Skip to main content
Log in

Finerenone: a New Mineralocorticoid Receptor Antagonist Without Hyperkalemia: an Opportunity in Patients with CKD?

  • Therapeutic Trials (M Weir, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Aldosterone binds to the mineralocorticoid receptor and has an important regulatory role in body fluid and electrolyte balance. It also influences a variety of different cell functions such as oxidative stress, inflammation and organ fibrosis. The important role of the tissue-specific mineralocorticoid receptors in cardiovascular and renal injury has been shown in knockout animals and in clinical studies Mineralocorticoid receptor antagonists seem to exert their beneficial effects via anti-oxidative, anti-inflammatory and anti-fibrotic effects. Spironolactone and eplerenone were the first steroidal mineralocorticoid receptor antagonist. The established steroidal mineralocorticoid receptor antagonists show important therapeutic effects but are hampered by a variety of side effects, most importantly clinically significant hyperkaliemia. Selective non-steroidal mineralocorticoid receptor antagonists have been recently developed and demonstrate effectiveness in early clinical trials. Finereroneholds promise for the future application of this new mineralocorticoid receptor antagonist class in patients with chronic kidney disease since it has shown a significant reduction in UACR combined with a safety profile similar to that in the placebo group. However, further long-term studies investigating relevant clinical end points like reduction in cardiovascular or renal event rate are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension. 2005;46:1227–35. Comprehensive review on the molecular mechanisms of mineralocorticoids.

    Article  CAS  PubMed  Google Scholar 

  2. Fuller PJ, Yao Y, Yang J, Young MJ. Mechanisms of ligand specificity of the mineralocorticoid receptor. J Endocrinol. 2012;213:15–24.

    Article  CAS  PubMed  Google Scholar 

  3. Lombes M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet J-P. Prerequisite for cardiac aldosterone action: mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase in the human heart. Circulation. 1995;92(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  4. Viengchareun S, Le Menuet D, Martinerie L, Munier M, Pascual-Le Tallec L, Lombès M. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal. 2007;5, e012.

    PubMed  PubMed Central  Google Scholar 

  5. Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu Rev Pharmacol Toxicol. 2010;50:439–65. This review by an international expert on RASS system gives a comprehensive overview on established and future therapeutic targets. Provides insight into molecular studies of the RAAS system.

    Article  CAS  PubMed  Google Scholar 

  6. Taves MD, Gomez-Sanchez CE, Soma KK. Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab. 2011;301:E11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006;20:1546–8.

    Article  CAS  PubMed  Google Scholar 

  8. Park YM, Lim BH, Touyz RM, Park JB. Expression of NAD(P)H oxidase subunits and their contribution to cardiovascular damage in aldosterone/salt-induced hypertensive rat. J Korean Med Sci. 2008;23(6):1039–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Michea L, Villagrán A, Urzúa A, Kuntsmann S, Venegas P, Carrasco L, et al. Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and prevents oxidative stress in uremic rats. Hypertension. 2008;52(2):295–300.

    Article  CAS  PubMed  Google Scholar 

  10. Mayyas F, Alzoubi KH, Van Wagoner DR. Impact of aldosterone antagonists on the substrate for atrial fibrillation: aldosterone promotes oxidative stress and atrial structural/electrical remodeling. Int J Cardiol. 2013;168:5135–42.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. eNOS uncoupling in cardiovascular diseases--the role of oxidative stress and inflammation. Curr Pharm Des. 2014;20:3579–94. This review explains the intricate relationship between inflammation and oxidative stress and unravels the complicated mechanisms of oxidative stress in cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  12. Schiffrin EL. The immune system: role in hypertension. Can J Cardiol. 2013;29:543–8. Schiffrin gives an overview on the recent devlopments in this novel and intriguing research field in cardiovascular medicine.

    Article  PubMed  Google Scholar 

  13. Bene NC, Alcaide P, Wortis HH, Jaffe IZ. Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease. Steroids. 2014;91:38–45.

    Article  CAS  PubMed  Google Scholar 

  14. Kasal DA, Schiffrin EL. Angiotensin II, aldosterone, and anti-inflammatory lymphocytes: interplay and therapeutic opportunities. Int J Hypertens. 2012;2012:829786.

    PubMed  PubMed Central  Google Scholar 

  15. De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 2005;25:2106–13.

    Article  PubMed  Google Scholar 

  16. Rickard AJ, Morgan J, Chrissobolis S, Miller AA, Sobey CG, Young MJ. Endothelial cell mineralocorticoid receptors regulate DOC/salt-mediated cardiac remodeling and vascular reactivity, but not blood pressure. Hypertension. 2014;63:1033–40.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Hirooka K, Nishiyama A, Lei B, Nakamura T, Itano T, et al. Activation of the aldosterone/mineralocorticoid receptor system and protective effects of mineralocorticoid receptor antagonism in retinal ischemia-reperfusion injury. Exp Eye Res. 2012;96:116–23.

    Article  CAS  PubMed  Google Scholar 

  18. Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, Schütz G, et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest. 2010;120:3350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marzolla V, Armani A, Feraco A, De Martino MU, Fabbri A, Rosano G, et al. Mineralocorticoid receptor in adipocytes and macrophages: a promising target to fight metabolic syndrome. Steroids. 2014;91:46–53.

    Article  CAS  PubMed  Google Scholar 

  20. Herrada AA, Campino C, Amador CA, Michea LF, Fardella CE, Kalergis AM. Aldosterone as a modulator of immunity: implications in the organ damage. J Hypertens. 2011;29:1684–92. Review of the literature to explain how aldosterone affects the immune system and which implication ensue for cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  21. Herrada AA, Contreras FJ, Marini NP, Amador CA, González PA, Cortés CM, et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J Immunol. 2010;184:191–202.

    Article  CAS  PubMed  Google Scholar 

  22. Kasal DA, Barhoumi T, Li MW, Yamamoto N, Zdanovich E, Rehman A, et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension. 2012;59:324–30.

    Article  CAS  PubMed  Google Scholar 

  23. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation. 2008;117:2253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anders HJ, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol. 2014;25:1387–400. Important revew on the role of the innate immune system in renal and cardiovascular disease. Provides also insight into mechanisms of inflammasome and cardiovascular disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frantz S, Monaco C, Arslan F. Danger signals in cardiovascular disease. Mediat Inflamm. 2014;2014:395278.

    Article  Google Scholar 

  26. Thomas W, Dooley R, Harvey BJ. Aldosterone as a renal growth factor. Steroids. 2010;75:550–4.

    Article  CAS  PubMed  Google Scholar 

  27. Dooley R, Harvey BJ, Thomas W. The regulation of cell growth and survival by aldosterone. Front Biosci (Landmark Ed). 2011;16:440–57.

    Article  CAS  Google Scholar 

  28. Dooley R, Harvey BJ, Thomas W. Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol. 2012;350:223–34.

    Article  CAS  PubMed  Google Scholar 

  29. Iraqi W, Rossignol P, Angioi M, Fay R, Nuée J, Ketelslegers JM, et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation. 2009;119:2471–9.

    Article  CAS  PubMed  Google Scholar 

  30. Lacolley P, Labat C, Pujol A, Delcayre C, Benetos A, Safar M. Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: effects of eplerenone. Circulation. 2002;106:2848–53.

    Article  CAS  PubMed  Google Scholar 

  31. Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension. 2015;65:257–63.

    Article  CAS  PubMed  Google Scholar 

  32. Vazquez-Rangel A, Soto V, Escalona M, Toledo RG, Castillo EA, Polanco Flores NA, et al. Spironolactone to prevent peritoneal fibrosis in peritoneal dialysis patients: a randomized controlled trial. Am J Kidney Dis. 2014;63:1072–4.

    Article  PubMed  Google Scholar 

  33. Yelken B, Gorgulu N, Gursu M, Yazici H, Caliskan Y, Telci A, et al. Effects of spironolactone on residual renal function and peritoneal function in peritoneal dialysis patients. Adv Perit Dial. 2014;30:5–10.

    CAS  PubMed  Google Scholar 

  34. Zhang L, Hao JB, Ren LS, Ding JL, Hao LR. The aldosterone receptor antagonist spironolactone prevents peritoneal inflammation and fibrosis. Lab Invest. 2014;94:839–50.

    Article  CAS  PubMed  Google Scholar 

  35. Pizarro M, Solis N, Quintero P, Barrera F, Cabrera D, Rojas-de Santiago P, et al. Beneficial effects of mineralocorticoid receptor blockade in experimental non-alcoholic steatohepatitis. Liver Int. 2015;35:2129–38.

    Article  CAS  PubMed  Google Scholar 

  36. Mitts TF, Bunda S, Wang Y, Hinek A. Aldosterone and mineralocorticoid receptor antagonists modulate elastin and collagen deposition in human skin. J Invest Dermatol. 2010;130:2396–406.

    Article  CAS  PubMed  Google Scholar 

  37. Marney AM, Brown NJ. Aldosterone and end-organ damage. Clin Sci (Lond). 2007;113:267–78.

    Article  CAS  Google Scholar 

  38. Rautureau Y, Paradis P, Schiffrin EL. Cross-talk between aldosterone and angiotensin signaling in vascular smooth muscle cells. Steroids. 2011;76:834–9.

    CAS  PubMed  Google Scholar 

  39. Lemarié CA, Simeone SM, Nikonova A, Ebrahimian T, Deschênes ME, Coffman TM, et al. Aldosterone-induced activation of signaling pathways requires activity of angiotensin type 1a receptors. Circ Res. 2009;105:852–9.

    Article  PubMed  Google Scholar 

  40. Virdis A, Neves MF, Amiri F, Viel E, Touyz RM, Schiffrin EL. Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension. 2002;40:504–10.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi N, Hara K, Tojo A, Onozato ML, Honda T, Yoshida K, et al. Eplerenone shows renoprotective effect by reducing LOX-1-mediated adhesion molecule, PKCepsilon-MAPK-p90RSK, and Rho-kinase pathway. Hypertension. 2005;45:538–44.

    Article  CAS  PubMed  Google Scholar 

  42. Nagase M, Fujita T. Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease. Nat Rev Nephrol. 2013;9:86–98.

    Article  CAS  PubMed  Google Scholar 

  43. Bertocchio JP, Warnock DG, Jaisser F. Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease. Kidney Int. 2011;79:1051–60.

    Article  CAS  PubMed  Google Scholar 

  44. Ritz E, Tomaschitz A. Aldosterone and the kidney: a rapidly moving frontier (an update). Nephrol Dial Transplant. 2014;29:2012–9.

    Article  PubMed  Google Scholar 

  45. Bobadilla NA, Gamba G. New insights into the pathophysiology of cyclosporine nephrotoxicity: a role of aldosterone. Am J Physiol Renal Physiol. 2007;293:F2–9.

    Article  CAS  PubMed  Google Scholar 

  46. Amador CA, Barrientos V, Peña J, Herrada AA, González M, Valdés S, et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension. 2014;63:797–803.

    Article  CAS  PubMed  Google Scholar 

  47. Waanders F, Rienstra H, Boer MW, Zandvoort A, Rozing J, Navis G, et al. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats. Am J Physiol Renal Physiol. 2009;296:F1072–9.

    Article  CAS  PubMed  Google Scholar 

  48. Juncos LA, Juncos LI (2015) Mineralocorticoid receptor antagonism in AKI: a new hope? J Am Soc Nephrol

  49. Barrera-Chimal J, Pérez-Villalva R, Rodríguez-Romo R, Reyna J, Uribe N, Gamba G, et al. Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury. Kidney Int. 2013;83:93–103.

    Article  CAS  PubMed  Google Scholar 

  50. Sánchez-Pozos K, Barrera-Chimal J, Garzón-Muvdi J, Pérez-Villalva R, Rodríguez-Romo R, Cruz C, et al. Recovery from ischemic acute kidney injury by spironolactone administration. Nephrol Dial Transplant. 2012;27:3160–9.

    Article  PubMed  Google Scholar 

  51. Barrera-Chimal J, Pérez-Villalva R, Ortega JA, Sánchez A, Rodríguez-Romo R, Durand M, et al. Mild ischemic injury leads to long-term alterations in the kidney: amelioration by spironolactone administration. Int J Biol Sci. 2015;11:892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguyen Dinh Cat A, Griol-Charhbili V, Loufrani L, Labat C, Benjamin L, Farman N, et al. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 2010;24:2454–63.

    Article  PubMed  Google Scholar 

  53. Farman N, Vandewalle A, Bonvalet JP. Autoradiographic study of aldosterone and dexamethasone binding in isolated glomeruli of rabbit kidney. Am J Physiol. 1982;243:F235–42.

    CAS  PubMed  Google Scholar 

  54. Lee HA, Song MJ, Seok YM, Kang SH, Kim SY, Kim I. Histone deacetylase 3 and 4 complex stimulates the transcriptional activity of the mineralocorticoid receptor. PLoS ONE. 2015;10, e0136801.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  CAS  PubMed  Google Scholar 

  56. Quinkler M, Zehnder D, Eardley KS, Lepenies J, Howie AJ, Hughes SV, et al. Increased expression of mineralocorticoid effector mechanisms in kidney biopsies of patients with heavy proteinuria. Circulation. 2005;112:1435–43.

    Article  CAS  PubMed  Google Scholar 

  57. Huang LL, Nikolic-Paterson DJ, Han Y, Ozols E, Ma FY, Young MJ, et al. Myeloid mineralocorticoid receptor activation contributes to progressive kidney disease. J Am Soc Nephrol. 2014;25:2231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Standards of medical care in diabetes 2014. Diabetes Care 2014;37 Suppl 1:S14-80

  59. Bomback AS, Klemmer PJ. The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol. 2007;3:486–92.

    Article  CAS  PubMed  Google Scholar 

  60. Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2009:CD007004.

  61. Bomback AS, Kshirsagar AV, Amamoo MA, Klemmer PJ. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am J Kidney Dis. 2008;51:199–211.

    Article  PubMed  Google Scholar 

  62. Chrysostomou A, Becker G. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med. 2001;345:925–6.

    Article  CAS  PubMed  Google Scholar 

  63. Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving HH. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care. 2005;28:2106–12.

    Article  CAS  PubMed  Google Scholar 

  64. Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension. 2003;41:64–8.

    Article  CAS  PubMed  Google Scholar 

  65. Epstein M, Williams GH, Weinberger M, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1:940–51.

    Article  CAS  PubMed  Google Scholar 

  66. Bolignano D, Palmer SC, Navaneethan SD, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2014;4, CD007004.

    PubMed  Google Scholar 

  67. Schwenk MH, Hirsch JS, Bomback AS. Aldosterone blockade in CKD: emphasis on pharmacology. Adv Chronic Kidney Dis. 2015;22:123–32.

    Article  PubMed  Google Scholar 

  68. Vardeny O, Wu DH, Desai A, Rossignol P, Zannad F, Pitt B, et al. Influence of baseline and worsening renal function on efficacy of spironolactone in patients with severe heart failure: insights from RALES (Randomized Aldactone Evaluation Study). J Am Coll Cardiol. 2012;60:2082–9.

    Article  CAS  PubMed  Google Scholar 

  69. Rossignol P, Cleland JG, Bhandari S, Tala S, Gustafsson F, Fay R, et al. Determinants and consequences of renal function variations with aldosterone blocker therapy in heart failure patients after myocardial infarction: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study. Circulation. 2012;125:271–9.

    Article  CAS  PubMed  Google Scholar 

  70. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  71. Drechsler C, Ritz E, Tomaschitz A, Pilz S, Schönfeld S, Blouin K, et al. Aldosterone and cortisol affect the risk of sudden cardiac death in haemodialysis patients. Eur Heart J. 2013;34:578–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matsumoto Y, Mori Y, Kageyama S, Arihara K, Sugiyama T, Ohmura H, et al. Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J Am Coll Cardiol. 2014;63:528–36.

    Article  CAS  PubMed  Google Scholar 

  73. Menard J. The 45-year story of the development of an anti-aldosterone more specific than spironolactone. Mol Cell Endocrinol. 2004;217:45–52.

    Article  CAS  PubMed  Google Scholar 

  74. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237:268–75.

    Article  CAS  PubMed  Google Scholar 

  75. Kolkhof P, Borden SA. Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics. Mol Cell Endocrinol. 2012;350:310–7. This review provides an excellent overview of early non-steroidal development and rationale from an industry perspective.

    Article  CAS  PubMed  Google Scholar 

  76. Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev. 2015;95:297–340.

    Article  PubMed  Google Scholar 

  77. Parthasarathy HK, Ménard J, White WB, Young Jr WF, Williams GH, Williams B, et al. A double-blind, randomized study comparing the antihypertensive effect of eplerenone and spironolactone in patients with hypertension and evidence of primary aldosteronism. J Hypertens. 2011;29:980–90.

    Article  CAS  PubMed  Google Scholar 

  78. Netchitailo P, Delarue C, Perroteau I, Leboulenger F, Capron MH, Vaudry H. Relative inhibitory potency of five mineralocorticoid antagonists on aldosterone biosynthesis in vitro. Biochem Pharmacol. 1985;34:189–94.

    Article  CAS  PubMed  Google Scholar 

  79. Ye P, Yamashita T, Pollock DM, Sasano H, Rainey WE. Contrasting effects of eplerenone and spironolactone on adrenal cell steroidogenesis. Horm Metab Res. 2009;41:35–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Penhoat A, Darbeida H, Bernier M, Saez JM, Durand P. Inhibition of hormonal-induced cAMP and steroid production by inhibitors of pregnenolone metabolism in adrenal and Leydig cells. Mol Cell Endocrinol. 1988;60:55–60.

    Article  CAS  PubMed  Google Scholar 

  81. Albert NM, Yancy CW, Liang L, Zhao X, Hernandez AF, Peterson ED, et al. Use of aldosterone antagonists in heart failure. JAMA. 2009;302:1658–65.

    Article  CAS  PubMed  Google Scholar 

  82. Amazit L, Le Billan F, Kolkhof P, Lamribet K, Viengchareun S, Fay MR, et al. Finerenone impedes aldosterone-dependent nuclear import of the mineralocorticoid receptor and prevents genomic recruitment of steroid receptor coactivator-1. J Biol Chem. 2015;290(36):21876–89.

    Article  CAS  PubMed  Google Scholar 

  83. Bärfacker L, Kuhl A, Hillisch A, Grosser R, Figueroa-Pérez S, Heckroth H, et al. Kolkhof P Discovery of BAY 94–8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem. 2012;7(8):1385–403.

    Article  PubMed  Google Scholar 

  84. Pitt B, Kober L, Ponikowski P, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist bay 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: A randomized, double-blind trial. Eur Heart J. 2013;34:2453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pitt B, Filippatos G, Gheorghiade M, et al. Rationale and design of arts: A randomized, double-blind study of bay 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease. Eur J Heart Fail. 2012;14:668–75.

    Article  CAS  PubMed  Google Scholar 

  86. Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92. This publication is the first to demonstrate effectiveness of non-steroidal MR antagonists in humans.

    Article  CAS  PubMed  Google Scholar 

  87. Ruilope LM, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Rationale, design, and baseline characteristics of ARTS-DN: a randomized study to assess the safety and efficacy of finerenone in patients with type 2 diabetes mellitus and a clinical diagnosis of diabetic nephropathy. Am J Nephrol. 2014;40:572–81.

    Article  CAS  PubMed  Google Scholar 

  88. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94. First study to demonstrate anti-proteinuric effects of finererone in diabetic patients with nephropathy.

    Article  CAS  PubMed  Google Scholar 

  89. Mavrakanas TA, Gariani K, Martin PY. Mineralocorticoid receptor blockade in addition to angiotensin converting enzyme inhibitor or angiotensin II receptor blocker treatment: an emerging paradigm in diabetic nephropathy. Eur J Int Med. 2014;25(2):173–6.

    Article  CAS  Google Scholar 

  90. Mehdi UF, Adams-Huet B, Raskin P, et al. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol. 2009;20(12):2641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Haller.

Ethics declarations

Conflict of Interest

Drs. Haller, Bertram, Stahl, and Menne declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Key points

• Although the established physiological function of the renal mineralocorticoid receptor is regulation of sodium reabsorption and potassium excretion, activation of the mineralocorticoid receptor in extra-renal tissues also contributes to the pathogenesis of cardiovascular injury.

• The important role of the tissue-specific mineralocorticoid receptors in cardiovascular and renal injury has been shown in knockout animals and in clinical studies.

• The established steroidal mineralocorticoid receptor antagonists show important therapeutic effects but are hampered by a variety of side effects, most importantly clinically significant hyperkaliemia, which limits their use especially in patients with chronic kidney disease and reduced glomerular filtration rates.

• Selective non-steroidal mineralocorticoid receptor antagonists have been recently developed and demonstrate effectiveness in early clinical trials.

• The significant reduction in UACR in patients receiving finerenone, combined with a safety profile similar to that in the placebo group, holds promise for the future application of this new mineralocorticoid receptor antagonist class in patients with chronic kidney disease. However, further long-term studies investigating relevant clinical end points like reduction in cardiovascular or renal event rate are warranted.

This article is part of the Topical Collection on Therapeutic Trials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haller, H., Bertram, A., Stahl, K. et al. Finerenone: a New Mineralocorticoid Receptor Antagonist Without Hyperkalemia: an Opportunity in Patients with CKD?. Curr Hypertens Rep 18, 41 (2016). https://doi.org/10.1007/s11906-016-0649-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0649-2

Keywords

Navigation