Skip to main content

Advertisement

Log in

Anti-PD-1 and Anti-PD-L1 Monoclonal Antibodies in People Living with HIV and Cancer

  • Co-infections and Comorbidity (S Naggie, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) pathway are a class of anti-cancer immunotherapy agents changing treatment paradigms of many cancers that occur at higher rates in people living with HIV (PLWH) than in the general population. However, PLWH have been excluded from most of the initial clinical trials with these agents.

Recent Findings

Two recent prospective studies of anti-PD-1 agents, along with observational studies and a meta-analysis, have demonstrated acceptable safety in PLWH. Preliminary evidence indicates activity in a range of tumors and across CD4+ T cell counts.

Summary

Safety and preliminary activity data suggest monoclonal antibodies targeting PD-1 or its ligand, PD-L1, are generally appropriate for PLWH and cancers for which there are FDA-approved indications. Ongoing and future trials of anti-PD-1 and anti-PD-L1 therapy alone or in combination for HIV-associated cancers may further improve outcomes for this underserved population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sabin CA. Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy? BMC Med. 2013;11:251.

    PubMed  PubMed Central  Google Scholar 

  2. • Yarchoan R, Uldrick TS. HIV-associated cancers and related diseases. N Engl J Med. 2018;378(11):1029–41 This is a review of HIV-associated cancers for general reference.

    PubMed  PubMed Central  Google Scholar 

  3. Pantanowitz L, Dezube BJ. Evolving spectrum and incidence of non-AIDS-defining malignancies. Curr Opin HIV AIDS. 2009;4(1):27–34.

    PubMed  PubMed Central  Google Scholar 

  4. Gopal S, Patel MR, Yanik EL, Cole SR, Achenbach CJ, Napravnik S, et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natl Cancer Inst. 2013;105(16):1221–9.

    PubMed  PubMed Central  Google Scholar 

  5. Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA. Excess cancers among HIV-infected people in the United States. Natl Cancer Inst. 2015;107(4):dju503.

  6. Shiels MS, Islam JY, Rosenberg PS, Hall HI, Jacobson E, Engels EA. Projected cancer incidence rates and burden of incident cancer cases in HIV-infected adults in the United States through 2030. Ann Intern Med. 2018;168(12):866–73.

    PubMed  PubMed Central  Google Scholar 

  7. Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL, Timmerman JM, Collins GP, Ramchandren R, Cohen JB, de Boer JP, Kuruvilla J, Savage KJ, Trneny M, Shipp MA, Kato K, Sumbul A, Farsaci B, Ansell SM Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J Clin Oncol 2018;36(14):1428–1439.

  8. Gandhi L, Garassino MC. Pembrolizumab plus chemotherapy in lung cancer. N Engl J Med. 2018;379(11):e18.

    PubMed  Google Scholar 

  9. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    PubMed  CAS  Google Scholar 

  10. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Stevanovic S, Pasetto A, Helman SR, Gartner JJ, Prickett TD, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356(6334):200–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500–1.

    PubMed  PubMed Central  Google Scholar 

  13. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Thompson JA, Schneider BJ, Brahmer J, Andrews S, Armand P, Bhatia S, Budde LE, Costa L, Davies M, Dunnington D, Ernstoff MS, Frigault M, Kaffenberger BH, Lunning M, McGettigan S, McPherson J, Mohindra NA, Naidoo J, Olszanski AJ, Oluwole O, Patel SP, Pennell N, Reddy S, Ryder M, Santomasso B, Shofer S, Sosman JA, Wang Y, Weight RM, Johnson-Chilla A, Zuccarino-Catania G, Engh A NCCN guidelines insights: management of immunotherapy-related toxicities, version 1.2020. J Natl Compr Cancer Netw 2020;18(3):230–241.

  15. Puzanov I, Diab A, Abdallah K, Bingham CO 3rd, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5(1):95.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. • Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68 These are the American Society of Clinic Oncology guidelines for the management of immune-related adverse events caused by immune checkpoint inhibitors.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Byeon S, Cho JH, Jung HA, Sun JM, Lee SH, Ahn JS, et al. PD-1 inhibitors for non-small cell lung cancer patients with special issues: real-world evidence. Cancer Med. 2020;9(7):2352–62.

    PubMed  PubMed Central  Google Scholar 

  18. Gardiner D, Lalezari J, Lawitz E, DiMicco M, Ghalib R, Reddy KR, et al. A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection. PLoS One. 2013;8(5):e63818.

    PubMed  PubMed Central  Google Scholar 

  19. Barber DL, Sakai S, Kudchadkar RR, Fling SP, Day TA, Vergara JA, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med. 2019;11(475).

  20. Martinez-Maza O, Breen EC. B-cell activation and lymphoma in patients with HIV. Curr Opin Oncol. 2002;14(5):528–32.

    PubMed  CAS  Google Scholar 

  21. de Martel C, Shiels MS, Franceschi S, Simard EP, Vignat J, Hall HI, et al. Cancers attributable to infections among adults with HIV in the United States. AIDS. 2015;29(16):2173–81.

    PubMed  Google Scholar 

  22. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 2006;12(10):1198–202.

    PubMed  CAS  Google Scholar 

  23. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188(12):2205–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion. Immunology. 2010;129(4):474–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443(7109):350–4.

    PubMed  CAS  Google Scholar 

  26. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10(1):29–37.

    PubMed  CAS  Google Scholar 

  27. D’Souza M, Fontenot AP, Mack DG, Lozupone C, Dillon S, Meditz A, et al. Programmed death 1 expression on HIV-specific CD4+ T cells is driven by viral replication and associated with T cell dysfunction. J Immunol. 2007;179(3):1979–87.

    PubMed  Google Scholar 

  28. Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol. 2007;8(11):1246–54.

    PubMed  CAS  Google Scholar 

  29. Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, et al. T-cell exhaustion in HIV infection. Immunol Rev. 2019;292(1):149–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. •• Uldrick TS, Goncalves PH, Abdul-Hay M, Claeys AJ, Emu B, Ernstoff MS, et al. Assessment of the safety of pembrolizumab in patients with HIV and advanced cancer-a phase 1 study. JAMA Oncol. 2019;5(9):1332–9 These are the published results of CITN-12, the first prospective study of pembrolizumab in people living with HIV and advanced cancers.

  31. •• Gonzalez-Cao M, Moran T, Dalmau J, Garcia-Corbacho J, Bracht JWP, Bernabe R, et al. Assessment of the feasibility and safety of durvalumab for treatment of solid tumors in patients with HIV-1 infection: the phase 2 DURVAST study. JAMA Oncol. 2020; These are the published results of the DURVAST study, a phase II study of durvalumab in people living with HIV and advanced cancers.

  32. • Cook MR, Kim C. Safety and efficacy of immune checkpoint inhibitor therapy in patients with HIV infection and advanced-stage cancer: a systematic review. JAMA Oncol. 2019; This is a systematic review reporting the safety of anti-PD-1 and anti-PD-L1 therapies in people living with HIV and cancer.

  33. Spano JP, Veyri M, Gobert A, Guihot A, Perre P, Kerjouan M, et al. Immunotherapy for cancer in people living with HIV: safety with an efficacy signal from the series in real life experience. AIDS. 2019;33(11):F13–F9.

    PubMed  CAS  Google Scholar 

  34. Chang E, Sabichi AL, Kramer JR, Hartman C, Royse KE, White DL, et al. Nivolumab treatment for cancers in the HIV-infected population. J Immunother. 2018;41(8):379–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Hernández-Ramírez RU, Shiels MS, Dubrow R, Engels EA. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV. 2017;4(11):e495–504.

    PubMed  PubMed Central  Google Scholar 

  36. Clifford GM, Franceschi S. Cancer risk in HIV-infected persons: influence of CD4+ count. Future Oncol. 2009;5(5):669–78.

    PubMed  CAS  Google Scholar 

  37. Aberg JA, Gallant JE, Ghanem KG, Emmanuel P, Zingman BS, Horberg MA, et al. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2014;58(1):1–10.

    PubMed  Google Scholar 

  38. NCT02595866. Pembrolizumab in treating patients with HIV and relapsed, refractory, or disseminated malignant neoplasms. https://clinicaltrials.gov/ct2/show/NCT02595866. Accessed April 1, 2020.

  39. NCT03316274. Intra-lesional nivolumab therapy for limited cutaneous Kaposi sarcoma. https://clinicaltrials.gov/ct2/show/NCT03316274. Accessed April 1, 2020.

  40. Galanina N, Goodman AM, Cohen PR, Frampton GM, Kurzrock R. Successful treatment of HIV-associated Kaposi sarcoma with immune checkpoint blockade. Cancer Immunol Res. 2018;6(10):1129–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Lurain K, Yarchoan R, Uldrick TS. Treatment of Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Hematol Oncol Clin North Am. 2018;32(1):75–88.

    PubMed  PubMed Central  Google Scholar 

  42. Polizzotto MN, Uldrick TS, Wyvill KM, Aleman K, Marshall V, Wang V, et al. Clinical features and outcomes of patients with symptomatic Kaposi sarcoma herpesvirus (KSHV)-associated inflammation: prospective characterization of KSHV inflammatory cytokine syndrome (KICS). Clin Infect Dis. 2016;62(6):730–8.

    PubMed  CAS  Google Scholar 

  43. Ramaswami R, Lurain K, Goncalves PH, Polizzotto M, Widell A, Lindsley M, Little RF, Uldrick TS, Yarchoan R. Long-term outcomes of 58 patients with HIV and KSHV+ multicentric Castleman disease [CROI Abstract 17]. In Special issue: Abstracts from the 2019 Conference on Retroviruses and Opportunistic Infections Top Antivir Med 2019;27(suppl 1):5.

    Google Scholar 

  44. Gerard L, Berezne A, Galicier L, Meignin V, Obadia M, De Castro N, et al. Prospective study of rituximab in chemotherapy-dependent human immunodeficiency virus associated multicentric Castleman's disease: ANRS 117 CastlemaB Trial. J Clin Oncol. 2007;25(22):3350–6.

    PubMed  CAS  Google Scholar 

  45. Bower M, Powles T, Williams S, Davis TN, Atkins M, Montoto S, et al. Brief communication: rituximab in HIV-associated multicentric Castleman disease. Ann Intern Med. 2007;147(12):836–9.

    PubMed  Google Scholar 

  46. •• El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502 These are the published results of CheckMate 040 demonstrating efficacy and safety of nivolumab in advanced hepatocellular carcinoma that included participants with hepatitis B and C.

    PubMed  CAS  Google Scholar 

  47. •• Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52 These are the published results of KEYNOTE-224 demonstrating efficacy and safety of pembrolizumab in advanced hepatocellular carcinoma that included participants with hepatitis B and C.

    PubMed  Google Scholar 

  48. • Zhang X, Zhou Y, Chen C, Fang W, Cai X, Zhang X, et al. Hepatitis B virus reactivation in cancer patients with positive Hepatitis B surface antigen undergoing PD-1 inhibition. J Immunother Cancer. 2019;7(1):322 This is a retrospecitve case series of 114 patients with hepatitis B infection treated with anti-PD-(L)1 therapies demonstrating no increased risk of immune-related hepatitis and efficacy of antiviral prophylaxis to prevent hepatitis B reactivation.

  49. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents with HIV. Department of Health and Human Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/ AdultandAdolescentGL.pdf. Accessed April 20, 2020.

  50. Shah NJ, Al-Shbool G, Blackburn M, Cook M, Belouali A, Liu SV, et al. Safety and efficacy of immune checkpoint inhibitors (ICIs) in cancer patients with HIV, hepatitis B, or hepatitis C viral infection. J Immunother Cancer. 2019;7(1):353.

    PubMed  PubMed Central  Google Scholar 

  51. Kothapalli A, Khattak MA. Safety and efficacy of anti-PD-1 therapy for metastatic melanoma and non-small-cell lung cancer in patients with viral hepatitis: a case series. Melanoma Res. 2018;28(2):155–8.

    PubMed  CAS  Google Scholar 

  52. Getahun H, Gunneberg C, Granich R, Nunn P. HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis. 2010;50(Suppl 3):S201–7.

    PubMed  Google Scholar 

  53. Yu YH, Liao CC, Hsu WH, Chen HJ, Liao WC, Muo CH, et al. Increased lung cancer risk among patients with pulmonary tuberculosis: a population cohort study. J Thorac Oncol. 2011;6(1):32–7.

    PubMed  Google Scholar 

  54. Vento S, Lanzafame M. Tuberculosis and cancer: a complex and dangerous liaison. Lancet Oncol. 2011;12(6):520–2.

    PubMed  Google Scholar 

  55. Tousif S, Singh Y, Prasad DV, Sharma P, Van Kaer L, Das G. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS One. 2011;6(5):e19864.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Lazar-Molnar E, Chen B, Sweeney KA, Wang EJ, Liu W, Lin J, et al. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A. 2010;107(30):13402–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol. 2011;186(3):1598–607.

    PubMed  CAS  Google Scholar 

  58. Alvarez IB, Pasquinelli V, Jurado JO, Abbate E, Musella RM, de la Barrera SS, et al. Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis. J Infect Dis. 2010;202(4):524–32.

    PubMed  CAS  Google Scholar 

  59. • Langan EA, Graetz V, Allerheiligen J, Zillikens D, Rupp J, Terheyden P. Immune checkpoint inhibitors and tuberculosis: an old disease in a new context. Lancet Oncol. 2020;21(1):e55–65 This is a case series and review of tuberculosis reactivation in patients with cancer treated with immune checkpoint inhibitors.

    PubMed  CAS  Google Scholar 

  60. Anastasopoulou A, Ziogas DC, Samarkos M, Kirkwood JM, Gogas H. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: current evidence and clinical practice recommendations. J Immunother Cancer. 2019;7(1):239.

    PubMed  PubMed Central  Google Scholar 

  61. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):e147–e95.

    PubMed  PubMed Central  Google Scholar 

  62. Murdaca G, Negrini S, Pellecchio M, Greco M, Schiavi C, Giusti F, et al. Update upon the infection risk in patients receiving TNF alpha inhibitors. Expert Opin Drug Saf. 2019;18(3):219–29.

    PubMed  CAS  Google Scholar 

  63. Ostios-Garcia L, Faig J, Leonardi GC, Adeni AE, Subegdjo SJ, Lydon CA, et al. Safety and efficacy of PD-1 inhibitors among HIV-positive patients with non-small cell lung cancer. J Thorac Oncol. 2018;13(7):1037–42.

    PubMed  Google Scholar 

  64. Hentrich M, Schipek-Voigt K, Jager H, Schulz S, Schmid P, Stotzer O, et al. Nivolumab in HIV-related non-small-cell lung cancer. Ann Oncol. 2017;28(11):2890.

    PubMed  CAS  Google Scholar 

  65. Domblides C, Antoine M, Hamard C, Rabbe N, Rodenas A, Vieira T, et al. Nonsmall cell lung cancer from HIV-infected patients expressed programmed cell death-ligand 1 with marked inflammatory infiltrates. AIDS. 2018;32(4):461–8.

    PubMed  CAS  Google Scholar 

  66. •• Reid E, Suneja G, Ambinder RF, Ard K, Baiocchi R, Barta SK, et al. Cancer in people living with HIV, version 1.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2018;16(8):986–1017 These are the National Comprehensive Cancer Network guidelines for the treatment of cancer in people living with HIV.

    Google Scholar 

  67. Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, et al. NCCN guidelines insights: colon cancer, version 2.2018. J Natl Compr Cancer Netw. 2018;16(4):359–69.

    Google Scholar 

  68. Morris VK, Salem ME, Nimeiri H, Iqbal S, Singh P, Ciombor K, et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(4):446–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Ott PA, Piha-Paul SA, Munster P, Pishvaian MJ, van Brummelen EMJ, Cohen RB, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann Oncol. 2017;28(5):1036–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. NCT02408861. Nivolumab and ipilimumab in treating patients with HIV associated relapsed or refractory classical Hodgkin lymphoma or solid tumors that are metastatic or cannot be removed by surgery. https://clinicaltrials.gov/ct2/show/NCT02408861. Accessed April 1, 2020.

  71. Ansell SM, Minnema MC, Johnson P, Timmerman JM, Armand P, Shipp MA, et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study. J Clin Oncol. 2019;37(6):481–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019;37(17):1470–8.

    PubMed  CAS  Google Scholar 

  73. Davis DA, Shrestha P, Aisabor AI, Stream A, Galli V, Pise-Masison CA, et al. Pomalidomide increases immune surface marker expression and immune recognition of oncovirus-infected cells. Oncoimmunology. 2019;8(2):e1546544.

    PubMed  Google Scholar 

  74. Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFbeta, in advanced solid tumors. Clin Cancer Res. 2018;24(6):1287–95.

    PubMed  CAS  Google Scholar 

  75. Lind H, Gameiro SR, Jochems C, Donahue RN, Strauss J, Gulley JM, et al. Dual targeting of TGF-beta and PD-L1 via a bifunctional anti-PD-L1/TGF-betaRII agent: status of preclinical and clinical advances. J Immunother Cancer. 2020;8(1):e000433.

  76. NCT03427411. M7824 in subjects with HPV associated malignancies. https://clinicaltrials.gov/ct2/show/NCT03427411. Accessed April 1, 2020.

  77. NCT04303117. NHS-IL12 monotherapy and in combination with M7824 in advanced Kaposi sarcoma. https://clinicaltrials.gov/ct2/show/NCT04303117. Accessed April 1, 2020.

  78. Uldrick TS, Ison G, Rudek MA, Noy A, Schwartz K, Bruinooge S, et al. Modernizing clinical trial eligibility criteria: recommendations of the American Society of Clinical Oncology-friends of Cancer Research HIV Working Group. J Clin Oncol. 2017;35(33):3774–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Suneja G, Shiels MS, Melville SK, Williams MA, Rengan R, Engels EA. Disparities in the treatment and outcomes of lung cancer among HIV-infected individuals. AIDS. 2013;27(3):459–68.

    PubMed  PubMed Central  Google Scholar 

  80. Suneja G, Shiels MS, Angulo R, Copeland GE, Gonsalves L, Hakenewerth AM, et al. Cancer treatment disparities in HIV-infected individuals in the United States. J Clin Oncol. 2014;32(22):2344–50.

    PubMed  PubMed Central  Google Scholar 

  81. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–301.

    PubMed  CAS  Google Scholar 

  82. West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):924–37.

    PubMed  CAS  Google Scholar 

  83. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    PubMed  Google Scholar 

  84. Kaufman HL, Russell JS, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after >/=1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer. 2018;6(1):7.

    PubMed  PubMed Central  Google Scholar 

  85. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29.

    PubMed  CAS  Google Scholar 

  86. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    PubMed  Google Scholar 

  88. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    PubMed  PubMed Central  Google Scholar 

  89. Yau TKY, Kim T, El-Khoueiry AB, Armando S, Sangro B, Melero I, et al. Nivolumab + ipilimumab combination therapy in patients with advanced hepatocellular carcinoma: results from CheckMate 040. J Clin Oncol. 2019;37:4012.

    Google Scholar 

  90. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.

    PubMed  CAS  Google Scholar 

  91. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.

    PubMed  CAS  Google Scholar 

  92. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    PubMed  CAS  Google Scholar 

  93. Nghiem P, Bhatia S, Lipson EJ, Sharfman WH, Kudchadkar RR, Brohl AS, et al. Durable tumor regression and overall survival in patients with advanced Merkel cell carcinoma receiving pembrolizumab as first-line therapy. J Clin Oncol. 2019;37(9):693–702.

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Burtness B, Harrington KJ, Greil R, Soulieres D, Tahara M, de Castro G Jr, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–28.

    PubMed  CAS  Google Scholar 

  95. Mehra R, Seiwert TY, Gupta S, Weiss J, Gluck I, Eder JP, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br J Cancer. 2018;119(2):153–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Uldrick.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Co-infections and Comorbidity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lurain, K., Ramaswami, R., Yarchoan, R. et al. Anti-PD-1 and Anti-PD-L1 Monoclonal Antibodies in People Living with HIV and Cancer. Curr HIV/AIDS Rep 17, 547–556 (2020). https://doi.org/10.1007/s11904-020-00525-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-020-00525-y

Keywords

Navigation