Skip to main content

Advertisement

Log in

Developments in the Role of Transcranial Sonography for the Differential Diagnosis of Parkinsonism

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

In the last two decades transcranial sonography (TCS) has developed as a valuable, supplementary tool in the diagnosis and differential diagnosis of movement disorders. In this review, we highlight recent evidence supporting TCS as a reliable method in the differential diagnosis of parkinsonism, combining substantia nigra (SN), basal ganglia and ventricular system findings. Moreover, several studies support SN hyperechogenicity as one of most important risk factors for Parkinson’s disease (PD). The advantages of TCS include short investigation time, low cost and lack of radiation. Principal limitations are still the dependency on the bone window and operator experience. New automated algorithms may reduce the role of investigator skill in the assessment and interpretation, increasing TCS diagnostic reliability. Based on the convincing evidence available, the EFNS accredited the method of TCS a level A recommendation for supporting the diagnosis of PD and its differential diagnosis from secondary and atypical parkinsonism. An increasing number of training programmes is extending the use of this technique in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology. 1995;45:182–4.

    Article  CAS  PubMed  Google Scholar 

  2. Berardelli A, Wenning GK, Antonini A, Berg D, Bloem BR, Bonifati V, et al. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol. 2013;20:16–34. New European guidelines for the diagnosis of Parkinson’s Disease. TCS evaluation has a Level A of evidence in early and differential diagnosis of PD.

    Article  CAS  PubMed  Google Scholar 

  3. Becker G, Berg D. Neuroimaging in basal ganglia disorders: perspectives for transcranial ultrasound. Mov Disord. 2001;16:23–32.

    Article  CAS  PubMed  Google Scholar 

  4. Walter U, Skoloudík D. Transcranial sonography (TCS) of brain parenchyma in movement disorders: quality standards, diagnostic applications and novel technologies. Ultraschall Med. 2014;35:322–31. Extensive review focusing on TCS assessment and novel technologies.

    Article  CAS  PubMed  Google Scholar 

  5. Walter U, Kanowski M, Kaufmann J, Grossmann A, Benecke R, Niehaus L. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study. Neuroimage. 2008;40:551–8.

    Article  PubMed  Google Scholar 

  6. Puls I, Berg D, Mäurer M, Schliesser M, Hetzel G, Becker G. Transcranial sonography of the brain parenchyma: comparison of B-mode imaging and tissue harmonic imaging. Ultrasound Med Biol. 2000;26:189–94.

    Article  CAS  PubMed  Google Scholar 

  7. Van de Loo S, Walter U, Behnke S, Hagenah J, Lorenz M, Sitzer M, et al. Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81:1087–92.

    Article  PubMed  Google Scholar 

  8. Kern R, Perren F, Kreisel S, Szabo K, Hennerici M, Meairs S. Multiplanar transcranial ultrasound imaging: standards, landmarks and correlation with magnetic resonance imaging. Ultrasound Med Biol. 2005;31:311–5.

    Article  PubMed  Google Scholar 

  9. Berg D, Becker G. Perspectives of B-mode transcranial ultrasound. Neuroimage [Internet]. 2002;15:463–73.

    Article  Google Scholar 

  10. Skoloudík D, Jelínková M, Blahuta J, Cermák P, Soukup T, Bártová P, et al. Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J Neuroradiol. 2014;35:2273–8. Interesting application of novel technology using an automatized algorithm in the assessment of SN echogenicity.

    Article  PubMed  Google Scholar 

  11. Plate A, Ahmadi SA, Pauly O, Klein T, Navab N, Bötzel K. Three-dimensional sonographic examination of the midbrain for computer-aided diagnosis of movement disorders. Ultrasound Med Biol. 2012;38:2041–50. Small trial assessing SN hyperechogenicity with 3-D technology: the diagnostic classification was better compared with classical measurement and independent from investigators’ experience.

    Article  PubMed  Google Scholar 

  12. Chen L, Hagenah J, Mertins A. Feature analysis for Parkinson’s disease detection based on transcranial sonography image. Med Image Comput Comput Assist Interv. 2012;15:272–9.

    PubMed Central  Google Scholar 

  13. Sakalauskas A, Lukoševičius A, Laučkaite K, Jegelevičius D, Rutkauskas S. Automated segmentation of transcranial sonographic images in the diagnostics of Parkinson’s disease. Ultrasonics. 2013;53:111–21.

    Article  PubMed  Google Scholar 

  14. Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol. 2008;7:1044–55.

    Article  PubMed  Google Scholar 

  15. Hagenah J, König IR, Sperner J, Wessel L, Seidel G, Condefer K, et al. Life-long increase of substantia nigra hyperechogenicity in transcranial sonography. Neuroimage. 2010;51:28–32.

    Article  PubMed  Google Scholar 

  16. Go CL, Frenzel A, Rosales RL, Lee LV, Benecke R, Dressler D, et al. Assessment of substantia nigra echogenicity in German and Filipino populations using a portable ultrasound system. J Ultrasound Med. 2012;31:191–6.

    PubMed  Google Scholar 

  17. Kim JY, Kim ST, Jeon SH, Lee WY. Midbrain transcranial sonography in Korean patients with Parkinson’s disease. Mov Disord. 2007;22:1922–6.

    Article  PubMed  Google Scholar 

  18. Berg D, Siefker C, Ruprecht-Dorfler P, Becker G. Relationship of substantia nigra echogenicity and motor function in elderly subjects. Neurology. 2001;56:13–7.

    Article  CAS  PubMed  Google Scholar 

  19. Berg D. Hyperechogenicity of the substantia nigra: pitfalls in assessment and specificity for Parkinson’s disease. J Neural Transm. 2011;118:453–61.

    Article  CAS  PubMed  Google Scholar 

  20. Berg D, Behnke S, Walter U. Application of transcranial sonography in extrapyramidal disorders: updated recommendations. Ultraschall Med. 2006;27:12–9.

    Article  CAS  PubMed  Google Scholar 

  21. Walter U, Behnke S, Eyding J, Niehaus L, Postert T, Seidel G, et al. Transcranial brain parenchyma sonography in movement disorders: state of the art. Ultrasound Med Biol. 2007;33:15–25.

    Article  PubMed  Google Scholar 

  22. Busse K, Heilmann R, Kleinschmidt S, Abu-Mugheisib M, Höppner J, Wunderlich C, et al. Value of combined midbrain sonography, olfactory and motor function assessment in the differential diagnosis of early Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83:441–7. Large study evaluating the different role of single and combined markers in the early diagnosis of Parkinson’s Disease.

    Article  PubMed  Google Scholar 

  23. Alonso-Canovas A, Lopez-Sendon JL, Buisan J, de Felipe-Mimbrera A, Guillan M, Garcia-Barragan N, et al. Sonography for diagnosis of Parkinson’s disease—from theory to practice: a study on 300 participants. J Ultrasound Med. 2014;33:2069–74.

    Article  PubMed  Google Scholar 

  24. Walter U, Wittstock M, Benecke R, Dressler D. Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. J Neural Transm. 2002;109:191–6.

    Article  CAS  PubMed  Google Scholar 

  25. Spiegel J, Hellwig D, Möllers MO, Behnke S, Jost W, Fassbender K, et al. Transcranial sonography and [123I]FP-CIT SPECT disclose complementary aspects of Parkinson’s disease. Brain. 2006;129:1188–93.

    Article  PubMed  Google Scholar 

  26. Kolevski G, Petrov I, Petrova V. Transcranial sonography in the evaluation of Parkinson’s disease. J Ultrasound Med. 2007;26:509–12.

    PubMed  Google Scholar 

  27. Weise D, Lorenz R, Schliesser M, Schirbel A, Reiners K, Classen J. Substantia nigra echogenicity: a structural correlate of functional impairment of the dopaminergic striatal projection in Parkinson’s disease. Mov Disord. 2009;24:1669–75.

    Article  PubMed  Google Scholar 

  28. Berg D, Merz B, Reiners K, Naumann M, Becker G. Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov Disord. 2005;20:383–5.

    Article  PubMed  Google Scholar 

  29. Hellwig S, Reinhard M, Amtage F, Guschlbauer B, Buchert R, Tüscher O, et al. Transcranial sonography and [18F]fluorodeoxyglucose positron emission tomography for the differential diagnosis of parkinsonism: a head-to-head comparison. Eur J Neurol. 2014;21:860–6. Perspective study evaluating TCS and PET in the differential diagnosis of parkinsonism: the results show that the two assessment have comparable accuracies.

    Article  CAS  PubMed  Google Scholar 

  30. Walter U, Dressler D, Probst T, Wolters A, Abu-Mugheisib M, Wittstock M, et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson’s disease. Arch Neurol. 2007;64:1635–40.

    Article  PubMed  Google Scholar 

  31. Behnke S, Berg D, Naumann M, Becker G. Differentiation of Parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J Neurol Neurosurg Psychiatry. 2005;76:423–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sadowski K, Serafin-Król M, Szlachta K, Friedman A. Basal ganglia echogenicity in tauopathies. J Neural Transm. 2014;2003–5. doi:10.1007/s00702-014-1310-3

  33. Walter U, Niehaus L, Probst T, Benecke R, Meyer BU, Dressler D. Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology. 2003;60:74–7.

    Article  CAS  PubMed  Google Scholar 

  34. Sastre-Bataller I, Vázquez JF, Martínez-Torres I, Sahuquillo P, Rubio-Agustí I, Burguera JA, et al. Mesencephalic area measured by transcranial sonography in the differential diagnosis of parkinsonism. Parkinsonism Relat Disord. 2013;19:732–6.

    Article  PubMed  Google Scholar 

  35. Kostić VS, Mijajlović M, Smajlović D, Lukić MJ, Tomić A, Svetel M. Transcranial brain sonography findings in two main variants of progressive supranuclear palsy. Eur J Neurol. 2013;20:552–7.

    Article  PubMed  Google Scholar 

  36. Gaenslen A, Unmuth B, Godau J, Liepelt I, Di Santo A, Schweitzer KJ, et al. The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: a prospective blinded study. Lancet Neurol. 2008;7:417–24.

    Article  PubMed  Google Scholar 

  37. Seidel G, Kaps M, Gerriets T, Hutzelmann A. Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging. 1995;5:105–8.

    CAS  PubMed  Google Scholar 

  38. Brüggemann N, Wuerfel J, Petersen D, Klein C, Hagenah J, Schneider SA. Idiopathic NBIA—clinical spectrum and transcranial sonography findings. Eur J Neurol. 2011;18:2010–1.

    Article  Google Scholar 

  39. Krogias C, Meves S, Schoellhammer M, Gold R, Andrich J. Sonographic detection of bilateral striopallidodentate calcinosis. J Neurol. 2009;256:266–7.

    Article  PubMed  Google Scholar 

  40. Tsai CF, Wu RM, Huang YW, Chen LL, Yip PK, Jeng JS. Transcranial color-coded sonography helps differentiation between idiopathic Parkinson’s disease and vascular parkinsonism. J Neurol. 2007;254:501–7.

    Article  PubMed  Google Scholar 

  41. Venegas-Francke P. Transcranial sonography in the discrimination of Parkinson’s disease versus vascular parkinsonism. Int Rev Neurobiol. 2010;90:147–56.

    PubMed  Google Scholar 

  42. Walter U, Krolikowski K, Tarnacka B, Benecke R, Czlonkowska A, Dressler D. Sonographic detection of basal ganglia lesions in asymptomatic and symptomatic Wilson’s disease. Neurology. 2005;64:1726–32.

    Article  CAS  PubMed  Google Scholar 

  43. Walter U, Skowrońska M, Litwin T, Szpak GM, Jabłonka-Salach K, Skoloudík D, et al. Lenticular nucleus hyperechogenicity in Wilson’s disease reflects local copper, but not iron accumulation. J Neural Transm. 2014;121:1273–9.

    Article  CAS  PubMed  Google Scholar 

  44. Martínez-Fernández R, Caballol N, Gómez-Choco M. MRI and transcranial sonography findings in Wilson’s disease. Mov Disord. 2013;28:740.

    Article  PubMed  Google Scholar 

  45. Bártová P, Kraft O, Bernátek J, Havel M, Ressner P, Langová K, et al. Transcranial sonography and (123)I-FP-CIT single photon emission computed tomography in movement disorders. Ultrasound Med Biol. 2014;40:2365–71.

    Article  PubMed  Google Scholar 

  46. Stockner H, Wurster I. Transcranial sonography in movement disorders. Int Rev Neurobiol. Elsevier; 2010.

  47. Budisic M, Trkanjec Z, Bosnjak J, Lovrencic-Huzjan A, Vukovic V, Demarin V. Distinguishing Parkinson’s disease and essential tremor with transcranial sonography. Acta Neurol Scand. 2009;119:17–21.

    Article  CAS  PubMed  Google Scholar 

  48. Okawa M, Miwa H, Kajimoto Y, Hama K, Morita S, Nakanishi I, et al. Transcranial sonography of the substantia nigra in Japanese patients with Parkinson’s disease or atypical parkinsonism: clinical potential and limitations. Intern Med. 2007;46:1527–31.

    Article  PubMed  Google Scholar 

  49. Vlaar AMM, Bouwmans A, Mess WH, Tromp SC, Weber WEJ. Transcranial duplex in the differential diagnosis of parkinsonian syndromes: a systematic review. J Neurol. 2009;256:530–8.

    Article  PubMed  Google Scholar 

  50. Doepp F, Plotkin M, Siegel L, Kivi A, Gruber D, Lobsien E, et al. Brain parenchyma sonography and 123I-FP-CIT SPECT in Parkinson’s disease and essential tremor. Mov Disord. 2008;23:405–10.

    Article  PubMed  Google Scholar 

  51. Stockner H, Sojer M, KS K, Mueller J, Wenning GK, Schmidauer C, et al. Midbrain sonography in patients with essential tremor. Mov Disord. 2007;22:414–7.

    Article  PubMed  Google Scholar 

  52. Wurster I, Abaza A, Brockmann K, Liepelt-Scarfone I, Berg D. Parkinson’s disease with and without preceding essential tremor-similar phenotypes: a pilot study. J Neurol. 2014;261:884–8. This work suggested that TCS may identify essential tremor patients with SN+ at risk for developing Parkinson’s disease.

    Article  PubMed  Google Scholar 

  53. Behnke S, Hellwig D, Bürmann J, Runkel A, Farmakis G, Kirsch CM, et al. Evaluation of transcranial sonographic findings and MIBG cardiac scintigraphy in the diagnosis of idiopathic Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:995–9. Longitudinal study evaluating MIBG and TCS in the early diagnosis of PD: the work showed TCS and MIBG as highly sensitive (79 and 81% respectively), particularly in combination (95%) for the early diagnosis of PD.

    Article  PubMed  Google Scholar 

  54. Walter U, Dressler D, Wolters A, Wittstock M, Greim B, Benecke R. Sonographic discrimination of dementia with Lewy bodies and Parkinson’s disease with dementia. J Neurol. 2006;253:448–54.

    Article  PubMed  Google Scholar 

  55. Berg D, Grote C, Rausch WD, Mäurer M, Wesemann W, Riederer P, et al. Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol. 1999;25:901–4.

    Article  CAS  PubMed  Google Scholar 

  56. Berg D, Roggendorf W, Schröder U, Klein R, Tatschner T, Benz P, et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol. 2002;59:999–1005.

    Article  PubMed  Google Scholar 

  57. Zecca L, Berg D, Arzberger T, Ruprecht P, Rausch WD, Musicco M, et al. In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord. 2005;20:1278–85.

    Article  PubMed  Google Scholar 

  58. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989;52:515–20.

    Article  CAS  PubMed  Google Scholar 

  59. Berg D, Seppi K, Liepelt I, Schweitzer K, Wollenweber F, Wolf B, et al. Enlarged hyperechogenic substantia nigra is related to motor performance and olfaction in the elderly. Mov Disord. 2010;25:1464–9.

    Article  PubMed  Google Scholar 

  60. Schneider SA, Hardy J, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord. 2012;27:42–53.

    Article  CAS  PubMed  Google Scholar 

  61. Svetel M, Mijajlović M, Tomić A, Kresojević N, Pekmezović T, Kostić VS. Transcranial sonography in Wilson’s disease. Parkinsonism Relat Disord. 2012;18:234–8.

    Article  PubMed  Google Scholar 

  62. Godau J, Manz A, Wevers A-K, Gaenslen A, Berg D. Sonographic substantia nigra hypoechogenicity in polyneuropathy and restless legs syndrome. Mov Disord. 2009;24:133–7.

    Article  PubMed  Google Scholar 

  63. Kwon D-Y, Seo W-K, Yoon H-K, Park M-H, Koh S-B, Park K-W. Transcranial brain sonography in Parkinson’s disease with restless legs syndrome. Mov Disord. 2010;25:1373–8.

    Article  PubMed  Google Scholar 

  64. Synofzik M, Godau J, Lindig T, Schöls L, Berg D. Restless legs and substantia nigra hypoechogenicity are common features in Friedreich’s ataxia. Cerebellum. 2011;10:9–13.

    Article  PubMed  Google Scholar 

  65. Stockner H, Sojer M, Hering S, Nachbauer W, Seppi K, Schmidauer C, et al. Substantia nigra hypoechogenicity in Friedreich’s ataxia. Mov Disord. 2012;27:332–3.

    Article  PubMed  Google Scholar 

  66. Akbas N, Hochstrasser H, Deplazes J, Tomiuk J, Bauer P, Walter U, et al. Screening for mutations of the HFE gene in Parkinson’s disease patients with hyperechogenicity of the substantia nigra. Neurosci Lett. 2006;407:16–9.

    Article  CAS  PubMed  Google Scholar 

  67. Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, et al. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson’s disease. Neurology. 2004;63:1912–7.

    Article  CAS  PubMed  Google Scholar 

  68. Felletschin B, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, et al. Screening for mutations of the ferritin light and heavy genes in Parkinson’s disease patients with hyperechogenicity of the substantia nigra. Neurosci Lett. 2003;352:53–6.

    Article  CAS  PubMed  Google Scholar 

  69. Berg D, Hochstrasser H, Schweitzer KJ, Riess O. Disturbance of iron metabolism in Parkinson’s disease—ultrasonography as a biomarker. Neurotox Res. 2006;9:1–13.

    Article  CAS  PubMed  Google Scholar 

  70. Deplazes J, Schöbel K, Hochstrasser H, Bauer P, Walter U, Behnke S, et al. Screening for mutations of the IRP2 gene in Parkinson’s disease patients with hyperechogenicity of the substantia nigra. J Neural Transm. 2004;111:515–21.

    Article  CAS  PubMed  Google Scholar 

  71. Behnke S, Double KL, Duma S, Broe GA, Guenther V, Becker G, et al. Substantia nigra echomorphology in the healthy very old: correlation with motor slowing. Neuroimage. 2007;34:1054–9.

    Article  CAS  PubMed  Google Scholar 

  72. Liepelt I, Behnke S, Schweitzer K, Wolf B, Godau J, Wollenweber F, et al. Pre-motor signs of PD are related to SN hyperechogenicity assessed by TCS in an elderly population. Neurobiol Aging. 2011;32:1599–606.

    Article  PubMed  Google Scholar 

  73. Ruprecht-Dorfler P, Berg D, Tucha O, et al. Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson’s disease. Neuroimage. 2003;18:416–22.

    Article  PubMed  Google Scholar 

  74. Schweitzer KJ, Behnke S, Liepelt I, et al. Cross-sectional study discloses a positive family history for Parkinson’s disease and male gender as epidemiological risk factors for substantia nigra hyperechogenicity. J Neural Transm. 2007;114:1167–71.

    Article  CAS  PubMed  Google Scholar 

  75. Forno LS. Concentric hyalin intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc. 1969;17:557–75.

    Article  CAS  PubMed  Google Scholar 

  76. Behnke S, Schroeder U, Dillmann U, Buchholz HG, Schreckenberger M, Fuss G, et al. Hyperechogenicity of the substantia nigra in healthy controls is related to MRI changes and to neuronal loss as determined by F-Dopa PET. Neuroimage. 2009;47:1237–43.

    Article  CAS  PubMed  Google Scholar 

  77. Todd G, Taylor JL, Baumann D, Butler JE, Duma SR, Hayes M, et al. Substantia nigra echomorphology and motor cortex excitability. Neuroimage. Elsevier Inc.; 2010; 50:1351–6.

  78. Haehner A, Hummel T, Hummel C, Sommer U, Junghanns S, Reichmann H. Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord. 2007;22:839–42.

    Article  PubMed  Google Scholar 

  79. Walter U, Hoeppner J, Prudente-Morrissey L, Horowski S, Herpertz SC, Benecke R. Parkinson’s disease-like midbrain sonography abnormalities are frequent in depressive disorders. Brain. 2007;130:1799–807.

    Article  PubMed  Google Scholar 

  80. Sommer U, Hummel T, Cormann K, Mueller A, Frasnelli J, Kropp J, et al. Detection of presymptomatic Parkinson’s disease: combining smell tests, transcranial sonography, and SPECT. Mov Disord. 2004;19:1196–202.

    Article  PubMed  Google Scholar 

  81. Brockmann K, Srulijes K, Hauser AK, Schulte C, Csoti I, Gasser T, et al. GBA-associated PD presents with nonmotor characteristics. Neurology. 2011;77:276–80.

    Article  CAS  PubMed  Google Scholar 

  82. Sierra M, Sánchez-Juan P, Martínez-Rodríguez MI, González-Aramburu I, García-Gorostiaga I, Quirce MR, et al. Olfaction and imaging biomarkers in premotor LRRK2 G2019S-associated Parkinson’s disease. Neurology. 2013;80:621–6.

    Article  CAS  PubMed  Google Scholar 

  83. Berg D, Behnke S, Seppi K, Godau J, Lerche S, Mahlknecht P, et al. Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord. 2013;28:216–9. Prospective longitudinal study with 5-years follow-up on 1271 subjects older than 50 years. During follow-up 21 subjects developed PD and subject with SN+ at baseline had a more than 20.6 times increased risk for developed PD compared with subjects SN−.

    Article  CAS  PubMed  Google Scholar 

  84. Berg D, Seppi K, Behnke S, Liepelt I, Schweitzer K, Stockner H, et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson’s disease: a 37-month 3-center study of 1847 older persons. Arch Neurol. 2011;68:932–7.

    Article  PubMed  Google Scholar 

  85. Stockner H, Iranzo A, Seppi K, Serradell M, Gschliesser V, Sojer M, et al. Midbrain hyperechogenicity in idiopathic REM sleep behavior disorder. Mov Disord. 2009;24:1906–9.

    Article  PubMed  Google Scholar 

  86. Iwanami M, Miyamoto T, Miyamoto M, Hirata K, Takada E. Relevance of substantia nigra hyperechogenicity and reduced odor identification in idiopathic REM sleep behavior disorder. Sleep Med. 2010;11:361–5.

    Article  PubMed  Google Scholar 

  87. Iranzo A, Lomeña F, Stockner H, Valldeoriola F, Vilaseca I, Salamero M, et al. Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study. Lancet Neurol. 2010;9:1070–7.

    Article  CAS  PubMed  Google Scholar 

  88. Pauly O, Ahmadi S-A, Plate A, Boetzel K, Navab N. Detection of substantia nigra echogenicities in 3D transcranial ultrasound for early diagnosis of Parkinson’s disease. Med Image Comput Comput Assist Interv. 2012;15:443–50.

    PubMed  Google Scholar 

  89. Ahmadi S-A, Baust M, Karamalis A, Plate A, Boetzel K, Klein T, et al. Midbrain segmentation in transcranial 3D ultrasound for Parkinson diagnosis. Med Image Comput Comput Assist Interv. 2011;14:362–9.

    PubMed  Google Scholar 

  90. Blahuta J, Soukup T, Čermák P. The image recognition of brain-stem ultrasound images with neural network based on PCA. In: Savino M, Andria G, editors. 2011 I.E. International Symposium on Medical Measurements and Applications (MeMeA 2011) Proceedings Bari: IEEE; 2011: 134–142

  91. Walter U, Kirsch M, Wittstock M, Müller J-U, Benecke R, Wolters A. Transcranial sonographic localization of deep brain stimulation electrodes is safe, reliable and predicts clinical outcome. Ultrasound Med Biol. 2011;37:1382–91.

    Article  PubMed  Google Scholar 

  92. Kiphuth IC, Huttner HB, Struffert T, Schwab S, Köhrmann M. Sonographic monitoring of ventricle enlargement in posthemorrhagic hydrocephalus. Neurology. 2011;76:858–62.

    Article  CAS  PubMed  Google Scholar 

  93. Saft C, Hoffmann R, Strassburger-Krogias K, Lücke T, Meves SH, Ellrichmann G, et al. Echogenicity of basal ganglia structures in different Huntington’s disease phenotypes. J Neural Transm. 2014. doi:10.1007/s00702-014-1335-7.

  94. Walter U, Wagner S, Horowski S, Benecke R, Zettl UK. Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology. 2009;73:1010–7.

    Article  CAS  PubMed  Google Scholar 

  95. Bor-Seng-Shu E, Pedroso JL, Felicio AC, Ciampi de Andrade D, Teixeira MJ, Braga-Neto P, et al. Substantia nigra echogenicity and imaging of striatal dopamine transporters in Parkinson’s disease: a cross-sectional study. Parkinsonism Relat Disord. 2014;20:477–81.

    Article  PubMed  Google Scholar 

  96. Prestel J, Schweitzer KJ, Hofer A, Gasser T, Berg D. Predictive value of transcranial sonography in the diagnosis of Parkinson’s disease. Mov Disord. 2006;21:1763–5.

    Article  PubMed  Google Scholar 

  97. Izawa MO, Miwa H, Kajimoto Y, Kondo T. Combination of transcranial sonography, olfactory testing, and MIBG myocardial scintigraphy as a diagnostic indicator for Parkinson’s disease. Eur J Neurol. 2012;19:411–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all participants of the studies assessing SN+ in longitudinal cohorts and all the staff members involved in applying and teaching this method at the moment, especially Ina Posner. We would also like to express our gratitude to Georg Becker who was the first to assess and promote TCS in movement disorders.

Andrea Pilotto and his work was supported by a Research-fellowhip program of DAAD (German Academic Exchange Service)

Compliance with Ethics Guidelines

Conflict of Interest

Rezzak Yilmaz declares no conflict of interest.

Andrea Pilotto has received an honorarium payment from Research-Fellowship Programme of DAAD (German Academic Exchange Service. Rezzak Yilmaz declares no conflict of interest. Daniela Berg has received consultancy fees from UCB, Novartis, Lundbeck, GSK and TEVA, founding from UCB, Novartis, Lundbeck, GSK and TEVA and grant from Michael J. Fox Foundation, BmBF, dPV (German Parkinson’s Disease Association), Center of Integrative Neurosciences, Internationale Parkinson Fonds, Janssen Pharmaceutica, TEVA Pharma GmbH and UCB Pharma GmbH.

Daniela Berg has received consultancy fees from UCB, Novartis, Lundbeck, GSK and TEVA.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Berg.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilotto, A., Yilmaz, R. & Berg, D. Developments in the Role of Transcranial Sonography for the Differential Diagnosis of Parkinsonism. Curr Neurol Neurosci Rep 15, 43 (2015). https://doi.org/10.1007/s11910-015-0566-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0566-9

Keywords

Navigation