Skip to main content
Log in

Hypertension as a Road to Treatment of Heart Failure with Preserved Ejection Fraction

  • Hypertension and the Heart (B Upadhya, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hypertension heralds the diagnosis of heart failure (HF) with preserved ejection fraction (HFpEF) in 75–85% of cases and shares many of its adverse outcomes as well as its acute and chronic symptoms. This review provides important new data about the pathophysiology and mechanisms that connect hypertension and HFpEF as well as therapy used in both conditions.

Recent Findings

The traditional model of HFpEF pathophysiology emphasizes the role of hypertension causing increased afterload on the left ventricle (LV), leading to LV hypertrophy (LVH) and subsequent LV diastolic dysfunction. Recent work has provided valuable insights into the mechanisms underlying the transition from hypertension to HFpEF, showing that the pathophysiology extends beyond LVH and diastolic dysfunction. An evolving paradigm suggests that HFpEF is inflammatory in nature with multifactorial pathophysiology, affected by age-related changes and comorbidities. Hypertension shares many of the proinflammatory mechanisms of HFpEF. Furthermore, hypertension precedes HFpEF in the majority of cases. Because of its clinically heterogeneous nature, development of standardized therapies for HFpEF has been challenging. As there are standardized approaches to hypertension, we suggest that similar approaches be used for the treatment of HFpEF, including medical and non-medical therapies. With medical therapies, a treat-to-target blood pressure (BP) strategy could be employed, such as systolic BP < 130 mmHg. With non-medical therapies, approaches to deal with physical inactivity, obesity, and sleep apnea could be used.

Summary

Due to its heterogeneity, delineation of standardized therapies for HFpEF has been challenging. Focusing on the tremendous overlap of hypertensive heart disease with HFpEF, it is proposed that approaches currently used to guide therapies for hypertension be applied to the treatment of HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Kitzman DW, Gardin JM, Gottdiener JS, Arnold A, Boineau R, Aurigemma G, et al. Importance of heart failure with preserved systolic function in patients > or = 65 years of age. CHS Research Group. Cardiovascular Health Study. Am J Cardiol. 2001;87:413–9.

    CAS  PubMed  Google Scholar 

  2. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    CAS  PubMed  Google Scholar 

  3. Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, et al. Research priorities for heart failure with preserved ejection fraction: National Heart, Lung, and Blood Institute Working Group summary. Circulation. 2020;141:1001–26.

    PubMed  PubMed Central  Google Scholar 

  4. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF registry. J Am Coll Cardiol. 2007;50:768–77.

    PubMed  Google Scholar 

  5. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59:998–1005.

    PubMed  PubMed Central  Google Scholar 

  6. McMurray JJ, Carson PE, Komajda M, McKelvie R, Zile MR, Ptaszynska A, et al. Heart failure with preserved ejection fraction: clinical characteristics of 4133 patients enrolled in the I-PRESERVE trial. Eur J Heart Fail. 2008;10:149–56.

    PubMed  Google Scholar 

  7. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. ADHERE Scientific Advisory Committee and Investigators. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) database. J Am Coll Cardiol. 2006;47:76–84.

    PubMed  Google Scholar 

  8. Lam CSP, Gamble GD, Ling LH, Sim D, Leong KTG, Yeo PSD, et al. Mortality associated with heart failure with preserved vs. reduced ejection fraction in a prospective international multi-ethnic cohort study. Eur Heart J. 2018;39:1770–80.

    CAS  PubMed  Google Scholar 

  9. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2012;33:1750–7.

    Google Scholar 

  10. Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy. Curr Hypertens Rep. 2020;22:11.

    PubMed  Google Scholar 

  11. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    PubMed  Google Scholar 

  12. Messerli FH, Rimoldi SF, Bangalore S. The transition from hypertension to heart failure: contemporary update. JACC Heart Fail. 2017;5:543–51.

    PubMed  Google Scholar 

  13. Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F. Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol. 2015;119:1233–42.

    CAS  PubMed  Google Scholar 

  14. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Norton GR, Woodiwiss AJ, Gaasch WH, Mela T, Chung ES, Aurigemma GP, et al. Heart failure in pressure overload hypertrophy. The relative roles of ventricular remodeling and myocardial dysfunction. J Am Coll Cardiol. 2002;39:664–71.

    PubMed  Google Scholar 

  16. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation. 1993;88:993–1003.

    CAS  PubMed  Google Scholar 

  17. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    CAS  PubMed  Google Scholar 

  18. Lam CS, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County Minnesota. Circ. 2007;115:1982–90.

    Google Scholar 

  19. Solomon S, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380:1387–95.

    CAS  PubMed  Google Scholar 

  20. Shah AM, Shah SJ, Anand IS, Sweitzer NK, O'Meara E, Heitner JF, et al. TOPCAT Investigators. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ. Heart Fail. 2014;7:104–15.

    CAS  Google Scholar 

  21. Solomon SD, Verma A, Desai A, Hassanein A, Izzo J, Oparil S, et al. Effect of intensive versus standard blood pressure lowering on diastolic function in in patients with uncontrolled hypertension and diastolic dysfunction. Hypertension. 2010;55:241–8.

    CAS  PubMed  Google Scholar 

  22. Soliman EZ, Ambrosius WT, Cushman WC, Zhang ZM, Bates JT, Neyra JA, et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension: SPRINT (Systolic Blood Pressure Intervention Trial). Circulation. 2017;136:440–50.

    PubMed  PubMed Central  Google Scholar 

  23. • Upadhya B, Rocco MV, Pajewski NM, Morgan T, Blackshear J, Hundley WG, et al. Effect of Intensive blood pressure reduction on left ventricular mass, structure, function, and fibrosis in the SPRINT-HEART. Hypertension. 2019. This is the first evidence from an ancillary study to SPRINT to show that randomization to intensive blood pressure control was not associated with a significant difference in left ventricle mass, structure, function, or diffuse myocardial fibrosis but was associated with a modest reversal of left ventricular concentric remodeling. This study suggested that mediators other than changes in left ventricular hypertrophy, structure, function, or fibrosis may have a larger influence on the overall improved cardiovascular outcomes with intensive blood pressure control.

  24. Negi SI, Jeong EM, Shukrullah I, Veleder E, Jones DP, Fan TH, et al. Renin angiotensin activation and oxidative stress in early heart failure with preserved ejection fraction. Biomed Res Int. 2015;825027.

  25. Borlaug BA, Lam CS, Roger VL, Rodeheffer RJ, Redfield MM. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2009;54:410–8.

    PubMed  PubMed Central  Google Scholar 

  26. Narayanan A, Aurigemma GP, Chinali M, Hill JC, Meyer TE, Tighe DA. Cardiac mechanics in mild hypertensive heart disease: a speckle-strain imaging study. Circ Cardiovasc Imaging. 2009;2:382–90.

    PubMed  Google Scholar 

  27. • Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015;132:402–14. This article described the prognostic significance of impaired LV systolic function in HFpEF. Impaired LV longitudinal strain was shown to predict HF hospitalization, cardiovascular death, and aborted cardiac arrest in HFpEF independently of clinical predictors.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosen BD, Edvardsen T, Lai S, Castillo E, Pan L, Jerosch-Herold M, et al. Left ventricular concentric remodeling is associated with decreased global and regional systolic function: the multiethnic study of atherosclerosis. Circulation. 2005;112:984–91.

    PubMed  Google Scholar 

  29. Pedrinelli R, Dell’Omo G, Talini E, Canale ML, Di Bello V. Systemic hypertension and the right-sided cardiovascular system: a review of the available evidence. J Cardiovasc Med (Hagerstown). 2009;10:115–21.

    Google Scholar 

  30. Gottdiener JS, Gay JA, Maron BJ, Fletcher RD. Increased right ventricular wall thickness in left ventricular pressure overload: echocardiographic determination of hypertrophic response of the ‘nonstressed’ ventricle. J Am Coll Cardiol. 1985;6:550–5.

    CAS  PubMed  Google Scholar 

  31. Cuspidi C, Sala C, Muiesan ML, De Luca N, Schillaci G, Working Group on Heart, Hypertension of the Italian Society of Hypertension. Right ventricular hypertrophy in systemic hypertension: an updated review of clinical studies. J Hypertens. 2013;31:858–65.

    CAS  PubMed  Google Scholar 

  32. Tadic M, Cuspidi C, Suzic-Lazic J, Andric A, Stojcevski B, Ivanovic B, et al. Is there a relationship between right-ventricular and right atrial mechanics and functional capacity in hypertensive patients? J Hypertens. 2014;32:929–37.

    CAS  PubMed  Google Scholar 

  33. Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 2014;130:2310–20.

    PubMed  PubMed Central  Google Scholar 

  34. Obokata M, Reddy YNV, Melenovsky V, Pislaru S, Borlaug BA. Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J. 2019;40:689–97.

    PubMed  Google Scholar 

  35. Laks MM, Morady F. Norepinephrine--the myocardial hypertrophy hormone? Am Heart J. 1976;91:674–5.

    CAS  PubMed  Google Scholar 

  36. Upadhya B, Kitzman DW. Heart failure with preserved ejection fraction: new approaches to diagnosis and management. Clin Cardiol. 2020;43:145–55.

    PubMed  Google Scholar 

  37. • Paulus W, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71. This paper introduces the paradigm shift from the traditional model of HFpEF as a direct result of hypertension and subsequent diastolic dysfunction to a product of systemic inflammation from co-morbid conditions. This article outlines the proinflammatory cascade mediated by endothelial dysfunction and reduction in nitric oxide-bioavailability.

    PubMed  Google Scholar 

  38. Takimoto E. Cyclic GMP-dependent signaling in cardiac myocytes. Circ J. 2012;76:1819–25.

    CAS  PubMed  Google Scholar 

  39. Sanders-van Wijk S, van Empel V, Davarzani N, Maeder MT, Handschin R, Pfisterer ME, et al. TIME-CHF investigators. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail. 2015;17:1006–14.

    CAS  PubMed  Google Scholar 

  40. Cheng JM, Akkerhuis KM, Battes LC, van Vark LC, Hillege HL, Paulus WJ, et al. Biomarkers of heart failure with normal ejection fraction: a systematic review. Eur J Heart Fail. 2013;15:1350–62.

    CAS  PubMed  Google Scholar 

  41. Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J. 2018;39:2780–92.

    CAS  PubMed  Google Scholar 

  42. Tromp J, Westenbrink BD, Ouwerkerk W, van Veldhuisen DJ, Samani NJ, Ponikowski P, et al. Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol. 2018;72:1081–90.

    CAS  PubMed  Google Scholar 

  43. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int. 2014;2014:406960.

    PubMed  PubMed Central  Google Scholar 

  44. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116:1007–21.

    CAS  PubMed  Google Scholar 

  45. Dernellis J, Panaretou M. Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. Hypertension. 2005;45:426–31.

    CAS  PubMed  Google Scholar 

  46. • Mitchell GF. Arterial stiffness and hypertension: chicken or egg? Hypertension. 2014;64:210–4.This review article discusses the bidirectional interaction between hypertension and arterial stiffness.

    CAS  PubMed  Google Scholar 

  47. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    PubMed  Google Scholar 

  48. Tartière-Kesri L, Tartière JM, Logeart D, Beauvais F, Cohen SA. Increased proximal arterial stiffness and cardiac response with moderate exercise in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;59:455–61.

    PubMed  Google Scholar 

  49. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:736–41.

    Google Scholar 

  50. Lee JF, Barrett-O'Keefe Z, Garten RS, Nelson AD, Ryan JJ, Nativi JN, et al. Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart. 2016;102:278–84.

    CAS  PubMed  Google Scholar 

  51. Hundley WG, Bayram E, Hamilton CA, Hamilton EA, Morgan TM, Darty SN, et al. Leg flow-mediated arterial dilation in elderly patients with heart failure and normal left ventricular ejection fraction. Am J Physiol Heart Circ Physiol. 2007;292:H1427–34.

    CAS  PubMed  Google Scholar 

  52. Haykowsky MJ, Herrington DM, Brubaker PH, Morgan TM, Hundley WG, Kitzman DW. Relationship of flow-mediated arterial dilation and exercise capacity in older patients with heart failure and preserved ejection fraction. J Gerontol A Biol Sci Med Sci. 2013;68:161–7.

    PubMed  Google Scholar 

  53. • Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131:550–9. This article reported that patients with HFpEF had more coronary rarefaction and myocardial fibrosis than controls. These changes may contribute to the left ventricular diastolic dysfunction and cardiac reserve function impairment characteristic of HFpEF.

    PubMed  Google Scholar 

  54. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306:H1364–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. • Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16. This multicenter randomized trial of intensive (target < 120/80 mmHg) compared to standard (target < 140/90 mmHg) hypertension treatment in high-risk, non-diabetic patients, showed significant reduction in the primary composite endpoint and in all-cause mortality with intensive treatment.

    CAS  PubMed  Google Scholar 

  56. Upadhya B, Rocco M, Lewis CE, Oparil S, Lovato LC, Cushman WC, et al. Effect of intensive blood pressure treatment on heart failure events in the systolic blood pressure reduction intervention trial. Circ Heart Fail. 2017;10:e003613.

    PubMed  PubMed Central  Google Scholar 

  57. Kostis J, Davis BR, Cutler JA, Grimm RH Jr, Berge KG, Cohen JD, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. JAMA. 1997;278:212–6.

    CAS  PubMed  Google Scholar 

  58. Beckett S, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.

    CAS  PubMed  Google Scholar 

  59. Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhäger WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet. 1997;350:757–64.

    CAS  PubMed  Google Scholar 

  60. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–97.

  61. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.

    PubMed  Google Scholar 

  62. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering treatment. 6. Prevention of heart failure and new-onset heart failure - meta-analyses of randomized trials. J Hypertens. 2016;34:373–84.

    CAS  PubMed  Google Scholar 

  63. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362:777–81.

    CAS  PubMed  Google Scholar 

  64. Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27:2338–45.

    CAS  PubMed  Google Scholar 

  65. Massie BM, Carson PE, McMurray JJ, McKelvie R, Zile MR, Ptaszynska A, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.

    CAS  PubMed  Google Scholar 

  66. Kitzman DW, Hundley WG, Brubaker P, Stewart K, Little WC. A randomized, controlled, double-blinded trial of enalapril in older patients with heart failure and preserved ejection fraction; effects on exercise tolerance, and arterial distensibility. Circ Heart Fail. 2010;3:477–85.

    PubMed  PubMed Central  Google Scholar 

  67. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. PARAGON-HF Investigators and committees. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N Engl J Med. 2019;381:1609–20.

    CAS  PubMed  Google Scholar 

  68. Upadhya B, Brubaker PH, Morgan TM, Eggebeen JD, Jao GT, Stewart KP, et al. The effect of Aliskiren on exercise capacity in older patients with heart failure and preserved ejection fraction: a randomized, placebo-controlled, double-blind trial. Am Heart J. 2018 Jul;201:164–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. • Pitt B, Pfeffer M, Assmann S, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92. The TOPCAT trial was an international study that as a whole did not show mortality benefit for spironolactone, but did have a reduction in HF hospitalizations. However, subgroup analysis of patients enrolled in the Americas, though not in Russia or Georgia, demonstrated higher overall event rates and reduction in the primary endpoint.

    CAS  PubMed  Google Scholar 

  70. Edelmann F, Aldo-DHF investigators. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013;309:781–91.

    CAS  PubMed  Google Scholar 

  71. Deswal A, Richardson P, Bozkurt B, Mann D. Results of the randomized aldosterone antagonism in heart failure with preserved ejection fraction trial (RAAM-PEF). J Card Fail. 2011;17:634–42.

    PubMed  Google Scholar 

  72. Kosmala W, Rojek A, Przewlocka-Kosmala M, Wright L, Mysiak A, Marwick TH. Effect of aldosterone antagonism on exercise tolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2016;68:1823–34.

    CAS  PubMed  Google Scholar 

  73. Upadhya B, Hundley WG, Brubaker PH, Morgan TM, Stewart KP, Kitzman DW. Effect of spironolactone on exercise tolerance and arterial function in older adults with heart failure with preserved ejection fraction. J Am Geriatr Soc. 2017;65:2374–82.

    PubMed  PubMed Central  Google Scholar 

  74. van Veldhuisen DJ, Cohen-Solal A, Bohm M, Böhm M, Anker SD, Babalis D, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: data from SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol. 2009;53:2150–8.

    PubMed  Google Scholar 

  75. Yamamoto K, Origasa H, Hori M, Investigators J-DHF. Effects of carvedilol on heart failure with preserved ejection fraction: the Japanese Diastolic Heart Failure Study (J-DHF). Eur J Heart Fail. 2013;15:110–8.

    CAS  PubMed  Google Scholar 

  76. Conraads V, Metra M, Kamp O, De Keulenaer GW, Pieske B, Zamorano J, et al. Effects of the long-term administration of nebivolol on the clinical symptoms, exercise capacity, and left ventricular function of patients with diastolic dysfunction: results of the ELANDD study. Eur J Heart Fail. 2012;14:219–25.

    CAS  PubMed  Google Scholar 

  77. Pfeffer MA, Claggett B, Assmann SF, Boineau R, Anand IS, Clausell N, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015;131:34–42.

    CAS  PubMed  Google Scholar 

  78. • Upadhya B, Lovato LC, Rocco M, Lewis CE, Oparil S, Cushman WC, et al. Heart failure prevention in older patients using intensive blood pressure reduction: potential role of diuretics. J Am Coll Cardiol. JACC Heart Fail. 2019;7:1032–1041 These detailed analyses indicate that the reductions in acute decompensated HF events in SPRINT were not due to withdrawal of diuretics from the standard treatment group or differential use of diuretics between the two treatment groups.

  79. • Solomon SD, Janardhanan R, Verma A, Bourgoun M, Daley WL, Purkayastha D, et al. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic function in patients with hypertension and diastolic dysfunction: a randomized trial. Lancet. 2007;369:2079–87. This randomized trial highlights the importance of hypertension management in improving diastolic dysfunction in in HFpEF. While this study’s aim was to assess the effects of valsartan, it demonstrated that blood pressure control, regardless of agent chosen, had the desired effect.

    CAS  PubMed  Google Scholar 

  80. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure. J Am Coll Cardiol. 2017;70:776–803.

    PubMed  Google Scholar 

  81. Selvaraj S, Claggett BL, Böhm M, Anker SD, Vaduganathan M, Zannad F. Systolic blood pressure in heart failure with preserved ejection fraction treated with Sacubitril/valsartan. J Am Coll Cardiol. 2020;75:1644–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Borlaug BA, Koepp KE, Melenovsky V. Sodium nitrite improves exercise hemodynamics and ventricular performance in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2015;66:1672–82.

    CAS  PubMed  Google Scholar 

  83. Borlaug BA, Melenovsky V, Koepp KE. Inhaled sodium nitrite improves rest and exercise hemodynamics in heart failure with preserved ejection fraction. Circ Res. 2016;119:880–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Eggebeen J, Kim-Shapiro DB, Haykowsky MJ, Morgan TM, Basu S, Brubaker P. One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2015;4:428–37.

    Google Scholar 

  85. Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015;131:371–80.

    CAS  PubMed  Google Scholar 

  86. Redfield M, Anstrom K, Levine J, Redfield M, Anstrom K, Levine J, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373:2314–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Borlaug BA, Anstrom KJ, Lewis GD, Shah SJ, Levine JA, Koepp GA, et al. Effect of inorganic nitrite vs placebo on exercise capacity among patients with heart failure with preserved ejection fraction: the INDIE-HFpEF randomized clinical trial. JAMA. 2018;320:1764–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Redfield M, Chen H, Borlaug B, Semigran MJ, Lee KL, Lewis G, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–77.

    CAS  PubMed  Google Scholar 

  89. Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124:164–74.

    CAS  PubMed  Google Scholar 

  90. Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C, et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (dilate-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014;146:1274–85.

    PubMed  PubMed Central  Google Scholar 

  91. Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G, Butler J, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38:1119–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lim SL, Benson L, Dahlström U, Lam CS, Lund LH. Association between use of long-acting nitrates and outcomes in heart failure with preserved ejection fraction. Circ Heart Fail. 2017;10:e003534.

    CAS  PubMed  Google Scholar 

  93. van Tassell BW, Trankle CR, Canada JM, Carbone S, Buckley L, Kadariya D, et al. IL-1 blockade in patients with heart failure with preserved ejection fraction- results from DHART2. Circ Heart Fail. 2018;11:e005036.

    PubMed  PubMed Central  Google Scholar 

  94. Ferrier KE, Muhlmann MH, Baguet JP, Cameron JD, Jennings GL, Dart AM, et al. Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J Am Coll Cardiol. 2002;39:1020–5.

    CAS  PubMed  Google Scholar 

  95. Landmesser U, Bahlmann F, Mueller M, Spiekermann S, Kirchhoff N, Schulz S, et al. Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation. 2005;111:2356–63.

    CAS  PubMed  Google Scholar 

  96. Fukuta H, Goto T, Wakami K, Ohte N. The effect of statins on mortality in heart failure with preserved ejection fraction: a meta-analysis of propensity score analyses. Int J Cardiol. 2016;214:301–6.

    PubMed  Google Scholar 

  97. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomised clinical trial. JAMA. 2016;315:36–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4:e76.

    PubMed  PubMed Central  Google Scholar 

  99. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21:263–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hummel S, Seymour E, Brook R, et al. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60:1200–6.

    CAS  PubMed  Google Scholar 

  101. Chen J, Shearer GC, Chen Q, Healy CL, Beyer AJ, Nareddy VB, et al. Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation. 2011;123:584–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Herrscher TE, Akre H, Øverland B, Sandvik L, Westheim AS. High prevalence of sleep apnea in heart failure outpatients: even in patients with preserved systolic function. J Card Fail. 2011;17:420–5.

    PubMed  Google Scholar 

  103. Golbin JM, Somers VK, Caples SM. Obstructive sleep apnea, cardiovascular disease, and pulmonary hypertension. Proc Am Thorac Soc. 2008;5:200–6.

    PubMed  PubMed Central  Google Scholar 

  104. Yoshihisa A, Suzuki S, Yamauchi H, Sato T, Oikawa M, Kobayashi A, et al. Beneficial effects of positive airway pressure therapy for sleep-disordered breathing in heart failure patients with preserved left ventricular ejection fraction. Clin Cardiol. 2015;38:413–21.

    PubMed  PubMed Central  Google Scholar 

  105. Yoshihisa A, Suzuki S, Yamaki T, Sugimoto K, Kunii H, Nakazato K, et al. Impact of adaptive servo-ventilation on cardiovascular function and prognosis in heart patients with preserved left ventricular ejection fraction and sleep-disordered breathing. Eur J Heart Fail. 2013;15:543–50.

    CAS  PubMed  Google Scholar 

  106. O'Connor CM, Whellan DJ, Fuizat M, Punjabi NM, Tasissa G, Anstrom KJ, et al. Cardiovascular outcomes with minute ventilation - targeted adaptive servo-ventilation therapy in heart failure. J Am Coll Cardiol. 2017;69:1577–87.

    PubMed  Google Scholar 

  107. Butt M, Dwivedi G, Shantsila A, Khair OA, Lip GY. Left ventricular systolic and diastolic function in obstructive sleep apnea: impact of continuous positive airway pressure therapy. Circ Heart Fail. 2012;5:226–33.

    PubMed  Google Scholar 

  108. Lattimore JL, Wilcox I, Skilton M, Langenfeld M, Celermajer DS. Treatment of obstructive sleep apnoea leads to improved microvascular endothelial function in the systemic circulation. Thorax. 2006;61:491–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Drager LF, Diegues-Silva L, Diniz PM, Bortolotto LA, Pedrosa RP, Couto RB, et al. Obstructive sleep apnea, masked hypertension, and arterial stiffness in men. Am J Hypertens. 2010;23:249–54.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharathi Upadhya.

Ethics declarations

Conflict of Interest

Dr. Upadhya has received research funding from Novartis and Corvia. The other authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hicklin, H.E., Gilbert, O.N., Ye, F. et al. Hypertension as a Road to Treatment of Heart Failure with Preserved Ejection Fraction. Curr Hypertens Rep 22, 82 (2020). https://doi.org/10.1007/s11906-020-01093-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01093-7

Keywords

Navigation