Skip to main content

Advertisement

Log in

Does Bacterial Vaginosis Contribute to Urinary Tract Infection?

  • Female Genital Tract Infections (jd Sobel, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Antibiotic-sparing therapies to treat and prevent urinary tract infections (UTIs) are needed. Interest surrounds the question of whether bacterial vaginosis (BV) enhances susceptibility to urinary tract infections (UTIs) in women, and, whether, by extension, the vaginal microbiota could serve as a therapeutic target for UTI prevention. In this review, we outline research on the relationship between BV and the vaginal microbiota, associations between BV and UTI risk, plausible mechanisms, future directions, and finally clinical take home messages for providers.

Recent Findings

An optimal vaginal microbiota is dominated by protective Lactobacillus spp. BV represents a disorder of the vaginal microbiota marked by decreased lactobacilli and increases in a variety of anaerobic bacteria. Limited epidemiologic data link BV to an increased risk of UTI, whereas vaginal lactobacilli may be protective against UTI. Multiple plausible mechanisms, mainly involving the ability of lactobacilli to inhibit uropathogens’ growth, adhesion, and virulence factors, may explain associations between BV, the vaginal microbiota, and UTIs. However, substantial research gaps remain.

Summary

Currently there are insufficient data to support treatment of BV (e.g., via antibiotics or live biotherapeutic drugs) to prevent UTI. However, additional research into the role of BV in UTI pathogenesis is warranted. Ultimately, this may lead to new treatment strategies to improve women’s urogenital health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mody L, Juthani-Mehta M. Urinary tract infections in older women: a clinical review. JAMA. 2014;311(8):844–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simmering JE, Tang F, Cavanaugh JE, et al. The increase in hospitalizations for urinary tract infections and the associated costs in the United States, 1998–2011. Open Forum Infect Dis. 2017;4(1):ofw281.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barber AE, Norton JP, Spivak AM, et al. Urinary tract infections: current and emerging management strategies. Clin Infect Dis. 2013;57(5):719–24.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Laupland KB, Ross T, Pitout JD, et al. Community-onset urinary tract infections: a population-based assessment. Infection. 2007;35(3):150–3.

    Article  CAS  PubMed  Google Scholar 

  5. • Anger J, Lee U, Ackerman AL, et al. Recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU guideline. J Urol. 2019;202(2):282–9. This document represents current AUA/CUA/SUFA guidelines for management of recurrent UTI in women in the USA.

    Article  PubMed  Google Scholar 

  6. •• Vagios S, Hesham H, Mitchell C. Understanding the potential of lactobacilli in recurrent UTI prevention. Microb Pathog. 2020;148:104544. This is a very useful review discussing potential roles of lactobacilli and the vaginal microbiome in preventing recurrent UTI.

    Article  CAS  PubMed  Google Scholar 

  7. Foxman B. Recurring urinary tract infection: incidence and risk factors. Am J Public Health. 1990;80(3):331–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Glover M, Moreira CG, Sperandio V, et al. Recurrent urinary tract infections in healthy and nonpregnant women. Urol Sci. 2014;25(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geerlings SE. Clinical presentations and epidemiology of urinary tract infections. Microbiol Spectr. 2016;4(5).

  10. Gupta K, Trautner BW. Diagnosis and management of recurrent urinary tract infections in non-pregnant women. BMJ. 2013;346: f3140.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sammon JD, Sharma P, Rahbar H, et al. Predictors of admission in patients presenting to the emergency department with urinary tract infection. World J Urol. 2014;32(3):813–9.

    Article  PubMed  Google Scholar 

  12. Nguyen HQ, Nguyen NTQ, Hughes CM, et al. Trends and impact of antimicrobial resistance on older inpatients with urinary tract infections (UTIs): a national retrospective observational study. PLoS ONE. 2019;14(10):e0223409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bailey RR, Roberts AP, Gower PE, et al. Prevention of urinary-tract infection with low-dose nitrofurantoin. Lancet. 1971;2(7734):1112–4.

    Article  CAS  PubMed  Google Scholar 

  14. Stamm WE, Counts GW, Wagner KF, et al. Antimicrobial prophylaxis of recurrent urinary tract infections: a double-blind, placebo-controlled trial. Ann Intern Med. 1980;92(6):770–5.

    Article  CAS  PubMed  Google Scholar 

  15. Gower PE. The use of small doses of cephalexin (125 mg) in the management of recurrent urinary tract infection in women. J Antimicrob Chemother. 1975;1(3 Suppl):93–8.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrante KL, Wasenda EJ, Jung CE, et al. Vaginal estrogen for the prevention of recurrent urinary tract infection in postmenopausal women: a randomized clinical trial. Female Pelvic Med Reconstr Surg. 2019.

  17. Eriksen B. A randomized, open, parallel-group study on the preventive effect of an estradiol-releasing vaginal ring (Estring) on recurrent urinary tract infections in postmenopausal women. Am J Obstet Gynecol. 1999;180(5):1072–9.

    Article  CAS  PubMed  Google Scholar 

  18. Tuddenham S, Ravel J, Marrazzo JM. Protection and risk: male and female genital microbiota and sexually transmitted infections. J Infect Dis. 2021;223(12 Suppl 2):S222–35.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Lewis AL, Gilbert MN. Roles of the vagina and the vaginal microbiota in urinary tract infection: evidence from clinical correlations and experimental models. GMS Infect Dis. 2020;8:Doc02. This is a useful review of the role of the vaginal microbiota in UTI.

    PubMed  PubMed Central  Google Scholar 

  20. • Stapleton AE. The vaginal microbiota and urinary tract infection. Microbiol Spectr. 2016;4(6). This is a useful brief review of the role of the vaginal microbiota in UTI.

  21. Anahtar MN, Gootenberg DB, Mitchell CM, et al. Cervicovaginal microbiota and reproductive health: the virtue of simplicity. Cell Host Microbe. 2018;23(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  22. • Stapleton AE, Au-Yeung M, Hooton TM, et al. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin Infect Dis. 2011;52(10):1212–7. This is a randomized controlled trial of a phase 2 trial of an intravaginal probiotic for UTI prevention.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mestrovic T, Matijasic M, Peric M, et al. The role of gut, vaginal, and urinary microbiome in urinary tract infections: from bench to bedside. Diagnostics (Basel). 2020;11(1).

  24. Amsel R, Totten PA, Spiegel CA, et al. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med. 1983;74(1):14–22.

  25. Coleman JS, Gaydos CA. Molecular diagnosis of bacterial vaginosis: an update. J Clin Microbiol. 2018;56(9).

  26. Workowski KA, Bachmann LH. Centers for Disease Control and Prevention’s sexually transmitted diseases infection guidelines. Clin Infect Dis. 2022;74(74 Suppl 2):S89–94.

    Article  PubMed  Google Scholar 

  27. • Bradshaw CS, Morton AN, Hocking J, et al. High recurrence rates of bacterial vaginosis over the course of 12 months after oral metronidazole therapy and factors associated with recurrence. J Infect Dis. 2006;193(11):1478–86. This paper presents an estimation of bacterial vaginosis recurrence after antibiotic therapy.

    Article  PubMed  Google Scholar 

  28. McKinnon LR, Achilles SL, Bradshaw CS, et al. The evolving facets of bacterial vaginosis: implications for HIV transmission. AIDS Res Hum Retroviruses. 2019;35(3):219–28.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hickey RJ, Zhou X, Settles ML, et al. Vaginal microbiota of adolescent girls prior to the onset of menarche resemble those of reproductive-age women. mBio. 2015;6(2).

  30. Stewart LL, Vodstrcil LA, Coombe J, et al. Prevalence of bacterial vaginosis in postmenopausal women: a systematic review and meta-analysis. Sex Health. 2022;19(1):17–26.

    Article  PubMed  Google Scholar 

  31. Mitchell CM, Srinivasan S, Ma N, et al. Bacterial communities associated with abnormal Nugent score in postmenopausal versus premenopausal women. J Infect Dis. 2021;223(12):2048–52.

    Article  PubMed  Google Scholar 

  32. Cauci S, Driussi S, De Santo D, et al. Prevalence of bacterial vaginosis and vaginal flora changes in peri- and postmenopausal women. J Clin Microbiol. 2002;40(6):2147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mark KS, Tenorio B, Stennett CA, et al. Bacterial vaginosis diagnosis and treatment in postmenopausal women: a survey of clinician practices. Menopause. 2020;27(6):679–83.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shardell M, Gravitt PE, Burke AE, et al. Association of vaginal microbiota with signs and symptoms of the genitourinary syndrome of menopause across reproductive stages. J Gerontol A Biol Sci Med Sci. 2021;76(9):1542–50.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brotman RM, Shardell MD, Gajer P, et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause. 2018;25(11):1321–30.

    Article  PubMed  Google Scholar 

  36. France MT, Ma B, Gajer P, et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome. 2020;8(1):166.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hooton TM, Fihn SD, Johnson C, et al. Association between bacterial vaginosis and acute cystitis in women using diaphragms. Arch Intern Med. 1989;149(9):1932–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kirjavainen PV, Pautler S, Baroja ML, et al. Abnormal immunological profile and vaginal microbiota in women prone to urinary tract infections. Clin Vaccine Immunol. 2009;16(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  39. Sharami SH, Afrakhteh M, Shakiba M. Urinary tract infections in pregnant women with bacterial vaginosis. J Obstet Gynaecol. 2007;27(3):252–4.

    Article  CAS  PubMed  Google Scholar 

  40. Hillebrand L, Harmanli OH, Whiteman V, et al. Urinary tract infections in pregnant women with bacterial vaginosis. Am J Obstet Gynecol. 2002;186(5):916–7.

    Article  PubMed  Google Scholar 

  41. Harmanli OH, Cheng GY, Nyirjesy P, et al. Urinary tract infections in women with bacterial vaginosis. Obstet Gynecol. 2000;95(5):710–2.

    CAS  PubMed  Google Scholar 

  42. Sumati AH, Saritha NK. Association of urinary tract infection in women with bacterial vaginosis. J Glob Infect Dis. 2009;1(2):151–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta K, Stapleton AE, Hooton TM, et al. Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis. 1998;178(2):446–50.

    Article  CAS  PubMed  Google Scholar 

  44. Stamey TA, Sexton CC. The role of vaginal colonization with Enterobacteriaceae in recurrent urinary infections. J Urol. 1975;113(2):214–7.

    Article  CAS  PubMed  Google Scholar 

  45. Pabich WL, Fihn SD, Stamm WE, et al. Prevalence and determinants of vaginal flora alterations in postmenopausal women. J Infect Dis. 2003;188(7):1054–8.

    Article  PubMed  Google Scholar 

  46. Jackson SL, Boyko EJ, Scholes D, et al. Predictors of urinary tract infection after menopause: a prospective study. Am J Med. 2004;117(12):903–11.

    Article  PubMed  Google Scholar 

  47. Hooton TM, Roberts PL, Stamm WE. Effects of recent sexual activity and use of a diaphragm on the vaginal microflora. Clin Infect Dis. 1994;19(2):274–8.

    Article  CAS  PubMed  Google Scholar 

  48. Fihn SD, Latham RH, Roberts P, et al. Association between diaphragm use and urinary tract infection. JAMA. 1985;254(2):240–5.

    Article  CAS  PubMed  Google Scholar 

  49. Hooton TM, Scholes D, Hughes JP, et al. A prospective study of risk factors for symptomatic urinary tract infection in young women. N Engl J Med. 1996;335(7):468–74.

    Article  CAS  PubMed  Google Scholar 

  50. Fihn SD, Boyko EJ, Normand EH, et al. Association between use of spermicide-coated condoms and Escherichia coli urinary tract infection in young women. Am J Epidemiol. 1996;144(5):512–20.

    Article  CAS  PubMed  Google Scholar 

  51. Scholes D, Hooton TM, Roberts PL, et al. Risk factors for recurrent urinary tract infection in young women. J Infect Dis. 2000;182(4):1177–82.

    Article  CAS  PubMed  Google Scholar 

  52. Hugenholtz F, van der Veer C, Terpstra ML, et al. Urine and vaginal microbiota compositions of postmenopausal and premenopausal women differ regardless of recurrent urinary tract infection and renal transplant status. Sci Rep. 2022;12(1):2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raz R, Stamm WE. A controlled trial of intravaginal estriol in postmenopausal women with recurrent urinary tract infections. N Engl J Med. 1993;329(11):753–6.

    Article  CAS  PubMed  Google Scholar 

  54. Antoniou V, Somani BK. Topical and oral oestrogen for recurrent urinary tract infection-evidence-based review of literature, treatment recommendations, and correlation with the European Association of Urology guidelines on urological infections. Eur Urol Focus. 2022.

  55. McLellan LK, Hunstad DA. Urinary tract infection: pathogenesis and outlook. Trends Mol Med. 2016;22(11):946–57.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Flores-Mireles AL, Walker JN, Caparon M, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thanert R, Reske KA, Hink T, et al. Comparative genomics of antibiotic-resistant uropathogens implicates three routes for recurrence of urinary tract infections. mBio. 2019;10(4).

  58. Forde BM, Roberts LW, Phan MD, et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat Commun. 2019;10(1):3643.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Worby CJ, Schreiber HL, Straub TJ, et al. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat Microbiol. 2022;7(5):630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Soto SM, Smithson A, Horcajada JP, et al. Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin Microbiol Infect. 2006;12(10):1034–6.

    Article  CAS  PubMed  Google Scholar 

  61. Anderson GG, Martin SM, Hultgren SJ. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect. 2004;6(12):1094–101.

    Article  PubMed  Google Scholar 

  62. Stapleton AE. Urinary tract infection pathogenesis: host factors. Infect Dis Clin North Am. 2014;28(1):149–59.

    Article  PubMed  Google Scholar 

  63. De Nisco NJ, Neugent M, Mull J, et al. Direct detection of tissue-resident bacteria and chronic inflammation in the bladder wall of postmenopausal women with recurrent urinary tract infection. J Mol Biol. 2019;431(21):4368–79.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rosen DA, Hooton TM, Stamm WE, et al. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 2007;4(12):e329.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brannon JR, Dunigan TL, Beebout CJ, et al. Invasion of vaginal epithelial cells by uropathogenic Escherichia coli. Nat Commun. 2020;11(1):2803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hooton TM, Roberts PL, Stapleton AE. Cefpodoxime vs ciprofloxacin for short-course treatment of acute uncomplicated cystitis: a randomized trial. JAMA. 2012;307(6):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van de Wijgert J, Verwijs MC, Gill AC, et al. Pathobionts in the vaginal microbiota: individual participant data meta-analysis of three sequencing studies. Front Cell Infect Microbiol. 2020;10:129.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wu J, Miao Y, Abraham SN. The multiple antibacterial activities of the bladder epithelium. Ann Transl Med. 2017;5(2):35.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gilbert NM, O’Brien VP, Waller C, et al. Gardnerella exposures alter bladder gene expression and augment uropathogenic Escherichia coli urinary tract infection in mice. Front Cell Infect Microbiol. 2022;12: 909799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muzny CA, Taylor CM, Swords WE, et al. An updated conceptual model on the pathogenesis of bacterial vaginosis. J Infect Dis. 2019;220(9):1399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ragaliauskas T, Pleckaityte M, Jankunec M, et al. Inerolysin and vaginolysin, the cytolysins implicated in vaginal dysbiosis, differently impair molecular integrity of phospholipid membranes. Sci Rep. 2019;9(1):10606.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gilbert NM, Lewis WG, Lewis AL. Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis. PLoS ONE. 2013;8(3): e59539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roselletti E, Sabbatini S, Perito S, et al. Apoptosis of vaginal epithelial cells in clinical samples from women with diagnosed bacterial vaginosis. Sci Rep. 2020;10(1):1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patterson JL, Stull-Lane A, Girerd PH, et al. Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes. Microbiology (Reading). 2010;156(Pt 2):392–9.

    Article  CAS  PubMed  Google Scholar 

  75. Garcia EM, Serrano MG, Edupuganti L, et al. Sequence comparison of vaginolysin from different Gardnerella species. Pathogens. 2021;10(2).

  76. Harwich MD Jr, Alves JM, Buck GA, et al. Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies. BMC Genomics. 2010;11:375.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gosmann C, Anahtar MN, Handley SA, et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity. 2017;46(1):29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mitchell C, Marrazzo J. Bacterial vaginosis and the cervicovaginal immune response. Am J Reprod Immunol. 2014;71(6):555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kovachev S. Defence factors of vaginal lactobacilli. Crit Rev Microbiol. 2018;44(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  80. Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect/Institut Pasteur. 2000;2(5):543–6.

    Article  CAS  Google Scholar 

  81. Osset J, Bartolome RM, Garcia E, et al. Assessment of the capacity of Lactobacillus to inhibit the growth of uropathogens and block their adhesion to vaginal epithelial cells. J Infect Dis. 2001;183(3):485–91.

    Article  CAS  PubMed  Google Scholar 

  82. Boris S, Suarez JE, Vazquez F, et al. Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun. 1998;66(5):1985–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Llano DG, Arroyo A, Cardenas N, et al. Strain-specific inhibition of the adherence of uropathogenic bacteria to bladder cells by probiotic Lactobacillus spp. Pathog Dis. 2017;75(4).

  84. Dhanani AS, Bagchi T. Lactobacillus plantarum CS24.2 prevents Escherichia coli adhesion to HT-29 cells and also down-regulates enteropathogen-induced tumor necrosis factor-alpha and interleukin-8 expression. Microbiol Immunol. 2013;57(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  85. Atassi F, Brassart D, Grob P, et al. Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli. FEMS Microbiol Lett. 2006;257(1):132–8.

    Article  CAS  PubMed  Google Scholar 

  86. O’Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE. 2013;8(11):e80074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aroutcheva A, Gariti D, Simon M, et al. Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001;185(2):375–9.

    Article  CAS  PubMed  Google Scholar 

  88. Witkin SS, Mendes-Soares H, Linhares IM, et al. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. MBio. 2013;4(4).

  89. Cadieux PA, Burton J, Devillard E, et al. Lactobacillus by-products inhibit the growth and virulence of uropathogenic Escherichia coli. J Physiol Pharmacol. 2009;60(Suppl 6):13–8.

    PubMed  Google Scholar 

  90. Atassi F, Servin AL. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens. FEMS Microbiol Lett. 2010;304(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  91. Abdelhamid AG, Esaam A, Hazaa MM. Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi Pharm J. 2018;26(5):603–7.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chapman CM, Gibson GR, Rowland I. Effects of single- and multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens. Anaerobe. 2014;27:71–6.

    Article  CAS  PubMed  Google Scholar 

  93. Beghini J, Linhares IM, Giraldo PC, et al. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase‐8 in vaginal fluid from women with vaginal disorders. BJOG. 2014.

  94. Aldunate M, Tyssen D, Johnson A, et al. Vaginal concentrations of lactic acid potently inactivate HIV. J Antimicrob Chemother. 2013.

  95. Brotman RM BJ, Robinson CK, Klebanoff MA, Yeoman CJ, Ravel J, Shardell MD, editor The vaginal microenvironment prior to incident STI. Keystone conference: role of the genital tract microbiome in sexual and reproductive health; 2018; Cape Town; South Africa.

  96. Ghartey JP, Smith BC, Chen Z, et al. Lactobacillus crispatus dominant vaginal microbiome is associated with inhibitory activity of female genital tract secretions against Escherichia coli. PLoS ONE. 2014;9(5):e96659.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Delley M, Bruttin A, Richard M, et al. In vitro activity of commercial probiotic Lactobacillus strains against uropathogenic Escherichia coli. FEMS Microbiol Lett. 2015;362(13):fnv096.

    Article  PubMed  Google Scholar 

  98. Atassi F, Pho Viet Ahn DL, Lievin-Le Moal V. Diverse expression of antimicrobial activities against bacterial vaginosis and urinary tract infection pathogens by cervicovaginal microbiota strains of Lactobacillus gasseri and Lactobacillus crispatus. Front Microbiol. 2019;10:2900.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Neugent ML, Hulyalkar NV, Nguyen VH, et al. Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. mBio. 2020;11(2).

  100. Magruder M, Sholi AN, Gong C, et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun. 2019;10(1):5521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tariq R, Pardi DS, Tosh PK, et al. Fecal microbiota transplantation for recurrent Clostridium difficile infection reduces recurrent urinary tract infection frequency. Clin Infect Dis. 2017;65(10):1745–7.

    Article  CAS  PubMed  Google Scholar 

  102. Spaulding CN, Klein RD, Ruer S, et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature. 2017;546(7659):528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wolff BJ, Price TK, Joyce CJ, et al. Oral probiotics and the female urinary microbiome: a double-blinded randomized placebo-controlled trial. Int Urol Nephrol. 2019;51(12):2149–59.

    Article  CAS  PubMed  Google Scholar 

  104. Reid G, Bruce AW, Taylor M. Influence of three-day antimicrobial therapy and lactobacillus vaginal suppositories on recurrence of urinary tract infections. Clin Ther. 1992;14(1):11–6.

    CAS  PubMed  Google Scholar 

  105. • Cohen CR, Wierzbicki MR, French AL, et al. Randomized trial of lactin-V to prevent recurrence of bacterial vaginosis. N Engl J Med. 2020;382(20):1906–15. This is a randomized controlled trial of an intravaginal probiotic to prevent BV recurrence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Tuddenham.

Ethics declarations

Conflict of Interest

JR is co-founder of LUCA Biologics, a biotechnology company focusing on translating microbiome research into live biotherapeutics drugs for women’s health. ST has been a consultant for Biofire Diagnostics, Roche Molecular Diagnostics, and LUCA Biologics; receives royalties from UPTODATE; and has received speaker honoraria from Roche Molecular Diagnostics and Medscape/WebMD. ST, RB, and VH participate in research supported by NIH grant RO1DK130856 (PI: Handa).

Human and Animal Rights and Informed Consent

This article is a review and therefore does not contain the first report of any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights/Key Take Home Points

1. Limited data suggest that BV may plausibly increase susceptibility to UTI or rUTI in women, and that conversely a Lactobacillus-dominated vaginal microbiota may be protective against these infections.

2. However, currently, there is little that clinicians can offer to patients to modify the association between BV, the vaginal microbiome, and UTIs.

• There is no evidence to support antibiotic treatment of BV for the purpose of reducing UTI.

• As per guidelines, eligible postmenopausal women may be offered VET—it is hypothesized (but not certain) that benefits of this therapy may be mediated in part through the vaginal microbiota.

• There is currently insufficient evidence to support recommendations for either oral or intravaginal live biotherapeutics (i.e., probiotics) to prevent rUTI.

3. Additional research into the role of BV and the vaginal microbiota in UTI pathogenesis is warranted and may, in the long run, lead to new treatments to prevent UTIs and improve women’s urogenital health.

This article is part of the Topical Collection on Female Genital Tract Infections

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36.8 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handa, V.L., Brotman, R.M., Ravel, J. et al. Does Bacterial Vaginosis Contribute to Urinary Tract Infection?. Curr Infect Dis Rep 25, 17–27 (2023). https://doi.org/10.1007/s11908-022-00795-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-022-00795-0

Keywords

Navigation