Skip to main content
Log in

Activation of Mineralocorticoid Receptor in Salt-Sensitive Hypertension

  • Hypertension and the Kidney (RM Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The impaired capacity of the kidney to excrete sodium plays an essential role in the development of hypertension. Adrenal corticosteroids control renal handling of sodium by regulating tubular sodium reabsorption in the distal nephron where both mineralocorticoid receptors (MR) and glucocorticoid receptors are expressed. In addition, cell type- and segment-specific expression of 11β-HSD2 and sodium transporters such as Na–Cl cotransporter (NCC), epithelial sodium channel (ENaC), and pendrin/Na+-driven Cl/HCO3 exchanger (NDCBE) builds a distinctive model of sodium transport in the aldosterone-sensitive distal nephron. Aberrant MR activation in the distal nephron triggers salt-sensitive hypertension and hypokalemia through inappropriate sodium reabsorption and potassium secretion. However, MR activity is not necessarily modulated by the ligand alone. Recently, several lines of evidence revealed alternative mechanisms that regulate the activity of MR in a ligand-independent manner or through ligand binding modulation. This review summarizes the disorders related to MR activation in individual tubular cells and highlights the renal mechanism of salt-sensitive hypertension and new approaches for the prevention and treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lawes CM, Vander Hoorn S, Rodgers A, et al. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8.

    Article  PubMed  Google Scholar 

  2. Gu Q, Burt VL, Dillon CF, et al. Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the National Health and Nutrition Examination Survey, 2001 to 2010. Circulation. 2012;126:2105–14.

    Article  CAS  PubMed  Google Scholar 

  3. Luft FC, Weinberger MH. Heterogeneous responses to changes in dietary salt intake: the salt-sensitivity paradigm. Am J Clin Nutr. 1997;65:612S–7.

    CAS  PubMed  Google Scholar 

  4. Fujita T, Henry WL, Bartter FC, et al. Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med. 1980;69:334–44.

    Article  CAS  PubMed  Google Scholar 

  5. Guyton AC. The surprising kidney-fluid mechanism for pressure control—its infinite gain! Hypertension. 1990;16:725–30.

    Article  CAS  PubMed  Google Scholar 

  6. Hall JE, Mizelle HL, Hildebrandt DA, et al. Abnormal pressure natriuresis. A cause or a consequence of hypertension? Hypertension. 1990;15:547–59.

    Article  CAS  PubMed  Google Scholar 

  7. Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17:1402–9.

    Article  CAS  PubMed  Google Scholar 

  8. Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev. 2000;80:277–313.

    CAS  PubMed  Google Scholar 

  9. Rossier BC, Staub OHummler E. Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett. 2013;587:1929–41.

    Article  CAS  PubMed  Google Scholar 

  10. Albiston AL, Obeyesekere VR, Smith RE, et al. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol. 1994;105:R11–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kyossev Z, Walker PD Reeves WB. Immunolocalization of NAD-dependent 11 beta-hydroxysteroid dehydrogenase in human kidney and colon. Kidney Int. 1996;49:271–81.

    Article  CAS  PubMed  Google Scholar 

  12. Campean V, Kricke J, Ellison D, et al. Localization of thiazide-sensitive Na(+)-Cl(-) cotransport and associated gene products in mouse DCT. Am J Physiol Renal Physiol. 2001;281:F1028–35.

    Article  CAS  PubMed  Google Scholar 

  13. Rozansky DJ, Cornwall T, Subramanya AR, et al. Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J Clin Invest. 2009;119:2601–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Faresse N, Lagnaz D, Debonneville A, et al. Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype. Am J Physiol Renal Physiol. 2012;302:F977–85.

    Article  CAS  PubMed  Google Scholar 

  15. Shi PP, Cao XR, Sweezer EM, et al. Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2. Am J Physiol Renal Physiol. 2008;295:F462–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ronzaud C, Loffing-Cueni D, Hausel P, et al. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Invest. 2013;123:657–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Ko B, Mistry AC, Hanson L, et al. Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway. Am J Physiol Renal Physiol. 2013;305:F645–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Elvira-Matelot E, Zhou XO, Farman N, et al. Regulation of WNK1 expression by miR-192 and aldosterone. J Am Soc Nephrol. 2010;21:1724–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mu S, Shimosawa T, Ogura S, et al. Epigenetic modulation of the renal beta-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011;17:573–80.

    Article  CAS  PubMed  Google Scholar 

  20. Williams GH, Burgess E, Kolloch RE, et al. Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. Am J Cardiol. 2004;93:990–6.

    Article  CAS  PubMed  Google Scholar 

  21. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  22. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  CAS  PubMed  Google Scholar 

  23. Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.

    Article  CAS  PubMed  Google Scholar 

  24. Brilla CG, Pick R, Tan LB, et al. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res. 1990;67:1355–64.

    Article  CAS  PubMed  Google Scholar 

  25. Brilla CG, Matsubara LSWeber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25:563–75.

    Article  CAS  PubMed  Google Scholar 

  26. Greene EL, Kren SHostetter TH. Role of aldosterone in the remnant kidney model in the rat. J Clin Invest. 1996;98:1063–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Blasi ER, Rocha R, Rudolph AE, et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 2003;63:1791–800.

    Article  CAS  PubMed  Google Scholar 

  28. Bochud M, Nussberger J, Bovet P, et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension. 2006;48:239–45.

    Article  CAS  PubMed  Google Scholar 

  29. Kidambi S, Kotchen JM, Grim CE, et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension. 2007;49:704–11.

    Article  CAS  PubMed  Google Scholar 

  30. Rocchini AP, Key J, Bondie D, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321:580–5.

    Article  CAS  PubMed  Google Scholar 

  31. Nagase M, Yoshida S, Shibata S, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17:3438–46.

    Article  CAS  PubMed  Google Scholar 

  32. Nagase M, Matsui H, Shibata S, et al. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension. 2007;50:877–83.

    Article  CAS  PubMed  Google Scholar 

  33. de Paula RB, da Silva AAHall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43:41–7.

    Article  PubMed  Google Scholar 

  34. Shibata S, Mu S, Kawarazaki H, et al. PMC3148723; Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Farjah M, Roxas BP, Geenen DL, et al. Dietary salt regulates renal SGK1 abundance: relevance to salt sensitivity in the Dahl rat. Hypertension. 2003;41:874–8.

    Article  CAS  PubMed  Google Scholar 

  36. Aoi W, Niisato N, Sawabe Y, et al. Aldosterone-induced abnormal regulation of ENaC and SGK1 in Dahl salt-sensitive rat. Biochem Biophys Res Commun. 2006;341:376–81.

    Article  CAS  PubMed  Google Scholar 

  37. Luther JM, Luo P, Wang Z, et al. PMC3434275; Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 2012.

  38. Mihailidou AS, Le Loan TY, Mardini M, et al. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension. 2009;54:1306–12.

    Article  CAS  PubMed  Google Scholar 

  39. Funder JW. Minireview: aldosterone and mineralocorticoid receptors: past, present, and future. Endocrinology. 2010;151:5098–102.

    Article  CAS  PubMed  Google Scholar 

  40. Massaad C, Houard N, Lombes M, et al. Modulation of human mineralocorticoid receptor function by protein kinase A. Mol Endocrinol. 1999;13:57–65.

    Article  CAS  PubMed  Google Scholar 

  41. Yokota K, Shibata H, Kurihara I, et al. Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J Biol Chem. 2007;282:1998–2010.

    Article  CAS  PubMed  Google Scholar 

  42. Shibata S, Nagase M, Yoshida S, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  CAS  PubMed  Google Scholar 

  43. Pavlov TS, Levchenko VStaruschenko A. Role of Rho GDP dissociation inhibitor alpha in control of epithelial sodium channel (ENaC)-mediated sodium reabsorption. J Biol Chem. 2014;289:28651–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tapia-Castillo A, Carvajal CA, Campino C, et al. Polymorphisms in the RAC1 gene are associated with hypertension risk factors in a Chilean pediatric population. Am J Hypertens. 2014;27:299–307.

    Article  CAS  PubMed  Google Scholar 

  45. Akilesh S, Suleiman H, Yu H, et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest. 2011;121:4127–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gupta IR, Baldwin C, Auguste D, et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet. 2013;50:330–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Gee HY, Saisawat P, Ashraf S, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123:3243–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kawarazaki W, Nagase M, Yoshida S, et al. PMC3358757; angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation. J Am Soc Nephrol. 2012;23:997–1007. This report demonstrated that salt-induced hypertension and renal injury in renin and angiotensinogen-overproducing transgenic mice is mediated by Rac1-mediated MR activation in the kidney.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kobori H, Nishiyama A, Abe Y, et al. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension. 2003;41:592–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kobori H, Nangaku M, Navar LG, et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.

    Article  CAS  PubMed  Google Scholar 

  51. Terada Y, Knepper MA. Thiazide-sensitive NaCl absorption in rat cortical collecting duct. Am J Physiol. 1990;259:F519–28.

    CAS  PubMed  Google Scholar 

  52. Tomita K, Pisano JJ, Burg MB, et al. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest. 1986;77:136–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Tomita K, Pisano JJ, Knepper MA. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest. 1985;76:132–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Leviel F, Hubner CA, Houillier P, et al. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest. 2010;120:1627–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Jacques T, Picard N, Miller RL, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013;24:1104–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Chambrey R, Kurth I, Peti-Peterdi J, et al. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A. 2013;110:7928–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Smith AN, Skaug J, Choate KA, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet. 2000;26:71–5.

    Article  CAS  PubMed  Google Scholar 

  58. Gueutin V, Vallet M, Jayat M, et al. Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest. 2013;123:4219–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Sebastian A, McSherry EMorris Jr RC. Renal potassium wasting in renal tubular acidosis (RTA): its occurrence in types 1 and 2 RTA despite sustained correction of systemic acidosis. J Clin Invest. 1971;50:667–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sebastian A, McSherry EMorris Jr RC. Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J Clin Invest. 1976;58:454–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Frische S, Kwon TH, Frokiaer J, et al. Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol. 2003;284:F584–93.

    Article  CAS  PubMed  Google Scholar 

  62. Pech V, Pham TD, Hong S, et al. Pendrin modulates ENaC function by changing luminal HCO3-. J Am Soc Nephrol. 2010;21:1928–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Kurtz TW, Al-Bander HA, Morris Jr RC. “Salt-sensitive” essential hypertension in men. Is the sodium ion alone important? N Engl J Med. 1987;317:1043–8.

    Article  CAS  PubMed  Google Scholar 

  64. Kurtz TW, Morris Jr RC. Dietary chloride as a determinant of “sodium-dependent” hypertension. Science. 1983;222:1139–41.

    Article  CAS  PubMed  Google Scholar 

  65. Schmidlin O, Tanaka M, Bollen AW, et al. Chloride-dominant salt sensitivity in the stroke-prone spontaneously hypertensive rat. Hypertension. 2005;45:867–73.

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka M, Schmidlin O, Yi SL, et al. Genetically determined chloride-sensitive hypertension and stroke. Proc Natl Acad Sci U S A. 1997;94:14748–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Whitescarver SA, Ott CE, Jackson BA, et al. Salt-sensitive hypertension: contribution of chloride. Science. 1984;223:1430–2.

    Article  CAS  PubMed  Google Scholar 

  68. Ponce-Coria J, San-Cristobal P, Kahle KT, et al. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci U S A. 2008;105:8458–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Pacheco-Alvarez D, Gamba G. WNK3 is a putative chloride-sensing kinase. Cell Physiol Biochem. 2011;28:1123–34.

    Article  CAS  PubMed  Google Scholar 

  70. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, et al. The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol. 2014.

  71. Piala AT, Moon TM, Akella R, et al. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal. 2014;7:ra41.

    Article  PubMed Central  PubMed  Google Scholar 

  72. San-Cristobal P, Pacheco-Alvarez D, Richardson C, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci U S A. 2009;106:4384–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Sato Y, Ogata E, Fujita T. Role of chloride in angiotensin II-induced salt-sensitive hypertension. Hypertension. 1991;18:622–9.

    Article  CAS  PubMed  Google Scholar 

  74. O’Neil RG, Helman SI. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am J Physiol. 1977;233:F544–58.

    PubMed  Google Scholar 

  75. Stoner LC, Burg MB, Orloff J. Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol. 1974;227:453–9.

    CAS  PubMed  Google Scholar 

  76. Wall SM, Kim YH, Stanley L, et al. NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation. Hypertension. 2004;44:982–7.

    Article  CAS  PubMed  Google Scholar 

  77. Pech V, Kim YH, Weinstein AM, et al. Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism. Am J Physiol Renal Physiol. 2007;292:F914–20.

    Article  CAS  PubMed  Google Scholar 

  78. Azroyan A, Morla L, Crambert G, et al. Regulation of pendrin by cAMP: possible involvement in beta-adrenergic-dependent NaCl retention. Am J Physiol Renal Physiol. 2012;302:F1180–7.

    Article  CAS  PubMed  Google Scholar 

  79. Verlander JW, Hassell KA, Royaux IE, et al. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension. 2003;42:356–62.

    Article  CAS  PubMed  Google Scholar 

  80. Pelzl L, Pakladok T, Pathare G, et al. DOCA sensitive pendrin expression in kidney, heart, lung and thyroid tissues. Cell Physiol Biochem. 2012;30:1491–501.

    Article  CAS  PubMed  Google Scholar 

  81. Shibata S, Rinehart J, Zhang J, et al. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 2013;18:660–71. This study revealed the unique mechanism by which renal intercalated cells regulate the activity of MR through phosphorylation, which switches NaCl transport of them and leads to distinct adaptive responses to volume depletion and hyperkalemia.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Eladari D, Chambrey R, Peti-Peterdi J. A new look at electrolyte transport in the distal tubule. Annu Rev Physiol. 2012;74:325–49.

    Article  CAS  PubMed  Google Scholar 

  83. Arroyo JP, Ronzaud C, Lagnaz D, et al. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology (Bethesda). 2011;26:115–23.

    Article  CAS  Google Scholar 

  84. Ando K, Ohtsu H, Uchida S, et al. Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:944-953. This double-blind, randomized, placebo-controlled trial showed that the addition of the selective MR blocker eplerenone to renin–angiotensin system inhibitor therapy significantly reduces albuminuria in hypertensive patients with non-diabetic chronic kidney disease.

Download references

Acknowledgments

This work was supported by Japan Society for the Promotion of Science KAKENHI (Grant Number 21229012).

Compliance with Ethics Guidelines

Conflict of Interest

Nobuhiro Ayuzawa and Toshiro Fujita declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Fujita.

Additional information

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayuzawa, N., Fujita, T. Activation of Mineralocorticoid Receptor in Salt-Sensitive Hypertension. Curr Hypertens Rep 17, 44 (2015). https://doi.org/10.1007/s11906-015-0552-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0552-2

Keywords

Navigation