Skip to main content

Advertisement

Log in

Hypertension in Children and Adolescents with Turner Syndrome (TS), Neurofibromatosis 1 (NF1), and Williams Syndrome (WS)

  • Pediatric Hypertension (C Hanevold, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Turner syndrome (TS), neurofibromatosis type 1(NF1), and William Syndrome (WS) are 3 genetic conditions that are all associated with a substantial increase in risk of hypertension. In this review, we focus on factors leading to hypertension and on clinical manifestations and management of hypertension in children and adolescents with these genetic conditions

Recent Findings

In most instances, hypertension is secondary. There is a high prevalence of masked hypertension in TS; however, the extent to which control of the BP helps reduce the risk of aortic dissection/aneurysm in TS is not yet fully elucidated. Vasculopathies are the least emphasized but most important manifestation of NF1. Of note, routine screening for pheochromocytoma in NFI is not recommended as it is not cost-effective. Cardiovascular complications are the major cause of death in patients with WBS. ABPM identifies patients without overt aortic or renovascular narrowing. Antihypertensive agents such as ARBs that have direct vascular wall effects and agents that inhibit oxidative stress (minoxidil) should be considered, even in those who do not exhibit overt hypertension. Elevated blood pressure in children and adolescence manifests early with end-organ changes and when left untreated, increases risk for premature onset of cardiovascular disease.

Summary

Vigilant monitoring of the blood pressure is recommended. Accurate early diagnosis and management of hypertension will delay or prevent target organ damage and ensure a healthier transition to adulthood among children afflicted with these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moin A, Mohanty N, Tedla YG et al. Under-recognition of pediatric hypertension diagnosis: examination of 1 year of visits to community health centers. J Clin Hypertens (Greenwich) 2021;23(2):257–64. https://doi.org/10.1111/jch.14148. This study highlights the proportion of missed diagnosis of hypertension and prehypertension and the lack of appropriate follow-up in pediatric patients, stratified by sex, age, race/ethnicity, and weight status.

  2. Urbina EM, Mendizabal B, Becker RC, et al. Association of blood pressure level with left ventricular mass in adolescents. Hypertension. 2019;74:590–6 This study elaborates on the association of systolic BP (SBP) percentile, independent of obesity, on left ventricular mass index (LVMI), and also estimates which SBP percentile best predicts left ventricular hypertrophy in youth.

    Article  CAS  PubMed  Google Scholar 

  3. Tran AH, Urbina EM. Hypertension in children. Curr Opin Cardiol. 2020;35:376–80. This is a review that focuses on changes in hypertension guidelines, epidemiology, predictors of hypertension, blood pressure (BP) measurement, effects on target organs, and treatment of hypertension in children.

  4. Aris IM, Rifas-Shiman SL, Li LJ, et al. Early-life predictors of systolic blood pressure trajectories from infancy to adolescence: findings from Project Viva. Am J Epidemiol. 2019;188:1913–22 This study investigates the relationship between early-life factors and systolic BP (SBP) from infancy to adolescence. 13 This insightful study analyzes the frequency of renal dysfunction and congenital anomalies of the kidney-urinary tract in pediatric patients with TS.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Park B, Park B, Lee HA, Lee S, Han H, Park E, et al. Association between pre-and postnatal growth and longitudinal trends in serum uric acid levels and blood pressure in children aged 3 to 7 years. BMC Pediatr. 2020;20:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bondy CA. Congenital cardiovascular disease in Turner syndrome. Congenit Heart Dis. 2008;3:2–15.

    Article  PubMed  Google Scholar 

  7. Stochholm K, Hjerrild B, Mortensen KH, Juul S, Frydenberg M, Gravholt CH. Socioeconomic parameters and mortality in Turner syndrome. Eur J Endocrinol. 2012;166:1013–9.

    Article  CAS  PubMed  Google Scholar 

  8. Bondy CA. Aortic dissection in Turner syndrome. Curr Opin Cardiol. 2008;23:519–26.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lopez L, Arheart KL, Colan SD, Stein NS, Lopez-Mitnik G, Lin AE, et al. Turner syndrome is an independent risk factor for aortic dilation in the young. Pediatrics. 2008;121:e1622–7.

    Article  PubMed  Google Scholar 

  10. Gravholt CH, Naeraa RW, Nyholm B, Gerdes LU, Christiansen E, Schmitz O, et al. Glucose metabolism, lipid metabolism, and cardiovascular risk factors in adult Turner’s syndrome. The impact of sex hormone replacement. Diabetes Care. 1998;21:1062–70.

    Article  CAS  PubMed  Google Scholar 

  11. Groote K, Demulier L, De B, et al. Arterial hypertension in Turner syndrome: a review of the literature and a practical approach for diagnosis and treatment. J Hypertens. 2015;33:1342–51.

    Article  PubMed  CAS  Google Scholar 

  12. Landin-Wilhelmsen K, Bryman I, Wilhelmsen L. Cardiac malformations and hypertension, but not metabolic risk factors, are common in Turner syndrome. J Clin Endocrinol Metab. 2001;86:4166–70.

    Article  CAS  PubMed  Google Scholar 

  13. Izumita Y, Nishigaki S, Satoh M, et al. Retrospective study of the renal function using estimated glomerular filtration rate and congenital anomalies of the kidney-urinary tract in pediatric Turner syndrome. Congenit Anom (Kyoto). 2020;60:175–9. This study looks at the prevalence and causes of renal dysfunction and of CAKUT in pediatric patients with TS. Most have normal renal function. CAKUT was not always present in those with reduced renal function.

  14. Je BK, Kim HK, Horn PS. Incidence and spectrum of renal complications and extrarenal diseases and syndromes in 380 children and young adults with horseshoe kidney. AJR Am J Roentgenol. 2015;205:1306–14.

    Article  PubMed  Google Scholar 

  15. Gravholt CH, Andersen NH, Conway GS, et al. Clinical practice guidelines for the care of girls and women with Turner syndrome: proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur J Endocrinol. 2017;177:G1–G70 This paper is based on an international effort to serve as a guideline in addressing recent advances that cover all specialty fields involved in the care of girls and women with TS.

    Article  CAS  PubMed  Google Scholar 

  16. Pasquali L, d’Annunzio G, Gastaldi R, di Battista E, Calcaterra V, Larizza D, et al. Collectrin gene screening in Turner syndrome patients with kidney malformation. J Genet. 2009;88:105–8.

    Article  CAS  PubMed  Google Scholar 

  17. Donadille B, Heart C-MS. Turner syndrome. Ann Endocrinol (Paris). 2020.

  18. Eckhauser A, South ST, Meyers L, Bleyl SB, Botto LD. Turner syndrome in girls presenting with coarctation of the aorta. J Pediatr. 2015;167:1062–6.

    Article  PubMed  Google Scholar 

  19. Agbas A, Gokalp S, Canpolat N, et al. Is the burden of late hypertension and cardiovascular target organ damage in children and adolescents with coarctation of the aorta after early successful repair different to healthy controls? Cardiol Young. 2020;30:1305–12 This study assesses the frequency of late hypertension and the relationship between ambulatory hypertension and cardiovascular target organ damage in 25 children and adolescents after early and successful repair of coarctation of the aorta.

    Article  PubMed  Google Scholar 

  20. Akyurek N, Atabek ME, Eklioglu BS, Alp H. Ambulatory blood pressure and subclinical cardiovascular disease in children with turner syndrome. Pediatr Cardiol. 2014;35:57–62.

    Article  PubMed  Google Scholar 

  21. Fox DA, Kang KT, Potts JE, et al. Non-invasive assessment of aortic stiffness and blood pressure in young Turner syndrome patients. J Pediatr Endocrinol Metab. 2019;32:489–98 This detailed prospective cohort study assesses the biophysical properties of the aorta and ambulatory blood pressure (BP) in females with TS and compares these findings to those in healthy female age-matched controls.

    Article  PubMed  Google Scholar 

  22. De Groote K, Devos D, Van Herck K, et al. Abnormal aortic arch morphology in Turner syndrome patients is a risk factor for hypertension. Heart Vessel. 2015;30:618–25.

    Article  Google Scholar 

  23. Wen J, Trolle C, Viuff MH, et al. Impaired aortic distensibility and elevated central blood pressure in Turner Syndrome: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2018;20:80 This study investigates if arterial stiffening can be observed in Turner Syndrome patients and is an initial step in the development of aortic dilatation and subsequent dissection by determining aortic distensibility at three locations: ascending aorta, transverse aortic arch, and descending aorta.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brun S, Berglund A, Mortensen KH, et al. Blood pressure, sympathovagal tone, exercise capacity and metabolic status are linked in Turner syndrome. Clin Endocrinol. 2019;91:148–55 This cross-sectional study investigates cardiac autonomic changes in relation to metabolic factors, body composition, and 24-h ambulatory blood pressure measurements in Turner syndrome patients without known hypertension.

    Google Scholar 

  25. Andersen NH, Hjerrild BE, Sorensen K, et al. Subclinical left ventricular dysfunction in normotensive women with Turner’s syndrome. Heart. 2006;92:1516–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sozen AB, Cefle K, Kudat H, Ozturk S, Oflaz H, Akkaya V, et al. Left ventricular thickness is increased in nonhypertensive Turner’s syndrome. Echocardiography. 2009;26:943–9.

    Article  PubMed  Google Scholar 

  27. Elsheikh M, Casadei B, Conway GS, Wass JA. Hypertension is a major risk factor for aortic root dilatation in women with Turner’s syndrome. Clin Endocrinol. 2001;54:69–73.

    Article  CAS  Google Scholar 

  28. Brun S, Cleemann L, Holm K, Salskov G, Erlandsen M, Berglund A, et al. Five-year randomized study demonstrates blood pressure increases in young women with turner syndrome regardless of estradiol dose. Hypertension. 2019;73:242–8.

    Article  CAS  PubMed  Google Scholar 

  29. Los E, Quezada E, Chen Z, Lapidus J, Silberbach M. Pilot study of blood pressure in girls with turner syndrome: an awareness gap, clinical associations, and new hypotheses. Hypertension. 2016;68:133–6.

    Article  CAS  PubMed  Google Scholar 

  30. De Groote K, Demulier L, De Backer J, et al. Arterial hypertension in Turner syndrome: a review of the literature and a practical approach for diagnosis and treatment. J Hypertens. 2015;33:1342–51.

    Article  PubMed  CAS  Google Scholar 

  31. Pater CM, Gutmark-Little I, Tretter JT, et al. Clinical characteristics and rate of dilatation in Turner syndrome patients treated for aortic dilatation. Am J Med Genet A. 2021;185:141–9 This recent retrospective study describes a pre-guideline cohort of Turner syndrome patients with aortic dilatation, the rate of dilatation following diagnosis, and post -therapy dilatation rates.

    Article  CAS  PubMed  Google Scholar 

  32. Lee YJ, Kim SM, Lee YA, et al. Relationship between systolic hypertension assessed by 24-hour ambulatory blood pressure monitoring and aortic diameters in young women with Turner syndrome. Clin Endocrinol. 2019;91:156–62 This observational, cross-sectional study highlights the prevalence of hypertension and its risk factors and investigates the relationship between systolic hypertension and aortic diameter in young patients with TS.

    Article  CAS  Google Scholar 

  33. Mullen M, Jin XY, Child A, Stuart AG, Dodd M, Aragon-Martin JA, et al. Irbesartan in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial. Lancet. 2019;394:2263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teixido-Tura G, Forteza A, Rodriguez-Palomares J, et al. Losartan versus atenolol for prevention of aortic dilation in patients with Marfan syndrome. J Am Coll Cardiol. 2018;72:1613–8.

    Article  CAS  PubMed  Google Scholar 

  35. North KN, Riccardi V, Samango-Sprouse C, Ferner R, Moore B, Legius E, et al. Cognitive function and academic performance in neurofibromatosis. 1: consensus statement from the NF1 Cognitive Disorders Task Force. Neurology. 1997;48:1121–7.

    Article  CAS  PubMed  Google Scholar 

  36. Friedman JM, Arbiser J, Epstein JA, Gutmann DH, Huot SJ, Lin AE, et al. Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force. Genet Med. 2002;4:105–11.

    Article  CAS  PubMed  Google Scholar 

  37. Kaas B, Huisman TA, Tekes A, et al. Spectrum and prevalence of vasculopathy in pediatric neurofibromatosis type 1. J Child Neurol. 2013;28:561–9.

    Article  PubMed  Google Scholar 

  38. Bergqvist C, Servy A, Valeyrie-Allanore L, et al. Neurofibromatosis 1 French national guidelines based on an extensive literature review since 1966. Orphanet J Rare Dis. 2020;15:37 This paper presents insights from critical literature review and a multidisciplinary expert consensus on NF1 and details emerging new evidence that might have therapeutic potential or a strong impact on NF1 management.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dote Y, Kibe T, Murakami T, Awazu M. Ask-Upmark kidney in a girl with neurofibromatosis type 1. CEN Case Rep. 2020;9:285–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dogan GM, Sigirci A, Karaca L. Neurofibromas of the bladder in a child with neurofibromatosis type 1. Int Braz J Urol. 2018;44:1256–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Meesa IR, Junewick JJ. Pelvic plexiform neurofibroma involving the urinary bladder. Pediatr Radiol. 2008;38:916.

    Article  PubMed  Google Scholar 

  42. Srinivasan A, Krishnamurthy G, Fontalvo-Herazo L, Nijs E, Meyers K, Kaplan B, et al. Spectrum of renal findings in pediatric fibromuscular dysplasia and neurofibromatosis type 1. Pediatr Radiol. 2011;41:308–16.

    Article  PubMed  Google Scholar 

  43. Sethna CB, Kaplan BS, Cahill AM, Velazquez OC, Meyers KEC Idiopathic mid-aortic syndrome in children. Pediatr Nephrol 2008; 23:1135-1142.

  44. Kim SS, Stein DR, Ferguson MA et al. Surgical management of pediatric renovascular hypertension and midaortic syndrome at a single center multidisciplinary program. J Vasc Surg 2020. This retrospective study evaluates the outcome of various surgical approaches in the treatment of renovascular hypertension and midaortic syndrome in children.

  45. Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44:81–8.

    Article  CAS  PubMed  Google Scholar 

  46. Greene JF Jr, Fitzwater JE, Burgess J. Arterial lesions associated with neurofibromatosis. Am J Clin Pathol. 1974;62:481–7.

    Article  PubMed  Google Scholar 

  47. Lie JT. Vasculopathies of neurofibromatosis type 1 (von Recklinghausen Disease). Cardiovasc Pathol. 1998;7:97–108.

    Article  CAS  PubMed  Google Scholar 

  48. Cutruzzola A, Irace C, Frazzetto M, et al. Functional and morphological cardiovascular alterations associated with neurofibromatosis 1. Sci Rep. 2020;10:12070 This study verifies whether subjects with NF1 have early, preclinical abnormalities of carotid artery structure, brachial artery function, and cardiac function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meyers KE, Cahill AM, Sethna C. Interventions for pediatric renovascular hypertension. Curr Hypertens Rep. 2014;16:422.

    Article  PubMed  CAS  Google Scholar 

  50. Srinivasan A, Krishnamurthy G, Fontalvo-Herazo L, Nijs E, Keller MS, Meyers K, et al. Angioplasty for renal artery stenosis in pediatric patients: an 11-year retrospective experience. J Vasc Interv Radiol. 2010;21:1672–80.

    Article  PubMed  Google Scholar 

  51. Towbin RB, Pelchovitz DJ, Cahill AM, Baskin KM, Meyers KE, Kaplan BS, et al. Cutting balloon angioplasty in children with resistant renal artery stenosis. J Vasc Interv Radiol. 2007;18:663–9.

    Article  PubMed  Google Scholar 

  52. Raborn J, McCafferty BJ, Gunn AJ, et al. Endovascular management of neurofibromatosis type i-associated vasculopathy: a case series and brief review of the literature. Vasc Endovasc Surg. 2020;54:182–90 This paper discusses therapeutic options and highlights certain endovascular therapies in NF1.

    Article  Google Scholar 

  53. Ueda K, Awazu M, Konishi Y, Takenouchi T, Shimozato S, Kosaki K, et al. Persistent hypertension despite successful dilation of a stenotic renal artery in a boy with neurofibromatosis type 1. Am J Med Genet A. 2013;161A:1154–7.

    Article  PubMed  Google Scholar 

  54. Coleman DM, Eliason JL, Beaulieu R, et al. Surgical management of pediatric renin-mediated hypertension secondary to renal artery occlusive disease and abdominal aortic coarctation. J Vasc Surg. 2020;72:2035–2046 e2031 This important study describes the complex surgical practice for such patients with an emphasis on anatomic phenotype and contemporary outcomes after surgical management as a means of identifying those factors responsible for persistent or recurrent hypertension necessitating reoperation.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bouchireb K, Boyer O, Bonnet D, Brunelle F, Decramer S, Landthaler G, et al. Clinical features and management of arterial hypertension in children with Williams-Beuren syndrome. Nephrol Dial Transplant. 2010;25:434–8.

    Article  PubMed  Google Scholar 

  56. Zalzstein E, Moes CA, Musewe NN, Freedom RM. Spectrum of cardiovascular anomalies in Williams-Beuren syndrome. Pediatr Cardiol. 1991;12:219–23.

    Article  CAS  PubMed  Google Scholar 

  57. Furusawa EA, Esposito CSL, Honjo RS, et al. Diagnosis and management of systemic hypertension due to renovascular and aortic stenosis in patients with Williams-Beuren syndrome. Rev Assoc Med Bras (1992). 2018;64:723–8.

    Article  Google Scholar 

  58. Cherniske EM, Carpenter TO, Klaiman C, et al. Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A. 2004;131:255–64.

    Article  PubMed  Google Scholar 

  59. Pober BR, Lacro RV, Rice C, Mandell V, Teele RL. Renal findings in 40 individuals with Williams syndrome. Am J Med Genet. 1993;46:271–4.

    Article  CAS  PubMed  Google Scholar 

  60. Broder K, Reinhardt E, Ahern J, Lifton R, Tamborlane W, Pober B. Elevated ambulatory blood pressure in 20 subjects with Williams syndrome. Am J Med Genet. 1999;83:356–60.

    Article  CAS  PubMed  Google Scholar 

  61. Radford DJ, Pohlner PG. The middle aortic syndrome: an important feature of Williams’ syndrome. Cardiol Young. 2000;10:597–602.

    Article  CAS  PubMed  Google Scholar 

  62. Rose C, Wessel A, Pankau R, Partsch CJ, Bürsch J. Anomalies of the abdominal aorta in Williams-Beuren syndrome--another cause of arterial hypertension. Eur J Pediatr. 2001;160:655–8.

    Article  CAS  PubMed  Google Scholar 

  63. Del Campo M, Antonell A, Magano LF, et al. Hemizygosity at the NCF1 gene in patients with Williams-Beuren syndrome decreases their risk of hypertension. Am J Hum Genet. 2006;78:533–42.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kozel BA, Danback JR, Waxler JL, Knutsen RH, de las Fuentes L, Reusz GS, et al. Williams syndrome predisposes to vascular stiffness modified by antihypertensive use and copy number changes in NCF1. Hypertension. 2014;63:74–9.

    Article  CAS  PubMed  Google Scholar 

  65. Pomeranz G, Pomeranz A, Osadchy A, Griton Y, Korzets Z. Supravalvular aortic and renal artery stenosis in childhood: is there a common denominator? Isr Med Assoc J. 2016;18:497–8.

    PubMed  Google Scholar 

  66. Lannoy M, Slove S, Jacob M. The function of elastic fibers in the arteries: beyond elasticity. Pathol Biol (Paris). 2014;62:79–83.

    Article  CAS  Google Scholar 

  67. Jiao Y, Li G, Korneva A, Caulk AW, Qin L, Bersi MR, et al. Deficient circumferential growth is the primary determinant of aortic obstruction attributable to partial elastin deficiency. Arterioscler Thromb Vasc Biol. 2017;37:930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Varma TH, Sahitya DSK, Dusad S, et al. Oral prednisolone for management of persistent hypercalcemia afterhypercalcemic crisis in the Williams-Beuren syndrome. Pediatr Endocrinol Diabetes Metab. 2018;24:106–9.

    Article  PubMed  Google Scholar 

  69. Committee on G. American Academy of Pediatrics: health care supervision for children with Williams syndrome. Pediatrics. 2001;107:1192–204.

    Google Scholar 

  70. Bastug F, Nalcacioglu H, Bas VN, et al. Acute renal failure due to severe hypercalcemia and nephrocalcinosis treated with two doses of pamidronate in an infant with Williams-Beuren syndrome. Turk J Pediatr. 2018;60:210–5.

    Article  PubMed  Google Scholar 

  71. Shaikh S, Waxler JL, Lee H, Grinke K, Garry J, Pober BR, et al. Glucose and lipid metabolism, bone density, and body composition in individuals with Williams syndrome. Clin Endocrinol. 2018;89:596–604.

    Article  CAS  Google Scholar 

  72. Cambiaso P, Orazi C, Digilio MC, Loche S, Capolino R, Tozzi A, et al. Thyroid morphology and subclinical hypothyroidism in children and adolescents with Williams syndrome. J Pediatr. 2007;150:62–5.

    Article  PubMed  Google Scholar 

  73. Stagi S, Manoni C, Salti R, Cecchi C, Chiarelli F. Thyroid hypoplasia as a cause of congenital hypothyroidism in Williams syndrome. Horm Res. 2008;70:316–8.

    Article  CAS  PubMed  Google Scholar 

  74. Louis R, Levy-Erez D, Cahill AM, Meyers KE. Imaging studies in pediatric fibromuscular dysplasia (FMD): a single-center experience. Pediatr Nephrol. 2018;33:1593–9 This study compares the efficacy of imaging modalities with regards to diagnosis of renal artery stenosis.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Owens EA, Jie L, Reyes BAS, van Bockstaele EJ, Osei-Owusu P. Elastin insufficiency causes hypertension, structural defects and abnormal remodeling of renal vascular signaling. Kidney Int. 2017;92:1100–18.

    Article  CAS  PubMed  Google Scholar 

  76. Collins R. Cardiovascular disease in Williams syndrome. Circulation. 2014;127:2125–34.

    Article  Google Scholar 

  77. Kassai B, Bouye P, Gilbert-Dussardier B, et al. Minoxidil versus placebo in the treatment of arterial wall hypertrophy in children with Williams Beuren Syndrome: a randomized controlled trial. BMC Pediatr. 2019;19:170 This study assessed the efficacy and safety of minoxidil on intima media thickness (IMT) on the right common carotid artery after twelve12-month treatment in patient with Williams-Beuren syndrome.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jiao Y, Li G, Li Q, Ali R, Qin L, Li W, et al. mTOR (Mechanistic Target of Rapamycin) Inhibition decreases mechanosignaling, collagen accumulation, and stiffening of the thoracic aorta in elastin-deficient mice. Arterioscler Thromb Vasc Biol. 2017;37:1657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kinnear C, Agrawal R, Loo C, et al. Everolimus rescues the phenotype of elastin insufficiency in patient induced pluripotent stem cell-derived vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2020;40:1325–39. This study evaluates restoration of SMC phenotype in elastin insufficiency patients. The mTOR inhibitor everolimus gave the most consistent improvement in SMC differentiation, proliferation and restoration of SMC function in patients with elastin insufficiency.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. Meyers.

Ethics declarations

Conflict of Interest

None reported

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasubramanian, R., Meyers, K.E. Hypertension in Children and Adolescents with Turner Syndrome (TS), Neurofibromatosis 1 (NF1), and Williams Syndrome (WS). Curr Hypertens Rep 23, 18 (2021). https://doi.org/10.1007/s11906-021-01136-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-021-01136-7

Keywords

Navigation