Skip to main content

Advertisement

Log in

Using Structural and Diffusion Magnetic Resonance Imaging To Differentiate the Dementias

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Dementia is one of the major causes of personal, societal and financial dependence in older people and in today’s ageing society there is a pressing need for early and accurate markers of cognitive decline. There are several subtypes of dementia but the four most common are Alzheimer’s disease, Lewy body dementia, vascular dementia and frontotemporal dementia. These disorders can only be diagnosed at autopsy, and ante-mortem assessments of “probable dementia (e.g. of Alzheimer type)” are traditionally driven by clinical symptoms of cognitive or behavioural deficits. However, owing to the overlapping nature of symptoms and age of onset, a significant proportion of dementia cases remain incorrectly diagnosed. Misdiagnosis can have an extensive impact, both at the level of the individual, who may not be offered the appropriate treatment, and on a wider scale, by influencing the entry of patients into relevant clinical trials. Magnetic resonance imaging (MRI) may help to improve diagnosis by providing non-invasive and detailed disease-specific markers of cognitive decline. MRI-derived measurements of grey and white matter structural integrity are potential surrogate markers of disease progression, and may also provide valuable diagnostic information. This review summarises the latest evidence on the use of structural and diffusion MRI in differentiating between the four major dementia subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Alzheimer's Disease International. World Alzheimer report 2009. London: Alzheimer's Disease International; 2009.

    Google Scholar 

  2. World Health Organisation. The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. Geneva: World Health Organisation; 1993.

    Google Scholar 

  3. Alzheimer's Disease International. World Alzheimer report 2011. London: Alzheimer's Disease International; 2011.

    Google Scholar 

  4. Kirson NY, Hunter CA, Desai U, Cummings AKG, San Roman AM, Faries DE, Hardwick C, Birnbaum HG. Excess costs associated with misdiagnosis of Alzheimer’s disease among US medicare beneficiaries with vascular dementia or Parkinson’s disease. Boston, MA: Alzheimer’s Association International Conference; 2013.

  5. Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, DeTeresa R, et al. The Lewy body variant of Alzheimer's disease: a clinical and pathologic entity. Neurology. 1990;40:1–8.

    PubMed  CAS  Google Scholar 

  6. Lippa CF, Smith TW, Swearer JM. Alzheimer's disease and Lewy body disease: a comparative clinicopathological study. Ann Neurol. 1994;35:81–8.

    PubMed  CAS  Google Scholar 

  7. McKeith I, Del Ser T, Spano P, Emre M, Wesnes K, Anand R, et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet. 2000;356:2031–6.

    PubMed  CAS  Google Scholar 

  8. Birks J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev. 2006;(1):CD005593.

  9. Mendez MF, Shapira JS, McMurtray A, Licht E. Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry. 2007;15:84–7.

    PubMed  Google Scholar 

  10. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–9.

    PubMed Central  PubMed  Google Scholar 

  11. Chertkow H, Black S. Imaging biomarkers and their role in dementia clinical trials. Can J Neurol Sci. 2007;34 Suppl 1:S77–83.

    PubMed  Google Scholar 

  12. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987;149:351–6.

    PubMed  CAS  Google Scholar 

  13. Barber R, Scheltens P, Gholkar A, Ballard C, McKeith I, Ince P, et al. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer's disease, vascular dementia, and normal aging. J Neurol Neurosurg Psychiatry. 1999;67:66–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex. 1991;1:103–16.

    PubMed  CAS  Google Scholar 

  15. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55:967–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Frisoni GB, Fox NC, Jack Jr CR, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6:67–77.

    PubMed Central  PubMed  Google Scholar 

  17. Burton EJ, Barber R, Mukaetova-Ladinska EB, Robson J, Perry RH, Jaros E, et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain. 2009;132:195–203.

    PubMed  CAS  Google Scholar 

  18. Jack Jr CR, Petersen RC, O'Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease. Neurology. 1992;42:183–8.

    PubMed  Google Scholar 

  19. Hanseeuw BJ, Van Leemput K, Kavec M, Grandin C, Seron X, Ivanoiu A. Mild cognitive impairment: differential atrophy in the hippocampal subfields. AJNR Am J Neuroradiol. 2011;32:1658–61.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Mueller SG, Weiner MW. Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields. Hippocampus. 2009;19:558–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, et al. Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Hum Brain Mapp. 2009;30:2766–88.

    PubMed Central  PubMed  Google Scholar 

  22. Ridha BH, Anderson VM, Barnes J, Boyes RG, Price SL, Rossor MN, et al. Volumetric MRI and cognitive measures in Alzheimer disease : comparison of markers of progression. J Neurol. 2008;255:567–74.

    PubMed  Google Scholar 

  23. van de Pol LA, Hensel A, van der Flier WM, Visser PJ, Pijnenburg YA, Barkhof F, et al. Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2006;77:439–42.

    PubMed Central  PubMed  Google Scholar 

  24. Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci. 2009;29:9661–4.

    PubMed  CAS  Google Scholar 

  25. Tondelli M, Wilcock GK, Nichelli P, De Jager CA, Jenkinson M, Zamboni G. Structural MRI changes detectable up to ten years before clinical Alzheimer's disease. Neurobiol Aging. 2012;33:e825–36. Tondelli et al. show that structural changes are not downstream, late events in the natural history and/or progression of disease, but that they occur early in the preclinical phase up to 7–10 years before clinical diagnosis can be made.

    Google Scholar 

  26. van der Flier WM, van der Vlies AE, Weverling-Rijnsburger AW, de Boer NL, Admiraal-Behloul F, Bollen EL, et al. MRI measures and progression of cognitive decline in nondemented elderly attending a memory clinic. Int J Geriatr Psychiatry. 2005;20:1060–6.

    PubMed  Google Scholar 

  27. Jack Jr CR, Shiung MM, Weigand SD, O'Brien PC, Gunter JL, Boeve BF, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology. 2005;65:1227–31.

    PubMed Central  PubMed  Google Scholar 

  28. Jobst KA, Smith AD, Szatmari M, Esiri MM, Jaskowski A, Hindley N, et al. Rapidly progressing atrophy of medial temporal lobe in Alzheimer's disease. Lancet. 1994;343:829–30.

    PubMed  CAS  Google Scholar 

  29. Jack Jr CR, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999;52:1397–403.

    PubMed Central  PubMed  Google Scholar 

  30. Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol. 2009;30:404–10.

    PubMed  CAS  Google Scholar 

  31. Frisoni GB, Pievani M, Testa C, Sabattoli F, Bresciani L, Bonetti M, et al. The topography of grey matter involvement in early and late onset Alzheimer's disease. Brain. 2007;130:720–30.

    PubMed  Google Scholar 

  32. Jones BF, Barnes J, Uylings HB, Fox NC, Frost C, Witter MP, et al. Differential regional atrophy of the cingulate gyrus in Alzheimer disease: a volumetric MRI study. Cereb Cortex. 2006;16:1701–8.

    PubMed  Google Scholar 

  33. Vemuri P, Whitwell JL, Kantarci K, Josephs KA, Parisi JE, Shiung MS, et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage. 2008;42:559–67.

    PubMed Central  PubMed  Google Scholar 

  34. Hua X, Lee S, Yanovsky I, Leow AD, Chou YY, Ho AJ, et al. Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects. Neuroimage. 2009;48:668–81.

    PubMed Central  PubMed  Google Scholar 

  35. Leow AD, Yanovsky I, Parikshak N, Hua X, Lee S, Toga AW, et al. Alzheimer's disease neuroimaging initiative: a one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition. Neuroimage. 2009;45:645–55.

    PubMed Central  PubMed  Google Scholar 

  36. Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H, et al. Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiol Aging. 2008;29:23–30.

    PubMed  Google Scholar 

  37. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC. Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex. 2005;15:995–1001.

    PubMed  Google Scholar 

  38. Dickerson BC, Stoub TR, Shah RC, Sperling RA, Killiany RJ, Albert MS, et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology. 2011;76:1395–402.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, et al. Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain. 2007;130:1159–66.

    PubMed Central  PubMed  Google Scholar 

  40. Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol. 2000;57:339–44.

    PubMed  CAS  Google Scholar 

  41. O'Brien JT, Paling S, Barber R, Williams ED, Ballard C, McKeith IG, et al. Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia. Neurology. 2001;56:1386–8.

    PubMed  Google Scholar 

  42. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology. 1999;52:1687–9.

    PubMed  CAS  Google Scholar 

  43. Schott JM, Crutch SJ, Frost C, Warrington EK, Rossor MN, Fox NC. Neuropsychological correlates of whole brain atrophy in Alzheimer's disease. Neuropsychologia. 2008;46:1732–7.

    PubMed  CAS  Google Scholar 

  44. Sluimer JD, van der Flier WM, Karas GB, Fox NC, Scheltens P, Barkhof F, et al. Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients. Radiology. 2008;248:590–8.

    PubMed  Google Scholar 

  45. Jack Jr CR, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain. 2009;132:1355–65.

    PubMed Central  PubMed  Google Scholar 

  46. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF. Zanetti MV- Neurostructural predictors of Alzheimer's disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011;32:1733–41.

    PubMed  Google Scholar 

  47. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47:1113–24.

    PubMed  CAS  Google Scholar 

  48. McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis. 2006;9:417–23.

    PubMed  Google Scholar 

  49. Crowell TA, Luis CA, Cox DE, Mullan M. Neuropsychological comparison of Alzheimer's disease and dementia with Lewy bodies. Dement Geriatr Cogn Disord. 2007;23:120–5.

    PubMed  Google Scholar 

  50. Heyman A, Fillenbaum GG, Gearing M, Mirra SS, Welsh-Bohmer KA, Peterson B, et al. Comparison of Lewy body variant of Alzheimer's disease with pure Alzheimer's disease: consortium to establish a Registry for Alzheimer's Disease, part XIX. Neurology. 1999;52:1839–44.

    PubMed  CAS  Google Scholar 

  51. Nervi A, Reitz C, Tang MX, Santana V, Piriz A, Reyes-Dumeyer D, et al. Comparison of clinical manifestations in Alzheimer disease and dementia with Lewy bodies. Arch Neurol. 2008;65:1634–9.

    PubMed Central  PubMed  Google Scholar 

  52. Ferman TJ, Smith GE, Boeve BF, Graff-Radford NR, Lucas JA, Knopman DS, et al. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer's disease. Clin Neuropsychol. 2006;20:623–36.

    PubMed  Google Scholar 

  53. Whitwell JL, Weigand SD, Shiung MM, Boeve BF, Ferman TJ, Smith GE, et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease. Brain. 2007;130:708–19.

    PubMed Central  PubMed  Google Scholar 

  54. Ishii K, Yamaji S, Kitagaki H, Imamura T, Hirono N, Mori E. Regional cerebral blood flow difference between dementia with Lewy bodies and AD. Neurology. 1999;53:413–6.

    PubMed  CAS  Google Scholar 

  55. Lobotesis K, Fenwick JD, Phipps A, Ryman A, Swann A, Ballard C, et al. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD. Neurology. 2001;56:643–9.

    PubMed  CAS  Google Scholar 

  56. Middelkoop HA, van der Flier WM, Burton EJ, Lloyd AJ, Paling S, Barber R, et al. Dementia with Lewy bodies and AD are not associated with occipital lobe atrophy on MRI. Neurology. 2001;57:2117–20.

    PubMed  CAS  Google Scholar 

  57. Taylor JP, Firbank MJ, He J, Barnett N, Pearce S, Livingstone A, et al. Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study. Br J Psychiatry. 2012;200:491–8.

    PubMed Central  PubMed  Google Scholar 

  58. Beyer MK, Larsen JP, Aarsland D. Gray matter atrophy in Parkinson disease with dementia and dementia with Lewy bodies. Neurology. 2007;69:747–54.

    PubMed  Google Scholar 

  59. Barber R, Ballard C, McKeith IG, Gholkar A, O'Brien JT. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology. 2000;54:1304–9.

    PubMed  CAS  Google Scholar 

  60. Barber R, McKeith IG, Ballard C, Gholkar A, O'Brien JT. A comparison of medial and lateral temporal lobe atrophy in dementia with Lewy bodies and Alzheimer's disease: magnetic resonance imaging volumetric study. Dement Geriatr Cogn Disord. 2001;12:198–205.

    PubMed  CAS  Google Scholar 

  61. Lee AY. Vascular dementia. Chonnam Med J. 2011;47:66–71.

    PubMed Central  PubMed  Google Scholar 

  62. O'Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, et al. Vascular cognitive impairment. Lancet Neurol. 2003;2:89–98.

    PubMed  Google Scholar 

  63. Gold G, Kovari E, Herrmann FR, Canuto A, Hof PR, Michel JP, et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke. 2005;36:1184–8.

    PubMed  Google Scholar 

  64. Pantoni L, Pescini F, Nannucci S, Sarti C, Bianchi S, Dotti MT, et al. Comparison of clinical, familial, and MRI features of CADASIL and NOTCH3-negative patients. Neurology. 2010;74:57–63.

    PubMed  CAS  Google Scholar 

  65. Pantoni L, Gorelick PB. Cerebral small vessel disease. Cambridge: Cambridge University Press; 2014.

    Google Scholar 

  66. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250–60.

    PubMed  CAS  Google Scholar 

  67. Bastos-Leite AJ, van der Flier WM, van Straaten EC, Staekenborg SS, Scheltens P, Barkhof F. The contribution of medial temporal lobe atrophy and vascular pathology to cognitive impairment in vascular dementia. Stroke. 2007;38:3182–5.

    PubMed  Google Scholar 

  68. Laakso MP, Partanen K, Riekkinen P, Lehtovirta M, Helkala EL, Hallikainen M, et al. Hippocampal volumes in Alzheimer's disease, Parkinson's disease with and without dementia, and in vascular dementia: an MRI study. Neurology. 1996;46:678–81.

    PubMed  CAS  Google Scholar 

  69. Barber R, McKeith I, Ballard C, O'Brien J. Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer's disease, and vascular dementia. J Neurol Neurosurg Psychiatry. 2002;72:406–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Schmidt R. Comparison of magnetic resonance imaging in Alzheimer's disease, vascular dementia and normal aging. Eur Neurol. 1992;32:164–9.

    PubMed  CAS  Google Scholar 

  71. Cordonnier C, van der Flier WM, Sluimer JD, Leys D, Barkhof F, Scheltens P. Prevalence and severity of microbleeds in a memory clinic setting. Neurology. 2006;66:1356–60.

    PubMed  CAS  Google Scholar 

  72. Roob G, Schmidt R, Kapeller P, Lechner A, Hartung HP, Fazekas F. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology. 1999;52:991–4.

    PubMed  CAS  Google Scholar 

  73. Snowden JS, Neary D, Mann DM. Frontotemporal dementia. Br J Psychiatry. 2002;180:140–3.

    PubMed  Google Scholar 

  74. Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, et al. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease. Neurology. 1999;52:91–100.

    PubMed  CAS  Google Scholar 

  75. Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weiner M, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology. 2002;58:198–208.

    PubMed  CAS  Google Scholar 

  76. Chan D, Fox NC, Jenkins R, Scahill RI, Crum WR, Rossor MN. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology. 2001;57:1756–63.

    PubMed  CAS  Google Scholar 

  77. Desgranges B, Matuszewski V, Piolino P, Chetelat G, Mezenge F, Landeau B, et al. Anatomical and functional alterations in semantic dementia: a voxel-based MRI and PET study. Neurobiol Aging. 2007;28:1904–13.

    PubMed  Google Scholar 

  78. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55:335–46.

    PubMed Central  PubMed  Google Scholar 

  79. Boccardi M, Laakso MP, Bresciani L, Galluzzi S, Geroldi C, Beltramello A, et al. The MRI pattern of frontal and temporal brain atrophy in fronto-temporal dementia. Neurobiol Aging. 2003;24:95–103.

    PubMed  Google Scholar 

  80. Ringman JM, O'Neill J, Geschwind D, Medina L, Apostolova LG, Rodriguez Y, et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer's disease mutations. Brain. 2007;130:1767–76.

    PubMed  Google Scholar 

  81. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15:435–55.

    PubMed  Google Scholar 

  82. O'Donovan J, Watson R, Colloby SJ, Blamire AM, O'Brien JT. Assessment of regional MR diffusion changes in dementia with Lewy bodies and Alzheimer's disease. Int Psychogeriatr. 2014;26:627–35.

    PubMed  Google Scholar 

  83. de Leeuw FE, Korf E, Barkhof F, Scheltens P. White matter lesions are associated with progression of medial temporal lobe atrophy in Alzheimer disease. Stroke. 2006;37:2248–52.

    PubMed  Google Scholar 

  84. de Leeuw FE, Barkhof F, Scheltens P. Progression of cerebral white matter lesions in Alzheimer's disease: a new window for therapy? J Neurol Neurosurg Psychiatry. 2005;76:1286–8.

    PubMed Central  PubMed  Google Scholar 

  85. Amlien IK, Fjell AM. Diffusion tensor imaging of white matter degeneration in Alzheimer's disease and mild cognitive impairment. Neuroscience. 2014. doi:10.1016/j.neuroscience.2014.02.017.

    PubMed  Google Scholar 

  86. Kantarci K, Petersen RC, Boeve BF, Knopman DS, Weigand SD, O'Brien PC, et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology. 2005;64:902–4.

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Muller MJ, Greverus D, Dellani PR, Weibrich C, Wille PR, Scheurich A, et al. Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage. 2005;28:1033–42.

    PubMed  Google Scholar 

  88. Hong YJ, Yoon B, Lim SC, Shim YS, Kim JY, Ahn KJ, et al. Microstructural changes in the hippocampus and posterior cingulate in mild cognitive impairment and Alzheimer's disease: a diffusion tensor imaging study. Neurol Sci. 2013;34:1215–21.

    PubMed  Google Scholar 

  89. Bozzali M, Cherubini A. Diffusion tensor MRI to investigate dementias: a brief review. Magn Reson Imaging. 2007;25:969–77.

    PubMed  Google Scholar 

  90. Chua TC, Wen W, Slavin MJ, Sachdev PS. Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease: a review. Curr Opin Neurol. 2008;21:83–92.

    PubMed  Google Scholar 

  91. Hess CP. Update on diffusion tensor imaging in Alzheimer's disease. Magn Reson Imaging Clin N Am. 2009;17:215–24.

    PubMed  Google Scholar 

  92. Kantarci K, Jack Jr CR, Xu YC, Campeau NG, O'Brien PC, Smith GE, et al. Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology. 2001;219:101–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Duan JH, Wang HQ, Xu J, Lin X, Chen SQ, Kang Z, et al. White matter damage of patients with Alzheimer's disease correlated with the decreased cognitive function. Surg Radiol Anat. 2006;28:150–6.

    PubMed  Google Scholar 

  94. Medina D, DeToledo-Morrell L, Urresta F, Gabrieli JD, Moseley M, Fleischman D, et al. White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study. Neurobiol Aging. 2006;27:663–72.

    PubMed  Google Scholar 

  95. Naggara O, Oppenheim C, Rieu D, Raoux N, Rodrigo S, Dalla Barba G, et al. Diffusion tensor imaging in early Alzheimer's disease. Psychiatry Res. 2006;146:243–9.

    PubMed  Google Scholar 

  96. Stahl R, Dietrich O, Teipel SJ, Hampel H, Reiser MF, Schoenberg SO. White matter damage in Alzheimer disease and mild cognitive impairment: assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology. 2007;243:483–92.

    PubMed  Google Scholar 

  97. Zhang Y, Schuff N, Jahng GH, Bayne W, Mori S, Schad L, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology. 2007;68:13–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Damoiseaux JS, Smith SM, Witter MP, Sanz-Arigita EJ, Barkhof F, Scheltens P, et al. White matter tract integrity in aging and Alzheimer's disease. Hum Brain Mapp. 2009;30:1051–9.

    PubMed  Google Scholar 

  99. Kiuchi K, Morikawa M, Taoka T, Nagashima T, Yamauchi T, Makinodan M, et al. Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease: a diffusion tensor tractography study. Brain Res. 2009;1287:184–91.

    PubMed  CAS  Google Scholar 

  100. Morikawa M, Kiuchi K, Taoka T, Nagauchi K, Kichikawa K, Kishimoto T. Uncinate fasciculus-correlated cognition in Alzheimer's disease: a diffusion tensor imaging study by tractography. Psychogeriatrics. 2010;10:15–20.

    PubMed  Google Scholar 

  101. Firbank MJ, Blamire AM, Krishnan MS, Teodorczuk A, English P, Gholkar A, et al. Diffusion tensor imaging in dementia with Lewy bodies and Alzheimer's disease. Psychiatry Res. 2007;155:135–45.

    PubMed  Google Scholar 

  102. Kiuchi K, Morikawa M, Taoka T, Kitamura S, Nagashima T, Makinodan M, et al. White matter changes in dementia with Lewy bodies and Alzheimer's disease: a tractography-based study. J Psychiatr Res. 2011;45:1095–100. Most patients with LBD first present with visual impairments. Kiuchi et al. studied 26 patients with AD, 26 patients with LBD and 26 healthy controls and they reported that despite similar severity of dementia, it is LBD patients and not AD patients who show marked reductions in FA relative to healthy controls in WM tracts involved in visual processing. This could be a helpful signature of the visual deficits commonly observed in LBD patients.

    PubMed  Google Scholar 

  103. Bozzali M, Falini A, Cercignani M, Baglio F, Farina E, Alberoni M, et al. Brain tissue damage in dementia with Lewy bodies: an in vivo diffusion tensor MRI study. Brain. 2005;128:1595–604.

    PubMed  CAS  Google Scholar 

  104. Ota M, Sato N, Ogawa M, Murata M, Kuno S, Kida J, et al. Degeneration of dementia with Lewy bodies measured by diffusion tensor imaging. NMR Biomed. 2009;22:280–4. This study reports differences in white matter microstructural integrity of visual association fibres in LBD patients relative to healthy controls. Particularly, LBD patients show significant reductions in FA of the inferior longitudinal fasciculus, which is invovled in visuospatial cognition. These structural abnormalities may underlie the visual impairments commonly observed in LBD patients.

    PubMed  Google Scholar 

  105. Mahoney CJ, Ridgway GR, Malone IB, Downey LE, Beck J, Kinnunen KM, et al. Profiles of white matter tract pathology in frontotemporal dementia. Hum Brain Mapp. 2014. doi:10.1002/hbm.22468. Mahoney et al. studied 25 patients with AD, 27 patients with bvFTD and 20 healthy controls and were able to distinguish between AD and FTD patients on the basis of WM microstructure. They found that bvFTD patients had significantly poorer measures of WM integrity than AD patients in the cingulum, corpus callosum and uncinate fasciculus. They also report that FA is the optimal DTI metric for distinguishing between bvFTD and AD patients.

    PubMed  Google Scholar 

  106. Matsuo K, Mizuno T, Yamada K, Akazawa K, Kasai T, Kondo M, et al. Cerebral white matter damage in frontotemporal dementia assessed by diffusion tensor tractography. Neuroradiology. 2008;50:605–11.

    PubMed  Google Scholar 

  107. Lu PH, Lee GJ, Shapira J, Jimenez E, Mather MJ, Thompson PM, et al. Regional differences in white matter breakdown between frontotemporal dementia and early-onset Alzheimer's disease. J Alzheimers Dis. 2014;39:261–9.

    PubMed Central  PubMed  Google Scholar 

  108. Zhang Y, Schuff N, Ching C, Tosun D, Zhan W, Nezamzadeh M, et al. Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer's disease and frontotemporal dementia. Int J Alzheimers Dis. 2011;2011:546871.

    PubMed Central  PubMed  Google Scholar 

  109. Zhang Y, Tartaglia MC, Schuff N, Chiang GC, Ching C, Rosen HJ, et al. MRI signatures of brain macrostructural atrophy and microstructural degradation in frontotemporal lobar degeneration subtypes. J Alzheimers Dis. 2013;33:431–44.

    PubMed Central  PubMed  Google Scholar 

  110. Whitwell JL, Avula R, Senjem ML, Kantarci K, Weigand SD, Samikoglu A, et al. Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology. 2010;74:1279–87.

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Santillo AF, Martensson J, Lindberg O, Nilsson M, Manzouri A, Landqvist Waldo M, et al. Diffusion tensor tractography versus volumetric imaging in the diagnosis of behavioral variant frontotemporal dementia. PLoS One. 2013;8:e66932.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Borroni B, Brambati SM, Agosti C, Gipponi S, Bellelli G, Gasparotti R, et al. Evidence of white matter changes on diffusion tensor imaging in frontotemporal dementia. Arch Neurol. 2007;64:246–51.

    PubMed  Google Scholar 

  113. Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, et al. White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain. 2009;132:2579–92.

    PubMed Central  PubMed  Google Scholar 

  114. Sugihara S, Kinoshita T, Matsusue E, Fujii S, Ogawa T. Usefulness of diffusion tensor imaging of white matter in Alzheimer disease and vascular dementia. Acta Radiol. 2004;45:658–63.

    PubMed  CAS  Google Scholar 

  115. Jin Thong JY, Du J, Ratnarajah N, Dong Y, Soon HW, Saini M, et al. Abnormalities of cortical thickness, subcortical shapes, and white matter integrity in subcortical vascular cognitive impairment. Hum Brain Mapp. 2014;35:2320–32.

    Google Scholar 

  116. Zarei M, Damoiseaux JS, Morgese C, Beckmann CF, Smith SM, Matthews PM, et al. Regional white matter integrity differentiates between vascular dementia and Alzheimer disease. Stroke. 2009;40:773–9.

    PubMed  Google Scholar 

  117. Chen TF, Lin CC, Chen YF, Liu HM, Hua MS, Huang YC, et al. Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry Res. 2009;173:15–21.

    PubMed  Google Scholar 

  118. Auning E, Rongve A, Fladby T, Booij J, Hortobagyi T, Siepel FJ, et al. Early and presenting symptoms of dementia with Lewy bodies. Dement Geriatr Cogn Disord. 2011;32:202–8.

    PubMed  Google Scholar 

  119. Kantarci K, Avula R, Senjem ML, Samikoglu AR, Zhang B, Weigand SD, et al. Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology. 2010;74:1814–21.

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Lee JE, Park HJ, Park B, Song SK, Sohn YH, Lee JD, et al. A comparative analysis of cognitive profiles and white-matter alterations using voxel-based diffusion tensor imaging between patients with Parkinson's disease dementia and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry. 2010;81:320–6.

    PubMed  Google Scholar 

  121. Watson R, Blamire AM, Colloby SJ, Wood JS, Barber R, He J, et al. Characterizing dementia with Lewy bodies by means of diffusion tensor imaging. Neurology. 2012;79:906–14.

    PubMed Central  PubMed  Google Scholar 

  122. Yamamoto R, Iseki E, Murayama N, Minegishi M, Marui W, Togo T, et al. Investigation of Lewy pathology in the visual pathway of brains of dementia with Lewy bodies. J Neurol Sci. 2006;246:95–101.

    PubMed  Google Scholar 

  123. Catani M, Jones DK, Donato R, Ffytche DH. Occipito-temporal connections in the human brain. Brain. 2003;126:2093–107.

    PubMed  Google Scholar 

  124. Bozzali M, Falini A, Franceschi M, Cercignani M, Zuffi M, Scotti G, et al. White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2002;72:742–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Reed BR, Mungas DM, Kramer JH, Ellis W, Vinters HV, Zarow C, et al. Profiles of neuropsychological impairment in autopsy-defined Alzheimer's disease and cerebrovascular disease. Brain. 2007;130:731–9.

    PubMed  Google Scholar 

  126. Geschwind N. Disconnexion syndromes in animals and man. I. Brain. 1965;88:237–94.

    PubMed  CAS  Google Scholar 

  127. Geschwind N. Disconnexion syndromes in animals and man. II. Brain. 1965;88:585–644.

    PubMed  CAS  Google Scholar 

  128. Wu XP, Gao YJ, Yang JL, Xu M, Sun DH. Quantitative measurement to evaluate morphological changes of the corpus callosum in patients with subcortical ischemic vascular dementia. Acta Radiol. 2014. doi:10.1177/0284185114520863.

    Google Scholar 

  129. Fu JL, Zhang T, Chang C, Zhang YZ, Li WB. The value of diffusion tensor imaging in the differential diagnosis of subcortical ischemic vascular dementia and Alzheimer's disease in patients with only mild white matter alterations on T2-weighted images. Acta Radiol. 2012;53:312–7.

    PubMed  Google Scholar 

  130. Hanyu H, Imon Y, Sakurai H, Iwamoto T, Takasaki M, Shindo H, et al. Regional differences in diffusion abnormality in cerebral white matter lesions in patients with vascular dementia of the Binswanger type and Alzheimer's disease. Eur J Neurol. 1999;6:195–203.

    PubMed  CAS  Google Scholar 

  131. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77.

    PubMed Central  PubMed  Google Scholar 

  132. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34:939–44.

    PubMed  CAS  Google Scholar 

  133. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.

    PubMed  CAS  Google Scholar 

  134. Harris JM, Gall C, Thompson JC, Richardson AM, Neary D, du Plessis D, et al. Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. Neurology. 2013;80:1881–7.

    PubMed  Google Scholar 

  135. Schofield E, Kersaitis C, Shepherd CE, Kril JJ, Halliday GM. Severity of gliosis in Pick's disease and frontotemporal lobar degeneration: tau-positive glia differentiate these disorders. Brain. 2003;126:827–40.

    PubMed  Google Scholar 

  136. Bartzokis G, Lu PH, Mintz J. Quantifying age-related myelin breakdown with MRI: novel therapeutic targets for preventing cognitive decline and Alzheimer's disease. J Alzheimers Dis. 2004;6:S53–9.

    PubMed  CAS  Google Scholar 

  137. Linke J, King AV, Poupon C, Hennerici MG, Gass A, Wessa M. Impaired anatomical connectivity and related executive functions: differentiating vulnerability and disease marker in bipolar disorder. Biol Psychiatry. 2013;74:908–16.

    PubMed  CAS  Google Scholar 

  138. Hornberger M, Geng J, Hodges JR. Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain. 2011;134:2502–12.

    PubMed  Google Scholar 

  139. Bora E, Harrison BJ, Fornito A, Cocchi L, Pujol J, Fontenelle LF, et al. White matter microstructure in patients with obsessive-compulsive disorder. J Psychiatry Neurosci. 2011;36:42–6.

    PubMed Central  PubMed  Google Scholar 

  140. Avants BB, Cook PA, Ungar L, Gee JC, Grossman M. Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis. Neuroimage. 2010;50:1004–16.

    PubMed Central  PubMed  Google Scholar 

  141. Roman G. Diagnosis of vascular dementia and Alzheimer’s disease. Int J Clin Pract Suppl. 2001:9–13.

  142. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A. 2009;106:7209–14.

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D'Angelo G, et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J Neurosci. 2010;30:17035–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73:1216–27.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sana Suri is funded by a University of Oxford Clarendon Scholarship. Anya Topiwala is funded by the UK Medical Research Council (G1001354, principal investigator Klaus P. Ebmeier). Clare E. Mackay is funded by the National Institute for Health Research, UK, as part of the Oxford Biomedical Research Centre. Nicola Filippini is funded by a grant from the HDH Wills 1965 Charitable Trust (principal investigator Klaus P. Ebmeier).

Compliance with Ethics Guidelines

Conflict of Interest

Sana Suri, Anya Topiwala, Clare E. Mackay, and Nicola Filippini declare that they have no conflict of interest.

Klaus P. Ebmeier has received paid travel expenses and honoraria from Eli Lily and consultation fees from Eli Lilly in connection with AmyvidTM.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Filippini.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suri, S., Topiwala, A., Mackay, C.E. et al. Using Structural and Diffusion Magnetic Resonance Imaging To Differentiate the Dementias. Curr Neurol Neurosci Rep 14, 475 (2014). https://doi.org/10.1007/s11910-014-0475-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0475-3

Keywords

Navigation