://www.nature.com/nature/journal/v452/n7184/suppinfo/nature06667_S1.html.

  31. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2009;2(97):ra73. doi:10.1126/scisignal.2000431.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD, et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci USA. 2012;109(18):6904–9. doi:10.1073/pnas.1204176109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell. 2015;57(1):95–107. doi:10.1016/j.molcel.2014.10.027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334(6060):1278–83. doi:10.1126/science.1211485.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kung C, Hixon J, Choe S, Marks K, Gross S, Murphy E, et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem Biol. 2012;19(9):1187–98. doi:10.1016/j.chembiol.2012.07.021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206(Pt 12):2049–57.

    Article  CAS  PubMed  Google Scholar 

  37. Tsao TS, Burcelin R, Charron MJ. Regulation of hexokinase II gene expression by glucose flux in skeletal muscle. J Biol Chem. 1996;271(25):14959–63.

    Article  CAS  PubMed  Google Scholar 

  38. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013;24(2):213–28. doi:10.1016/j.ccr.2013.06.014. Using global hexokinase 2 knockout mice, this paper demonstrated that elimination of hexokinase 2 has profound therapeutic effects on tumor metabolism and growth, without apparent adverse effects on mouse physiology.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Xu Y, Liu X-H, Saunders M, Pearce S, Foulks JM, Parnell KM, et al. Discovery of 3-(trifluoromethyl)-1H-pyrazole-5-carboxamide activators of the M2 isoform of pyruvate kinase (PKM2). Bioorg Med Chem Lett. 2014;24(2):515–9. doi:10.1016/j.bmcl.2013.12.028.

    Article  CAS  PubMed  Google Scholar 

  40. Parnell KM, Foulks JM, Nix RN, Clifford A, Bullough J, Luo B, et al. Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol Cancer Ther. 2013;12(8):1453–60. doi:10.1158/1535-7163.MCT-13-0026.

    Article  CAS  PubMed  Google Scholar 

  41. Guo C, Linton A, Jalaie M, Kephart S, Ornelas M, Pairish M, et al. Discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as novel PKM2 activators. Bioorg Med Chem Lett. 2013;23(11):3358–63. doi:10.1016/j.bmcl.2013.03.090.

    Article  CAS  PubMed  Google Scholar 

  42. Boxer MB, Jiang J-K, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, et al. Evaluation of substituted N, N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J Med Chem. 2010;53(3):1048–55. doi:10.1021/jm901577g.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Walsh MJ, Brimacombe KR, Veith H, Bougie JM, Daniel T, Leister W, et al. 2-Oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 2011;21(21):6322–7. doi:10.1016/j.bmcl.2011.08.114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. J-k J, Boxer MB, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, et al. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 2010;20(11):3387–93. doi:10.1016/j.bmcl.2010.04.015.

    Article  Google Scholar 

  45. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8(10):839–47. doi:10.1038/nchembio.1060.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Bluemlein K, Grüning N-M, Feichtinger RG, Lehrach H, Kofler B, Ralser M. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. 2011

  47. Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2009;27(7):1082–6. doi:10.1200/jco.2008.19.1098.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, et al. Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neuro-Oncol. 2014;117(1):125–31. doi:10.1007/s11060-014-1362-0.

    Article  CAS  Google Scholar 

  49. Rieger J, Bahr O, Maurer GD, Hattingen E, Franz K, Brucker D, et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014;44(6):1843–52. doi:10.3892/ijo.2014.2382.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Stafford P, Abdelwahab MG, do Kim Y, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond). 2010;7:74. doi:10.1186/1743-7075-7-74.

    Article  Google Scholar 

  51. Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, et al. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One. 2012;7(5), e36197. doi:10.1371/journal.pone.0036197.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Maurer GD, Brucker DP, Bähr O, Harter PN, Hattingen E, Walenta S, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011;11:315. doi:10.1186/1471-2407-11-315.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15(6):827–37. doi:10.1016/j.cmet.2012.05.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Matés JM, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci. 2011;108(21):8674–9. doi:10.1073/pnas.1016627108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, et al. Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed. 2012;25(11):1234–44. doi:10.1002/nbm.2794.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36(10):587–97. doi:10.1016/j.tins.2013.07.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159(7):1603–14. doi:10.1016/j.cell.2014.11.025. Using 13C-NMR analysis of patient-derived mouse orthotopic brain tumor, this elegant study demonstrates for the first time that GBM consume and oxidize acetate as an energetic substrate. This paper also shows, in their models, that GBM tumors do not oxidize consumed glutamine.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Janiszewska M, Suva ML, Riggi N, Houtkooper RH, Auwerx J, Clement-Schatlo V, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 2012;26(17):1926–44. doi:10.1101/gad.188292.112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12. doi:10.1126/science.1164382.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C. Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PloS One. 2011;6(5), e19868. doi:10.1371/journal.pone.0019868.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2010;465(7300):966. doi:10.1038/nature09132.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Birner P, Pusch S, Christov C, Mihaylova S, Toumangelova-Uzeir K, Natchev S, et al. Mutant IDH1 inhibits PI3K/Akt signaling in human glioma. Cancer. 2014;120(16):2440–7. doi:10.1002/cncr.28732.

    Article  CAS  PubMed  Google Scholar 

  63. Fu X, Chin RM, Vergnes L, Hwang H, Deng G, Xing Y, et al. 2-Hydroxyglutarate inhibits ATP synthase and mTOR signaling. Cell Metab. 2015;22(3):508–15. doi:10.1016/j.cmet.2015.06.009. This work demonstrated that the oncometabolite, 2-HG, can inhibit ATP synthase and mTOR in glioma cells.

    Article  CAS  PubMed  Google Scholar 

  64. Chesnelong C, Chaumeil MM, Blough MD, Al-Najjar M, Stechishin OD, Chan JA, et al. Lactate dehydrogenase a silencing in IDH mutant gliomas. Neuro-oncology. 2014;16(5):686–95. doi:10.1093/neuonc/not243.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Izquierdo-Garcia JL, Viswanath P, Eriksson P, Cai L, Radoul M, Chaumeil MM, et al. IDH1 mutation induces reprogramming of pyruvate metabolism. Cancer Res. 2015;75(15):2999–3009. doi:10.1158/0008-5472.CAN-15-0840.

    Article  CAS  PubMed  Google Scholar 

  66. Ohka F, Ito M, Ranjit M, Senga T, Motomura A, Motomura K, et al. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(6):5911–20. doi:10.1007/s13277-014-1784-5.

    Article  CAS  Google Scholar 

  67. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30. doi:10.1016/j.ccr.2010.12.014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324(5924):261–5. doi:10.1126/science.1170944.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483(7390):484–8. doi:10.1038/nature10898.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2(31):31ra4. doi:10.1126/scitranslmed.3000677.

    Article  Google Scholar 

  71. Garon E, Christofk H, Hosmer W, Britten C, Bahng A, Crabtree M, et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2014;140(3):443–52. doi:10.1007/s00432-014-1583-9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Davis M, Pragani R, Popovici-Muller J, Gross S, Thorne N, Salituro F, et al. ML309: a potent inhibitor of R132H mutant IDH1 capable of reducing 2-hydroxyglutarate production in U87 MG glioblastoma cells. Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD); 2010.

  73. Zheng B, Yao Y, Liu Z, Deng L, Anglin JL, Jiang H, et al. Crystallographic investigation and selective inhibition of mutant isocitrate dehydrogenase. ACS Med Chem Lett. 2013;4(6):542–6. doi:10.1021/ml400036z.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340(6132):626–30. doi:10.1126/science.1236062. Genomic studies of GBM suggest that mutant IDH1 may drive GBM growth and survival. This paper identifies a selective inhibitor of mutant IDH1 which blocks the growth of IDH1-mutant, but importantly not IDH1-wild-type, tumors.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Deng G, Shen J, Yin M, McManus J, Mathieu M, Gee P, et al. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. J Biol Chem. 2015;290(2):762–74. doi:10.1074/jbc.M114.608497.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Wu F, Jiang H, Zheng B, Kogiso M, Yao Y, Zhou C, et al. Inhibition of cancer-associated mutant isocitrate dehydrogenases by 2-thiohydantoin compounds. J Med Chem. 2015;58(17):6899–908. doi:10.1021/acs.jmedchem.5b00684.

    Article  CAS  PubMed  Google Scholar 

  77. Molenaar RJ, Botman D, Smits MA, Hira VV, van Lith SA, Stap J, et al. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res. 2015. doi:10.1158/0008-5472.CAN-14-3603.PubMed.

    PubMed  Google Scholar 

  78. Guo D, Hildebrandt IJ, Prins RM, Soto H, Mazzotta MM, Dang J, et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci U S A. 2009;106(31):12932–7. doi:10.1073/pnas.0906606106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal. 2009;2(101):ra82. doi:10.1126/scisignal.2000446.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG, et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 2013;73(9):2850–62. doi:10.1158/0008-5472.CAN-13-0382-T.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S America. 2000;97(16):9226–33.

    Article  CAS  Google Scholar 

  82. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45(10):1653–9.

    PubMed  Google Scholar 

  83. Schiepers C, Chen W, Cloughesy T, Dahlbom M, Huang SC. 18F-FDOPA kinetics in brain tumors. J Nucl Med Off Publ Soc Nucl Med. 2007;48(10):1651–61. doi:10.2967/jnumed.106.039321.

    Google Scholar 

  84. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P, et al. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z, Wise DR, et al. PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J Nucl Med Off Publ Soc Nucl Med. 2011;52(12):1947–55. doi:10.2967/jnumed.111.093815.

    CAS  Google Scholar 

  86. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science Transl Med. 2015;7(274):274ra17. doi:10.1126/scitranslmed.aaa1009.

    Article  Google Scholar 

  87. Horska A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293–310. doi:10.1016/j.nic.2010.04.003.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Kwock L, Smith JK, Castillo M, Ewend MG, Collichio F, Morris DE, et al. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol. 2006;7(10):859–68. doi:10.1016/S1470-2045(06)70905-6.

    Article  PubMed  Google Scholar 

  89. Kalinina J, Carroll A, Wang L, Yu Q, Mancheno DE, Wu S, et al. Detection of “oncometabolite” 2-hydroxyglutarate by magnetic resonance analysis as a biomarker of IDH1/2 mutations in glioma. J Mol Med (Berl). 2012;90(10):1161–71. doi:10.1007/s00109-012-0888-x.

    Article  CAS  Google Scholar 

  90. Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9. doi:10.1038/nm.2682.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med. 2012;4(116):116ra4. doi:10.1126/scitranslmed.3002693.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neuro-Oncol. 2012;107(1):197–205. doi:10.1007/s11060-011-0737-8.

    Article  CAS  Google Scholar 

  93. Elkhaled A, Jalbert LE, Phillips JJ, Yoshihara HA, Parvataneni R, Srinivasan R, et al. Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med. 2012;4(116ra5):116. doi:10.1126/scitranslmed.3002796.

    Google Scholar 

  94. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell. 2013;23(3):302–15. doi:10.1016/j.ccr.2013.02.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the In Vivo Cellular and Molecular Imaging Center, National Cancer Institute P50 CA86306 (P.M.C. and D.A.N.), the Hasso Family Foundation (T.F.C. and D.A.N.), Art of the Brain (T.F.C.), and the National Science Foundation Graduate Research Fellowships Program DGE 1144087 (W.X.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Nathanson.

Ethics declarations

Conflict of Interest

Peter M. Clark declares no potential conflicts of interest.

Wilson X. Mai has a patent Targeting Metabolic Vulnerabilities in Cancer pending.

Timothy F. Cloughesy reports personal fees from Roche/Genentech, personal fees from Novartis, personal fees from Celgene, personal fees from Tocagen, personal fees from VBL, personal fees from NewGen, personal fees from Oxigene, personal fees from Amgen, personal fees from Nektar, personal fees from Upshire Smith, personal fees from AbbVie, and personal fees from Notable Labs.

David A. Nathanson has a patent Targeting Metabolic Vulnerabilities in Cancer pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, P.M., Mai, W.X., Cloughesy, T.F. et al. Emerging Approaches for Targeting Metabolic Vulnerabilities in Malignant Glioma. Curr Neurol Neurosci Rep 16, 17 (2016). https://doi.org/10.1007/s11910-015-0613-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0613-6

Keywords

Navigation