Skip to main content

Advertisement

Log in

Update on Fungal Diagnostics

  • Transplant and Oncology (M Ison, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Invasive fungal disease (IFD) is becoming more prevalent in transplant and oncology patients as a result of the potent immunosuppressive therapies used to prevent allograft rejection and/or the use of cytotoxic chemotherapy to treat cancer. Mortality attributable to IFD remains high despite advances in antifungal therapies. There is a continued need for laboratory diagnostics to help improve clinical outcomes. In recent years, culture-based detection strategies and histopathology have been supplemented with molecular and proteomic techniques as well as antigen detection methods. Refinements in these assays are improving the diagnosis of IFD, with the greatest strides made within the molecular and proteomic arenas. This review highlights recent laboratory developments in the diagnosis of invasive candidiasis, cryptococcosis, opportunistic molds, and endemic fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendrup MC, Dzajic E, Jensen RH, Johansen HK, Kjaeldgaard P, et al. Epidemiological changes with potential implication for antifungal prescription recommendations for fungaemia: data from a nationwide fungaemia surveillance programme. Clin Microbiol Infect. 2013;19:E343–53.

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Creixems M, Alcala L, Munoz P, Cercenado E, Vicente T, et al. Bloodstream infections: evolution and trends in the microbiology workload, incidence, and etiology, 1985-2006. Medicine (Baltimore). 2008;87:234–49.

    Article  Google Scholar 

  3. Ostrosky-Zeichner L. Invasive mycoses: diagnostic challenges. Am J Med. 2012;125:S14–24.

    Article  PubMed  Google Scholar 

  4. Pagano L, Caira M, Candoni A, Offidani M, Fianchi L, et al. The epidemiology of fungal infections in patients with hematologic malignancies: the SEIFEM-2004 study. Haematologica. 2006;91:1068–75.

    PubMed  Google Scholar 

  5. Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50:1101–11.

    Article  PubMed  Google Scholar 

  6. Stone NR, Gorton RL, Barker K, Ramnarain P, Kibbler CC. Evaluation of PNA-FISH yeast traffic light for rapid identification of yeast directly from positive blood cultures and assessment of clinical impact. J Clin Microbiol. 2013;51:1301–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Harris DM, Hata DJ. Rapid identification of bacteria and Candida using PNA-FISH from blood and peritoneal fluid cultures: a retrospective clinical study. Ann Clin Microbiol Antimicrob. 2013;12:2.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hsu JL, Binkley J, Clemons KV, Stevens DA, Nicolls MR, et al. Application of a non-amplification-based technology to detect invasive fungal pathogens. Diagn Microbiol Infect Dis. 2014;78:137–40.

    Article  PubMed  Google Scholar 

  9. Altun O, Almuhayawi M, Ullberg M, Ozenci V. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol. 2013;51:4130–6.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Balada-Llasat JM, LaRue H, Kamboj K, Rigali L, Smith D, et al. Detection of yeasts in blood cultures by the Luminex xTAG fungal assay. J Clin Microbiol. 2012;50:492–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chaidaroglou A, Manoli E, Marathias E, Gkouziouta A, Saroglou G, et al. Use of a multiplex polymerase chain reaction system for enhanced bloodstream pathogen detection in thoracic transplantation. J Heart Lung Transplant. 2013;32:707–13.

    Article  PubMed  Google Scholar 

  12. Carrara L, Navarro F, Turbau M, Seres M, Moran I, et al. Molecular diagnosis of bloodstream infections with a new dual-priming oligonucleotide-based multiplex PCR assay. J Med Microbiol. 2013;62:1673–9.

    Article  PubMed  Google Scholar 

  13. Schreiber J, Nierhaus A, Braune SA, de Heer G, Kluge S. Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Med Klin Intensivmed Notfmed. 2013;108:311–8.

    Article  CAS  PubMed  Google Scholar 

  14. Neely LA, Audeh M, Phung NA, Min M, Suchocki A, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 2013;5:182ra154.

    Article  Google Scholar 

  15. Beyda ND, Alam MJ, Garey KW. Comparison of the T2Dx instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Diagn Microbiol Infect Dis. 2013;77:324–6.

    Article  CAS  PubMed  Google Scholar 

  16. Loonen AJ, Bos MP, van Meerbergen B, Neerken S, Catsburg A, et al. Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections. PLoS One. 2013;8:e72349.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lacroix C, Gicquel A, Sendid B, Meyer J, Accoceberry I, et al. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin Microbiol Infect. 2014;20:153–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenvinge FS, Dzajic E, Knudsen E, Malig S, Andersen LB, et al. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates. Mycoses. 2013;56:229–35.

    Article  CAS  PubMed  Google Scholar 

  19. Hamprecht A, Christ S, Oestreicher T, Plum G, Kempf VA, et al. Performance of two MALDI-TOF MS systems for the identification of yeasts isolated from bloodstream infections and cerebrospinal fluids using a time-saving direct transfer protocol. Med Microbiol Immunol. 2014;203:93–9.

    Article  CAS  PubMed  Google Scholar 

  20. Mancini N, De Carolis E, Infurnari L, Vella A, Clementi N, et al. Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry systems for identification of yeasts of medical importance. J Clin Microbiol. 2013;51:2453–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Westblade LF, Jennemann R, Branda JA, Bythrow M, Ferraro MJ, et al. Multicenter study evaluating the Vitek MS system for identification of medically important yeasts. J Clin Microbiol. 2013;51:2267–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Taj-Aldeen SJ, Kolecka A, Boesten R, Alolaqi A, Almaslamani M, et al. Epidemiology of candidemia in Qatar, the Middle East: performance of MALDI-TOF MS for the identification of Candida species, species distribution, outcome, and susceptibility pattern. Infection. 2014;42:393–404.

    Article  CAS  PubMed  Google Scholar 

  23. Ferreira L, Sanchez-Juanes F, Vega M, Gonzalez M, Garcia MI, et al. Identification of fungal clinical isolates by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Rev Esp Quimioter. 2013;26:193–7.

    PubMed  Google Scholar 

  24. Sendid B, Ducoroy P, Francois N, Lucchi G, Spinali S, et al. Evaluation of MALDI-TOF mass spectrometry for the identification of medically-important yeasts in the clinical laboratories of Dijon and Lille hospitals. Med Mycol. 2013;51:25–32.

    Article  CAS  PubMed  Google Scholar 

  25. Spanu T, Posteraro B, Fiori B, D'Inzeo T, Campoli S, et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2012;50:176–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Calderaro A, Martinelli M, Motta F, Larini S, Arcangeletti MC, et al. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures. Clin Microbiol Infect. 2013. doi:10.1111/1469-0691.12490.

    Google Scholar 

  27. Lyons JL, Roos KL, Marr KA, Neumann H, Trivedi JB, et al. Cerebrospinal fluid (1,3)-beta-D-glucan detection as an aid for diagnosis of iatrogenic fungal meningitis. J Clin Microbiol. 2013;51:1285–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Litvintseva AP, Lindsley MD, Gade L, Smith R, Chiller T, et al. Utility of (1-3)-beta-D-glucan testing for diagnostics and monitoring response to treatment during the multistate outbreak of fungal meningitis and other infections. Clin Infect Dis. 2014;58:622–30.

    Article  CAS  PubMed  Google Scholar 

  29. Theel ES, Jespersen DJ, Iqbal S, Bestrom JE, Rollins LO, et al. Detection of (1,3)-beta-D-glucan in bronchoalveolar lavage and serum samples collected from immunocompromised hosts. Mycopathologia. 2013;175:33–41.

    Article  CAS  PubMed  Google Scholar 

  30. Held J, Kohlberger I, Rappold E, Busse Grawitz A, Hacker G. Comparison of (1- > 3)-beta-D-glucan, mannan/anti-mannan antibodies, and Cand-Tec Candida antigen as serum biomarkers for candidemia. J Clin Microbiol. 2013;51:1158–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fu Y, Chen J, Cai B, Zhang JL, Li LX. et al [Diagnostic values of procalcitonin, interleukin-6, C reactive protein and serum amyloid A in sepsis]. Sichuan Da Xue Xue bao Yi Xue Ban. 2012;43:702–5.

    CAS  PubMed  Google Scholar 

  32. Zaas AK, Aziz H, Lucas J, Perfect JR, Ginsburg GS. Blood gene expression signatures predict invasive candidiasis. Sci Transl Med. 2010;2.

  33. Desalermos A, Kourkoumpetis TK, Mylonakis E. Update on the epidemiology and management of cryptococcal meningitis. Expert Opin Pharmacother. 2012;13:783–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gago S, Esteban C, Valero C, Zaragoza O. Puig de la Bellacasa J, et al. A multiplex real time PCR for the identification of Pneumocystis jirovecii, Histoplasma capsulatum and Cryptococcus neoformans/gattii causing opportunistic pneumonia in AIDS patients. J Clin Microbiol. 2014;52:1168–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Favaro M, Savini V, Favalli C, Fontana C. A multi-target real-time PCR assay for rapid identification of meningitis-associated microorganisms. Mol Biotechnol. 2013;53:74–9.

    Article  CAS  PubMed  Google Scholar 

  36. Qishui O, Ling J, Ni L, Bin Y, Wen L. Comparison of real-time florescence quantitative PCR measurements of VAD1 mRNA with three conventional methods in diagnosis and follow-up treatment of Cryptococcus neoformans infection. Mycoses. 2012;55:326–32.

    Article  PubMed  Google Scholar 

  37. Simner PJ, Buckwalter SP, Uhl JR, Wengenack NL, Pritt BS. Detection and identification of yeasts from formalin-fixed, paraffin-embedded tissue by use of PCR-electrospray ionization mass spectrometry. J Clin Microbiol. 2013;51:3731–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. McTaggart L, Richardson SE, Seah C, Hoang L, Fothergill A, et al. Rapid identification of Cryptococcus neoformans var. grubii, C. neoformans var. neoformans, and C. gattii by use of rapid biochemical tests, differential media, and DNA sequencing. J Clin Microbiol. 2011;49:2522–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Feng X, Fu X, Ling B, Wang L, Liao W, et al. Development of a singleplex PCR assay for rapid identification and differentiation of Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. neoformans, Cryptococcus gattii, and hybrids. J Clin Microbiol. 2013;51:1920–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Feng X, Fu X, Ling B, Wang L, Liao W, et al. Rapid differentiation of cryptic species within Cryptococcus gattii by a duplex PCR assay. J Clin Microbiol. 2013;51:3110–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C gattii species complex. PLoS One. 2012;7:e37566.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vijayan T, Chiller T, Klausner JD. Sensitivity and specificity of a new cryptococcal antigen lateral flow assay in serum and cerebrospinal fluid. MLO Med Lab Obs. 2013;45:16, 18, 20.

  43. Binnicker MJ, Jespersen DJ, Bestrom JE, Rollins LO. Comparison of four assays for the detection of cryptococcal antigen. Clin Vaccine Immunol. 2012;19:1988–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Gates-Hollingsworth MA, Kozel TR. Serotype sensitivity of a lateral flow immunoassay for cryptococcal antigen. Clin Vaccine Immunol. 2013;20:634–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hansen J, Slechta ES, Gates-Hollingsworth MA, Neary B, Barker AP, et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20:52–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Jarvis JN, Casazza JP, Stone HH, Meintjes G, Lawn SD, et al. The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. J Infect Dis. 2013;207:1817–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Chang CC, Omarjee S, Lim A, Spelman T, Gosnell BI, et al. Chemokine levels and chemokine receptor expression in the blood and the cerebrospinal fluid of HIV-infected patients with cryptococcal meningitis and cryptococcosis-associated immune reconstitution inflammatory syndrome. J Infect Dis. 2013;208:1604–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50:1091–100.

    Article  PubMed  Google Scholar 

  49. Sun W, Wang K, Gao W, Su X, Qian Q, et al. Evaluation of PCR on bronchoalveolar lavage fluid for diagnosis of invasive aspergillosis: a bivariate metaanalysis and systematic review. PLoS One. 2011;6:e28467.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Guinea J, Padilla C, Escribano P, Munoz P, Padilla B, et al. Evaluation of MycAssay Aspergillus for diagnosis of invasive pulmonary aspergillosis in patients without hematological cancer. PLoS One. 2013;8:e61545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Fraczek MG, Kirwan MB, Moore CB, Morris J, Denning DW, et al. Volume dependency for culture of fungi from respiratory secretions and increased sensitivity of Aspergillus quantitative PCR. Mycoses. 2014;57:69–78.

    Article  PubMed  Google Scholar 

  52. Babady NE, Miranda E, Gilhuley KA. Evaluation of Luminex xTAG fungal analyte-specific reagents for rapid identification of clinically relevant fungi. J Clin Microbiol. 2011;49:3777–82.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Massire C, Buelow DR, Zhang SX, Lovari R, Matthews HE, et al. PCR followed by electrospray ionization mass spectrometry for broad-range identification of fungal pathogens. J Clin Microbiol. 2013;51:959–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Simner PJ, Uhl JR, Hall L, Weber MM, Walchak RC, et al. Broad-range direct detection and identification of fungi by use of the PLEX-ID PCR-electrospray ionization mass spectrometry (ESI-MS) system. J Clin Microbiol. 2013;51:1699–706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Babouee B, Goldenberger D, Elzi L, Lardinois D, Sadowski-Cron C, et al. Prospective study of a panfungal PCR assay followed by sequencing, for the detection of fungal DNA in normally sterile specimens in a clinical setting: a complementary tool in the diagnosis of invasive fungal disease? Clin Microbiol Infect. 2013;19:E354–7.

    Article  CAS  PubMed  Google Scholar 

  56. Sugawara Y, Nakase K, Nakamura A, Ohishi K, Sugimoto Y, et al. Clinical utility of a panfungal polymerase chain reaction assay for invasive fungal diseases in patients with haematologic disorders. Eur J Haematol. 2013;90:331–9.

    Article  CAS  PubMed  Google Scholar 

  57. Branch ID. Immunohistochemistry. Atlanta: Centers for Disease Control and Prevention; 2012. http://www.cdc.gov/ncezid/dhcpp/idpb/diagnostic-techniques/. Accessed March 2014

  58. Del Chierico F, Masotti A, Onori M, Fiscarelli E, Mancinelli L, et al. MALDI-TOF MS proteomic phenotyping of filamentous and other fungi from clinical origin. J Proteomics. 2012;75:3314–30.

    Article  PubMed  Google Scholar 

  59. Alanio A, Beretti JL, Dauphin B, Mellado E, Quesne G, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin Microbiol Infect. 2011;17:750–5.

    Article  CAS  PubMed  Google Scholar 

  60. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:828–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ranque S, Normand AC, Cassagne C, Murat JB, Bourgeois N, et al. MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses. 2014;57:135–40.

    Article  CAS  PubMed  Google Scholar 

  62. Kono Y, Tsushima K, Yamaguchi K, Kurita N, Soeda S, et al. The utility of galactomannan antigen in the bronchial washing and serum for diagnosing pulmonary aspergillosis. Respir Med. 2013;107:1094–100.

    Article  PubMed  Google Scholar 

  63. Heng SC, Morrissey O, Chen SC, Thursky K, Manser RL, et al. Utility of bronchoalveolar lavage fluid galactomannan alone or in combination with PCR for the diagnosis of invasive aspergillosis in adult hematology patients: a systematic review and meta-analysis. Crit Rev Microbiol. 2013. doi:10.3109/1040841X.2013.804033.

    PubMed  Google Scholar 

  64. Morrissey CO, Chen SC, Sorrell TC, Milliken S, Bardy PG, et al. Galactomannan and PCR versus culture and histology for directing use of antifungal treatment for invasive aspergillosis in high-risk haematology patients: a randomised controlled trial. Lancet Infect Dis. 2013;13:519–28.

    Article  CAS  PubMed  Google Scholar 

  65. Held J, Schmidt T, Thornton CR, Kotter E, Bertz H. Comparison of a novel Aspergillus lateral-flow device and the Platelia(R) galactomannan assay for the diagnosis of invasive aspergillosis following haematopoietic stem cell transplantation. Infection. 2013;41:1163–9.

    Article  CAS  PubMed  Google Scholar 

  66. White PL, Parr C, Thornton C, Barnes RA. Evaluation of real-time PCR, galactomannan enzyme-linked immunosorbent assay (ELISA), and a novel lateral-flow device for diagnosis of invasive aspergillosis. J Clin Microbiol. 2013;51:1510–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Koo S, Thomas HR, Rearden P, Comolli J, Baden LR, Marty FM. An Aspergillus fumigatus (AF)-specific breath volatile organic compound (VOC) profile is diagnostic of invasive aspergillosis (IA). Proceedings of the 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy, 10–13 Sep 2013; Denver, CO. Washington, DC: American Society for Microbiology. Abstract M-219.

  68. Scott-Thomas A, Epton M, Chambers S. Validating a breath collection and analysis system for the new tuberculosis breath test. J Breath Res. 2013;7:037108.

    Article  PubMed  Google Scholar 

  69. van der Velden WJ, Blijlevens NM, Donnelly JP. Genetic variants and the risk for invasive mould disease in immunocompromised hematology patients. Curr Opin Infect Dis. 2011;24:554–63.

    Article  PubMed  Google Scholar 

  70. Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014;370:421–32.

    Article  CAS  PubMed  Google Scholar 

  71. Buitrago MJ, Aguado JM, Ballen A, Bernal-Martinez L, Prieto M, et al. Efficacy of DNA amplification in tissue biopsy samples to improve the detection of invasive fungal disease. Clin Microbiol Infect. 2013;19:E271–7.

    Article  CAS  PubMed  Google Scholar 

  72. Bernal-Martinez L, Buitrago MJ, Castelli MV, Rodriguez-Tudela JL, Cuenca-Estrella M. Development of a single tube multiplex real-time PCR to detect the most clinically relevant Mucormycetes species. Clin Microbiol Infect. 2013;19:E1–7.

    Article  CAS  PubMed  Google Scholar 

  73. Millon L, Larosa F, Lepiller Q, Legrand F, Rocchi S, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis. 2013;56:e95–101.

    Article  CAS  PubMed  Google Scholar 

  74. De Carolis E, Posteraro B, Lass-Florl C, Vella A, Florio AR, et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2012;18:475–84.

    Article  PubMed  Google Scholar 

  75. Schrodl W, Heydel T, Schwartze VU, Hoffmann K, Grosse-Herrenthey A, et al. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry. J Clin Microbiol. 2012;50:419–27.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Permpalung N, Kaewpoowat Q, Prasidthrathsint K, Chongnarungsin D, Hyman CL. Pulmonary blastomycosis: a new endemic area in New York State. Mycoses. 2013;56:592–5.

    Article  PubMed  Google Scholar 

  77. Centers for Disease Control and Prevention. Histoplasmosis in a state where it is not known to be endemic – Montana, 2012-2013. MMWR Morb Mortal Wkly Rep. 2013;62:834–837.

  78. Assi M, Martin S, Wheat LJ, Hage C, Freifeld A, et al. Histoplasmosis after solid organ transplant. Clin Infect Dis. 2013;57:1542–9.

    Article  CAS  PubMed  Google Scholar 

  79. Durkin M, Connolly P, Kuberski T, Myers R, Kubak BM, et al. Diagnosis of coccidioidomycosis with use of the Coccidioides antigen enzyme immunoassay. Clin Infect Dis. 2008;47:e69–73.

    Article  PubMed  Google Scholar 

  80. Connolly PA, Durkin MM, Lemonte AM, Hackett EJ, Wheat LJ. Detection of histoplasma antigen by a quantitative enzyme immunoassay. Clin Vaccine Immunol. 2007;14:1587–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Connolly P, Hage CA, Bariola JR, Bensadoun E, Rodgers M, et al. Blastomyces dermatitidis antigen detection by quantitative enzyme immunoassay. Clin Vaccine Immunol. 2012;19:53–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhang X, Gibson Jr B, Daly TM. Evaluation of commercially available reagents for diagnosis of histoplasmosis infection in immunocompromised patients. J Clin Microbiol. 2013;51:4095–101.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Thompson 3rd GR, Bays DJ, Johnson SM, Cohen SH, Pappagianis D, et al. Serum (1- > 3)-beta-D-glucan measurement in coccidioidomycosis. J Clin Microbiol. 2012;50:3060–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Egan L, Connolly P, Wheat LJ, Fuller D, Dais TE, et al. Histoplasmosis as a cause for a positive Fungitell (1 – > 3)-beta-D-glucan test. Med Mycol. 2008;46:93–5.

    Article  CAS  PubMed  Google Scholar 

  85. Babady NE, Buckwalter SP, Hall L, Le Febre KM, Binnicker MJ, et al. Detection of Blastomyces dermatitidis and Histoplasma capsulatum from culture isolates and clinical specimens by use of real-time PCR. J Clin Microbiol. 2011;49:3204–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Buitrago MJ, Canteros CE, Frias De Leon G, Gonzalez A, Marques-Evangelista De Oliveira M, et al. Comparison of PCR protocols for detecting Histoplasma capsulatum DNA through a multicenter study. Rev Iberoam Micol. 2013;30:256–60.

    Article  PubMed  Google Scholar 

  87. Perlin DS. Antifungal drug resistance: do molecular methods provide a way forward? Curr Opin Infect Dis. 2009;22:568–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol. 2012;50:2479–83.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, et al. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol. 2013;51:2964–9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Allen T. Griffin has no conflicts of interest to declare and no sources of funding to declare. Kimberly E. Hanson has collaborated with BioFire on extramurally funded diagnostics research.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen T. Griffin.

Additional information

This article is part of the Topical Collection on Transplant and Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffin, A.T., Hanson, K.E. Update on Fungal Diagnostics. Curr Infect Dis Rep 16, 415 (2014). https://doi.org/10.1007/s11908-014-0415-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-014-0415-z

Keywords

Navigation