Skip to main content

Advertisement

Log in

Mechanical Circulatory Support Infections in Heart Transplant Candidates

  • Transplant and Oncology (J Schaenman, M Ison, N Theodoropoulos, and S Pergam, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The landscape of mechanical circulatory support (MCS) and associated infections is evolving in the era of the new United Network for Organ Sharing (UNOS) heart allocation system. Multidrug-resistant infections, atypical pathogens, and use of novel therapeutics in these patients need greater recognition.

Recent Findings

The new UNOS heart allocation system has resulted in more patients bridged to transplant with temporary MCS and fewer transplants among patients with long-term MCS like left ventricular assist devices (LVAD) and corresponding shorter wait times for transplant. Newer LVADs with continuous-flow pumps are associated with lower rates of infection than earlier generation devices, but infection remains a major cause of morbidity and mortality. Multidrug-resistant organisms including methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa are common causes of VAD infection. The incidence of fungal infection is lower than with earlier devices, but there are challenges with emerging pathogens including nontuberculous mycobacteria. Nuclear medicine imaging may have a role for diagnosis of infection and determining the extent of involvement. Novel approaches to therapy include new antibiotics with expanded activity against multidrug-resistant organisms, bacteriophage therapy, and platelet-rich plasma and platelet gels.

Summary

Infections associated with mechanical circulatory support are continuing to present new challenges related to the continued evolution of devices and recent changes in the UNOS heart allocation system. Practitioners should be aware of these changes as well as advances in novel diagnostics and therapeutics to aid with the management of refractory infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rose EA, Gelijns, Annetine C. Moskowitz AJ, Heitjan, Daniel F. Stevenson, Lynne W. Dembitsky W, et al. Long-term use of a left ventricular assist device. N Engl J Med. 2001;345(20):1435–43.

  2. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96. https://doi.org/10.1056/nejmoa067758.

    Article  CAS  PubMed  Google Scholar 

  3. Slaughter MS, Rogers JGMC. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. https://doi.org/10.1093/med/9780190467654.003.0016.

    Article  CAS  PubMed  Google Scholar 

  4. Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Hear Lung Transplant. 2015;34(12):1495–504. https://doi.org/10.1016/j.healun.2015.10.003.

    Article  Google Scholar 

  5. JK Kirklin, DC Naftel, RL kormos, LW Stevenson, FD Pagani, MA Miller, KL Ulisney JBJY. Second intermacs annual report : more than 1000 primary. J Hear Lung Transpl. 2010;29(1):1–10. https://doi.org/10.1016/j.healun.2009.10.009.Second.

  6. Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378(15):1386–95. https://doi.org/10.1056/nejmoa1800866.

    Article  PubMed  Google Scholar 

  7. Mehra MR, Naka Y, Uriel N, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376(5):440–50. https://doi.org/10.1056/nejmoa1610426.

    Article  PubMed  Google Scholar 

  8. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device — final report. N Engl J Med. 2019;380(17):1618–27. https://doi.org/10.1056/nejmoa1900486.

    Article  PubMed  Google Scholar 

  9. Teuteberg JJ, Cleveland JC, Cowger J, et al. The society of thoracic surgeons intermacs 2019 annual report: the changing landscape of devices and indications. Ann Thorac Surg. 2020;109(3):649–60. https://doi.org/10.1016/j.athoracsur.2019.12.005.

    Article  PubMed  Google Scholar 

  10. Cogswell R, John R, Estep JD, et al. An early investigation of outcomes with the new 2018 donor heart allocation system in the United States. J Hear Lung Transplant. 2020;39(1):1–4. https://doi.org/10.1016/j.healun.2019.11.002.

    Article  Google Scholar 

  11. Goff RR, Uccellini K, Lindblad K, et al. A change of heart: preliminary results of the US 2018 adult heart allocation revision. Am J Transplant. 2020;20(10):2781–90. https://doi.org/10.1111/ajt.16010.

    Article  PubMed  Google Scholar 

  12. Jawitz OK, Fudim M, Raman V, et al. Reassessing recipient mortality under the new heart allocation system: an updated UNOS registry analysis. JACC Hear Fail. 2020;8(7):548–56. https://doi.org/10.1016/j.jchf.2020.03.010.

    Article  Google Scholar 

  13. Kilic A, Hickey G, Mathier MA, et al. Outcomes of the first 1300 adult heart transplants in the United States after the allocation policy change. Circulation. 2020:1662–64. https://doi.org/10.1161/CIRCULATIONAHA.119.045354.

  14. Trivedi JR, Slaughter MS. Unintended consequences of changes in heart transplant allocation policy: impact on practice patterns. ASAIO J. 2020;66(2):125–7. https://doi.org/10.1097/MAT.0000000000001128.

    Article  PubMed  Google Scholar 

  15. Varshney AS, Hirji SA, Givertz MM. Outcomes in the 2018 UNOS donor heart allocation system: a perspective on disparate analyses. J Hear Lung Transplant. 2020;39(11):1191–4. https://doi.org/10.1016/j.healun.2020.08.012.

    Article  Google Scholar 

  16. Hess NR, Hickey GW, Sultan I, Kilic A. Extracorporeal membrane oxygenation bridge to heart transplant: trends following the allocation change. J Card Surg. 2021;36(1):40–7. https://doi.org/10.1111/jocs.15118.

    Article  Google Scholar 

  17. Fukuhara S, Takeda K, Kurlansky PA, Naka Y, Takayama H. Extracorporeal membrane oxygenation as a direct bridge to heart transplantation in adults. J Thorac Cardiovasc Surg. 2018;155(4):1607-18.e6. https://doi.org/10.1016/j.jtcvs.2017.10.152.

    Article  PubMed  Google Scholar 

  18. Hannan MM, Husain S, Mattner F, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Hear Lung Transplant. 2011;30(4):375–84. https://doi.org/10.1016/j.healun.2011.01.717.

    Article  Google Scholar 

  19. Zinoviev R, Lippincott CK, Keller SC, Gilotra NA. In full flow: Left ventricular assist device infections in the modern era. Open Forum Infect Dis. 2020;7(5): ofaa124. https://doi.org/10.1093/ofid/ofaa124.

  20. Donahey EE, Polly DM, Vega JD, et al. Multidrug-resistant organism infections: in patients with left ventricular assist devices. Texas Hear Inst J. 2015;42(6):522–27. https://doi.org/10.14503/THIJ-14-4612.

  21. Papathanasiou M, Pohl J, Alexander RA, et al. Colonization with multiresistant bacteria: impact on ventricular assist device patients. Ann Thorac Surg. 2018;15(2):557–563. https://doi.org/10.1016/j.athoracsur.2017.07.050.

  22. Koval CE, Stosor V. Ventricular assist device-related infections and solid organ transplantation—guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33(9). https://doi.org/10.1111/ctr.13552.

  23. Kusne S, Mooney M, Danziger-Isakov L, et al. An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection. J Hear Lung Transplant. 2017;36(10):1137–53. https://doi.org/10.1016/j.healun.2017.06.007.

    Article  Google Scholar 

  24. Zinoviev R, Lippincott CK, Keller SC, Gilotra NA. In full flow: left ventricular assist device infections in the modern era. Open Forum Infect Dis. 2020;7(5):1–8. https://doi.org/10.1093/ofid/ofaa124.

    Article  Google Scholar 

  25. Nienaber JJC, Kusne S, Riaz T, et al. Clinical manifestations and management of left ventricular assist device-associated infections. Clin Infect Dis. 2013;57(10):1438–48. https://doi.org/10.1093/cid/cit536.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goldstein DJ, El-Amir NG, Ashton Jr RC, Catanese K, Rose RA, Levin HR, Oz MC. Fungal infections in left ventricular assist device recipients. Incidence, prophylaxis, and treatment. 1995;41(4):873-5. PubMed. https://pubmed-ncbi-nlm-nih-gov.eresources.mssm.edu/8589469/. Accessed 26 Apr 2021.

  27. Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Hear Lung Transplant. 2019;38(4):475–6. https://doi.org/10.1016/j.healun.2019.01.001.

    Article  Google Scholar 

  28. Gordon RJ, Weinberg AD, Pagani FD, et al. Prospective, multicenter study of ventricular assist device infections. Circulation. 2013;127(6):691–702. https://doi.org/10.1161/CIRCULATIONAHA.112.128132.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Simon D, Fischer S, Grossman A, et al. Left ventricular assist device-related infection: treatment and outcome. Clin Infect Dis. 2005;40(8):1108–15. https://doi.org/10.1086/428728.

    Article  PubMed  Google Scholar 

  30. Aslam S, Hernandez M, Thornby J, Zeluff B, Darouiche RO. Risk factors and outcomes of fungal ventricular-assist device infections. Clin Infect Dis. 2010;50(5):664–71. https://doi.org/10.1086/650454.

    Article  PubMed  Google Scholar 

  31. Bagdasarian NG, Malani AN, Pagani FD, Malani PN. Fungemia associated with left ventricular assist device support: case reports. J Card Surg. 2009;24(6):763–5. https://doi.org/10.1111/j.1540-8191.2009.00919.x.

    Article  PubMed  Google Scholar 

  32. Radcliffe C, Doilicho N, Grant M. Nontuberculous mycobacterial infections in left ventricular assist device patients. J Card Surg. 2020;35(5):1138–41. https://doi.org/10.1111/jocs.14530.

    Article  PubMed  Google Scholar 

  33. Balsam LB, Louie E, Hill F, Levine J, Phillips MS. Mycobacterium chimaera left ventricular assist device infections. J Card Surg. 2017;32(6):402–4. https://doi.org/10.1111/jocs.13150.

    Article  PubMed  Google Scholar 

  34. Nunez Breton JD, Hernandez G, Simkins J, Chaparro SV. Mycobacterium abscessus left ventricle assist device driveline infections: an emerging pathogen?. Transpl Infect Dis. 2018;20(5). https://doi.org/10.1111/tid.12957.

  35. Provenzani A, Hospodar AR, Meyer AL, et al. Multidrug-resistant gram-negative organisms: a review of recently approved antibiotics and novel pipeline agents. Int J Clin Pharm. 2020;42(4):1016–25. https://doi.org/10.1007/s11096-020-01089-y.

    Article  CAS  PubMed  Google Scholar 

  36. Aslam S, Lampley E, Wooten D, et al. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect Dis. 2020;7(9). https://doi.org/10.1093/ofid/ofaa389.

  37. Wille J, Coenye T. Biofilm dispersion: the key to biofilm eradication or opening Pandora’s box? Biofilm. 2020;2(June):100027. https://doi.org/10.1016/j.bioflm.2020.100027.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Doub JB. Bacteriophage therapy for clinical biofilm infections: parameters that influence treatment protocols and current treatment approaches. Antibiotics. 2020;9(11):1–12. https://doi.org/10.3390/antibiotics9110799.

    Article  CAS  Google Scholar 

  39. Jiritano F, Serraino GF, Rossi M, Dominijanni A, Brescia A, Renzulli A. Ventricular assist device driveline infection: treatment with platelet-rich plasma. Ann Thorac Surg. 2013;96(2):e37–8. https://doi.org/10.1016/j.athoracsur.2013.01.093.

    Article  PubMed  Google Scholar 

  40. Formica F, Perseghin P, Cirò A, Paolini G. Late driveline left ventricular assist device infection treated with frozen-and-thawed allogeneic platelet gel. Interact Cardiovasc Thorac Surg. 2014;19(3):523–5. https://doi.org/10.1093/icvts/ivu195.

    Article  PubMed  Google Scholar 

  41. Dell’Aquila AM, Mastrobuoni S, Alles S, et al. Contributory role of fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow left ventricular assist device presented at the fifty-. Ann Thorac Surg. 2016;101(1):87–94. https://doi.org/10.1016/j.athoracsur.2015.06.066.

    Article  PubMed  Google Scholar 

  42. Akin S, Muslem R, Constantinescu AA, et al. 18F-FDG PET/CT in the diagnosis and management of continuous flow left ventricular assist device infections: a case series and review of the literature. ASAIO J. 2017. https://doi.org/10.1097/MAT.0000000000000552.

    Article  Google Scholar 

  43. Levy DT, Minamoto GY, Da Silva R, Puius YA, Peck N, Goldstein D, D’alessandro D, Muggia VA. Role of gallium SPECT-CT in the diagnosis of left ventricular assist device infections. ASAIO J. 2015;61(1):e5-10. https://doi.org/10.1097/MAT.0000000000000167.Role.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risa Fuller.

Ethics declarations

Conflict of Interest

Risa Fuller, Sarah Taimur, and Emily Baneman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Transplant and Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuller, R., Taimur, S. & Baneman, E. Mechanical Circulatory Support Infections in Heart Transplant Candidates. Curr Infect Dis Rep 24, 1–7 (2022). https://doi.org/10.1007/s11908-022-00772-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-022-00772-7

Keywords

Navigation