Skip to main content

Advertisement

Log in

Contemporary Issues in Pregnancy (and Offspring) in the Current HIV Era

  • Complications of HIV and Antiretroviral Therapy (GA McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although antiretroviral therapy (ART) has dramatically reduced mother to child transmission of HIV, data continue to mount that infants exposed to HIV in utero but are not infected (HEU) have serious negative health consequences compared to unexposed infants. This review evaluates recent literature on contemporary issues related to complications seen in pregnant women with HIV and their offspring.

Recent Findings

Current studies show that HEU infants are at a high risk of adverse outcomes, including premature birth, poor growth, neurodevelopmental impairment, immune dysfunction, infectious morbidity, and death. Etiologies for the observed clinical events and subclinical alterations are complex and multifactorial, and the long-term consequences of many findings are yet unknown.

Summary

HEU infants have an unacceptable rate of morbidity and mortality from perinatal HIV and ART exposure, even in the modern ART era. Continual monitoring and reporting is imperative to protect this vulnerable population in our everchanging landscape of HIV treatment and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ross AC, Leong T, Avery A, Castillo-Duran M, Bonilla H, Lebrecht D, et al. Effects of in utero antiretroviral exposure on mitochondrial DNA levels, mitochondrial function and oxidative stress. HIV Med. 2012;13(2):98–106.

    CAS  PubMed  Google Scholar 

  2. McComsey GA, Kang M, Ross AC, Lebrecht D, Livingston E, Melvin A, et al. Increased mtDNA levels without change in mitochondrial enzymes in peripheral blood mononuclear cells of infants born to HIV-infected mothers on antiretroviral therapy. HIV Clin Trials. 2008;9(2):126–36.

    PubMed  PubMed Central  Google Scholar 

  3. Brinkman K, ter Hofstede HJ, Burger DM, Smeitink JA, Koopmans PP. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS. 1998;12(14):1735–44.

    CAS  PubMed  Google Scholar 

  4. Blanche S, Tardieu M, Rustin P, Slama A, Barret B, Firtion G, et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet. 1999;354(9184):1084–9.

    CAS  PubMed  Google Scholar 

  5. Barret B, Tardieu M, Rustin P, Lacroix C, Chabrol B, Desguerre I, et al. Persistent mitochondrial dysfunction in HIV-1-exposed but uninfected infants: clinical screening in a large prospective cohort. AIDS. 2003;17(12):1769–85.

    PubMed  Google Scholar 

  6. Brogly SB, Ylitalo N, Mofenson LM, Oleske J, Van Dyke R, Crain MJ, et al. In utero nucleoside reverse transcriptase inhibitor exposure and signs of possible mitochondrial dysfunction in HIV-uninfected children. AIDS. 2007;21(8):929–38.

    CAS  PubMed  Google Scholar 

  7. Ekubagewargies DT, Kassie DG, Takele WW. Maternal HIV infection and preeclampsia increased risk of low birth weight among newborns delivered at University of Gondar specialized referral hospital, Northwest Ethiopia, 2017. Ital J Pediatr. 2019;45(1):7.

    PubMed  PubMed Central  Google Scholar 

  8. Dara JS, Hanna DB, Anastos K, Wright R, Herold BC. Low birth weight in human immunodeficiency virus-exposed uninfected infants in Bronx, New York. J Pediatric Infect Dis Soc. 2018;7(2):e24–e9.

    PubMed  Google Scholar 

  9. Ramokolo V, Goga AE, Lombard C, Doherty T, Jackson DJ, Engebretsen IM. In utero ART exposure and birth and early growth outcomes among HIV-exposed uninfected infants attending immunization services: results from National PMTCT Surveillance, South Africa. Open Forum Infect Dis. 2017;4(4):ofx187.

    PubMed  PubMed Central  Google Scholar 

  10. • Stringer EM, Kendall MA, Lockman S, Campbell TB, Nielsen-Saines K, Sawe F, et al. Pregnancy outcomes among HIV-infected women who conceived on antiretroviral therapy. PloS One. 2018;13(7):e0199555. This study shows that even in the era of increasing ART use, adverse birth outcomes are still high for HEU infants.

    PubMed  PubMed Central  Google Scholar 

  11. • Dadabhai S, Gadama L, Chamanga R, Kawalazira R, Katumbi C, Makanani B, et al. Pregnancy outcomes in the era of universal antiretroviral treatment in sub-Saharan Africa (POISE Study). J Acquir Immune Defic Syndr. 2019;80(1):7–14. Although increasing ART use has improved adverse birth outcomes, the rates are still high for HEU infants.

    PubMed  Google Scholar 

  12. Zhou Z, Powell AM, Ramakrishnan V, Eckard A, Wagner C, Jiang W. Elevated systemic microbial translocation in pregnant HIV-infected women compared to HIV-uninfected women, and its inverse correlations with plasma progesterone levels. J Reprod Immunol. 2018;127:16–8.

    PubMed  PubMed Central  Google Scholar 

  13. • Snijdewind IJM, Smit C, Godfried MH, Bakker R, Nellen J, Jaddoe VWV, et al. Preconception use of cART by HIV-positive pregnant women increases the risk of infants being born small for gestational age. PloS One. 2018;13(1):e0191389. This study demonstrates that the risk of an SGA infant and PTD may increase with the use of pre-conception ART.

    PubMed  PubMed Central  Google Scholar 

  14. • Favarato G, Townsend CL, Bailey H, Peters H, Tookey PA, Taylor GP, et al. Protease inhibitors and preterm delivery: another piece in the puzzle. AIDS. 2018;32(2):243–52. This study describes an increased risk of PTD with the use of protease inhibitors.

  15. Hoffman RM, Brummel SS, Britto P, Pilotto JH, Masheto G, Aurpibul L, et al. Adverse pregnancy outcomes among women who conceive on antiretroviral therapy. Clin Infect Dis. 2019;68(2):273–9.

    PubMed  Google Scholar 

  16. Mesfin YM, Kibret KT, Taye A. Is protease inhibitors based antiretroviral therapy during pregnancy associated with an increased risk of preterm birth? Systematic review and a meta-analysis. Reprod Health. 2016;13:30.

    PubMed  PubMed Central  Google Scholar 

  17. Papp E, Mohammadi H, Loutfy MR, Yudin MH, Murphy KE, Walmsley SL, et al. HIV protease inhibitor use during pregnancy is associated with decreased progesterone levels, suggesting a potential mechanism contributing to fetal growth restriction. J Infect Dis. 2015;211(1):10–8.

    CAS  PubMed  Google Scholar 

  18. Rough K, Seage GR 3rd, Williams PL, Hernandez-Diaz S, Huo Y, Chadwick EG, et al. Birth outcomes for pregnant women with HIV using tenofovir-emtricitabine. N Engl J Med. 2018;378(17):1593–603.

    PubMed  PubMed Central  Google Scholar 

  19. Chetty T, Thorne C, Coutsoudis A. Preterm delivery and small-for-gestation outcomes in HIV-infected pregnant women on antiretroviral therapy in rural South Africa: results from a cohort study, 2010–2015. PLoS One. 2018;13(2):e0192805.

    PubMed  PubMed Central  Google Scholar 

  20. Conroy AL, McDonald CR, Gamble JL, Olwoch P, Natureeba P, Cohan D, et al. Altered angiogenesis as a common mechanism underlying preterm birth, small for gestational age, and stillbirth in women living with HIV. Am J Obstet Gynecol. 2017;217(6):684 e1–e17.

    Google Scholar 

  21. Hernandez S, Catalan-Garcia M, Moren C, Garcia-Otero L, Lopez M, Guitart-Mampel M, et al. Placental mitochondrial toxicity, oxidative stress, apoptosis, and adverse perinatal outcomes in HIV pregnancies under antiretroviral treatment containing zidovudine. J Acquir Immune Defic Syndr. 2017;75(4):e113–e9.

    CAS  PubMed  Google Scholar 

  22. Jumare J, Datong P, Osawe S, Okolo F, Mohammed S, Inyang B, et al. Compromised growth among HIV-exposed uninfected compared with unexposed children in Nigeria. Pediatr Infect Dis J. 2019;38(3):280–6.

    PubMed  Google Scholar 

  23. Rosala-Hallas A, Bartlett JW, Filteau S. Growth of HIV-exposed uninfected, compared with HIV-unexposed, Zambian children: a longitudinal analysis from infancy to school age. BMC Pediatr. 2017;17(1):80.

    PubMed  PubMed Central  Google Scholar 

  24. Baroncelli S, Galluzzo CM, Liotta G, Andreotti M, Mancinelli S, Mphwere R, et al. Immune activation and microbial translocation markers in HIV-exposed uninfected Malawian infants in the first year of life. J Trop Pediater. April 21, 2019. [Epub ahead of print].

  25. Omoni AO, Ntozini R, Evans C, Prendergast AJ, Moulton LH, Christian PS, et al. Child growth according to maternal and child HIV status in Zimbabwe. Pediatr Infect Dis J. 2017;36(9):869–76.

    PubMed  PubMed Central  Google Scholar 

  26. Msukwa MT, Estill J, Haas AD, van Oosterhout JJ, Tenthani L, Davies MA, et al. Weight gain of HIV-exposed, uninfected children born before and after introduction of the ‘Option B+’ programme in Malawi. AIDS. 2018;32(15):2201–8.

    PubMed  PubMed Central  Google Scholar 

  27. Lane CE, Bobrow EA, Ndatimana D, Ndayisaba GF, Adair LS. Determinants of growth in HIV-exposed and HIV-uninfected infants in the Kabeho Study. Matern Child Nutr. 2019;15(3):e12776.

  28. le Roux SM, Abrams EJ, Donald KA, Brittain K, Phillips TK, Nguyen KK, et al. Growth trajectories of breastfed HIV-exposed uninfected and HIV-unexposed children under conditions of universal maternal antiretroviral therapy: a prospective study. Lancet Child Adolesc Health. 2019;3(4):234–44.

    PubMed  Google Scholar 

  29. Sudfeld CR, Jacobson DL, Rueda NM, Neri D, Mendez AJ, Butler L, et al. Third trimester vitamin D status is associated with birth outcomes and linear growth of HIV-exposed uninfected infants in the United States. J Acquir Immune Defic Syndr. 2019;81(3):336–44.

    CAS  PubMed  Google Scholar 

  30. Blanche S, Tylleskar T, Peries M, Kankasa C, Engebretsen I, Meda N, et al. Growth in HIV-1-exposed but uninfected infants treated with lopinavir-ritonavir versus lamivudine: a secondary analysis of the ANRS 12174 trial. Lancet HIV. 2019;6(5):e307–e14.

    PubMed  Google Scholar 

  31. Mofenson LM, Baggaley RC, Mameletzis I. Tenofovir disoproxil fumarate safety for women and their infants during pregnancy and breastfeeding. AIDS. 2017;31(2):213–32.

    CAS  PubMed  Google Scholar 

  32. Nachega JB, Uthman OA, Mofenson LM, Anderson JR, Kanters S, Renaud F, et al. Safety of tenofovir disoproxil fumarate-based antiretroviral therapy regimens in pregnancy for HIV-infected women and their infants: a systematic review and meta-analysis. J Acquir Immune Defic Syndr. 2017;76(1):1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. le Roux SM, Jao J, Brittain K, Phillips TK, Olatunbosun S, Ronan A, et al. Tenofovir exposure in utero and linear growth in HIV-exposed, uninfected infants. AIDS. 2017;31(1):97–104.

    PubMed Central  Google Scholar 

  34. Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van Wijngaerden E, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51(8):963–72.

    PubMed  Google Scholar 

  35. Siberry GK, Jacobson DL, Kalkwarf HJ, Wu JW, DiMeglio LA, Yogev R, et al. Lower newborn bone mineral content associated with maternal use of tenofovir disoproxil fumarate during pregnancy. Clin Infect Dis. 2015;61(6):996–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jao J, Abrams EJ, Phillips T, Petro G, Zerbe A, Myer L. In utero tenofovir exposure is not associated with fetal long bone growth. Clin Infect Dis. 2016;62(12):1604–9.

    PubMed  PubMed Central  Google Scholar 

  37. •• Salvadori N, Fan B, Teeyasoontranon W, Ngo-Giang-Huong N, Phanomcheong S, Luvira A, et al. Maternal and infant bone mineral density 1 year after delivery in a randomized, controlled trial of maternal tenofovir disoproxil fumarate to prevent mother-to-child transmission of hepatitis B virus. Clin Infect Dis. 2019;69(1):144–146. In a randomized, double-blind, placebo-controlled trial of TDF use from 28 weeks gestational age to 2 months postpartum to prevent mother to child transmission transmission of hepatitis B virus, there was no significant effect of maternal TDF use on maternal or infant bone mineral density 1 year after delivery/birth.

    PubMed  Google Scholar 

  38. Kirmse B, Yao TJ, Hofherr S, Kacanek D, Williams PL, Hobbs CV, et al. Acylcarnitine profiles in HIV-exposed, uninfected neonates in the United States. AIDS Res Hum Retrovir. 2016;32(4):339–48.

    CAS  PubMed  Google Scholar 

  39. Jao J, Powis KM, Kirmse B, Yu C, Epie F, Nshom E, et al. Lower mitochondrial DNA and altered mitochondrial fuel metabolism in HIV-exposed uninfected infants in Cameroon. AIDS. 2017;31(18):2475–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jao J, Kirmse B, Yu C, Qiu Y, Powis K, Nshom E, et al. Lower preprandial insulin and altered fuel use in HIV/antiretroviral-exposed infants in Cameroon. J Clin Endocrinol Metab. 2015;100(9):3260–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brennan AT, Bonawitz R, Gill CJ, Thea DM, Kleinman M, Useem J, et al. A meta-analysis assessing all-cause mortality in HIV-exposed uninfected compared with HIV-unexposed uninfected infants and children. AIDS. 2016;30(15):2351–60.

    PubMed  Google Scholar 

  42. Kelly MS, Wirth KE, Steenhoff AP, Cunningham CK, Arscott-Mills T, Boiditswe SC, et al. Treatment failures and excess mortality among HIV-exposed, uninfected children with pneumonia. J Pediatric Infect Dis Soc. 2015;4(4):e117–26.

    PubMed  Google Scholar 

  43. von Mollendorf C, von Gottberg A, Tempia S, Meiring S, de Gouveia L, Quan V, et al. Increased risk for and mortality from invasive pneumococcal disease in HIV-exposed but uninfected infants aged <1 year in South Africa, 2009–2013. Clin Infect Dis. 2015;60(9):1346–56.

    Google Scholar 

  44. Cohen C, Moyes J, Tempia S, Groome M, Walaza S, Pretorius M, et al. Epidemiology of acute lower respiratory tract infection in HIV-exposed uninfected infants. Pediatrics. 2016;137(4): e20153272.

    PubMed  Google Scholar 

  45. Slogrove AL, Esser MM, Cotton MF, Speert DP, Kollmann TR, Singer J, et al. A prospective cohort study of common childhood infections in South African HIV-exposed uninfected and HIV-unexposed Infants. Pediatr Infect Dis J. 2017;36(2):e38–44.

    PubMed  PubMed Central  Google Scholar 

  46. le Roux DM, Nicol MP, Myer L, Vanker A, Stadler JAM, von Delft E, et al. Lower respiratory tract infections in children in a well-vaccinated South African birth cohort: spectrum of disease and risk factors. Clin Infect Dis. 2019;15;69(9):1588–1596.

  47. Powis KM, Slogrove AL, Okorafor I, Millen L, Posada R, Childs J, et al. Maternal perinatal HIV infection is associated with increased infectious morbidity in HIV-exposed uninfected infants. Pediatr Infect Dis J. 2019;38(5):500–2.

    PubMed  Google Scholar 

  48. Taron-Brocard C, Le Chenadec J, Faye A, Dollfus C, Goetghebuer T, Gajdos V, et al. Increased risk of serious bacterial infections due to maternal immunosuppression in HIV-exposed uninfected infants in a European country. Clin Infect Dis. 2014;59(9):1332–45.

  49. Zash R, Souda S, Leidner J, Ribaudo H, Binda K, Moyo S, et al. HIV-exposed children account for more than half of 24-month mortality in Botswana. BMC Pediatr. 2016;16:103.

    PubMed  PubMed Central  Google Scholar 

  50. Ajibola G, Leidner J, Mayondi GK, van Widenfelt E, Madidimalo T, Petlo C, et al. HIV exposure and formula feeding predict under-2 mortality in HIV-uninfected children, Botswana. J Pediatr. 2018;203:68–75 e2.

    PubMed  PubMed Central  Google Scholar 

  51. Le Doare K, Taylor S, Allen L, Gorringe A, Heath PT, Kampmann B, et al. Placental transfer of anti-group B Streptococcus immunoglobulin G antibody subclasses from HIV-infected and uninfected women to their uninfected infants. AIDS. 2016;30(3):471–5.

    PubMed  PubMed Central  Google Scholar 

  52. Adler C, Haelterman E, Barlow P, Marchant A, Levy J, Goetghebuer T. Severe infections in HIV-exposed uninfected infants born in a European country. PLoS One. 2015;10(8):e0135375.

    PubMed  PubMed Central  Google Scholar 

  53. Yeganeh N, Watts DH, Xu J, Kerin T, Joao EC, Pilotto JH, et al. Infectious morbidity, mortality and nutrition in HIV-exposed, uninfected, formula-fed infants: results from the HPTN 040/PACTG 1043 Trial. Pediatr Infect Dis J. 2018;37(12):1271–8.

    PubMed  PubMed Central  Google Scholar 

  54. • Goetghebuer T, Smolen KK, Adler C, Das J, McBride T, Smits G, et al. Initiation of anti-retroviral therapy before pregnancy reduces the risk of infection-related hospitalization in HIV-exposed uninfected infants born in a high-income country. Clin Infect Dis. 2019;68(7):1193–1203. This study shows that initiation of ART pre-conception reduces the risk of infectious morbidity in HEU infants.

  55. Coovadia HM, Rollins NC, Bland RM, Little K, Coutsoudis A, Bennish ML, et al. Mother-to-child transmission of HIV-1 infection during exclusive breastfeeding in the first 6 months of life: an intervention cohort study. Lancet. 2007;369(9567):1107–16.

    PubMed  Google Scholar 

  56. • Tchakoute CT, Sainani KL, Osawe S, Datong P, Kiravu A, Rosenthal KL, et al. Breastfeeding mitigates the effects of maternal HIV on infant infectious morbidity in the Option B+ era. AIDS. 2018;32(16):2383–91. This work demonstrates that exclusive breastfeeding for only 4 months had protective effects on morbidity up to 1 year.

    PubMed  Google Scholar 

  57. Flynn PM, Taha TE, Cababasay M, Fowler MG, Mofenson LM, Owor M, et al. Prevention of HIV-1 transmission through breastfeeding: efficacy and safety of maternal antiretroviral therapy versus infant nevirapine prophylaxis for duration of breastfeeding in HIV-1-infected women with high CD4 cell count (IMPAACT PROMISE): a randomized, open-label, clinical trial. J Acquir Immune Defic Syndr. 2018;77(4):383–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Abu-Raya B, Kollmann TR, Marchant A, MacGillivray DM. The immune system of HIV-exposed uninfected infants. Front Immunol. 2016;7:383.

    PubMed  PubMed Central  Google Scholar 

  59. Ruck C, Reikie BA, Marchant A, Kollmann TR, Kakkar F. Linking susceptibility to infectious diseases to immune system abnormalities among HIV-exposed uninfected infants. Front Immunol. 2016;7:310.

    PubMed  PubMed Central  Google Scholar 

  60. Jalbert E, Williamson KM, Kroehl ME, Johnson MJ, Cutland C, Madhi SA, et al. HIV-exposed uninfected infants have increased regulatory T cells that correlate with decreased T cell function. Front Immunol. 2019;10:595.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yeo KT, Embury P, Anderson T, Mungai P, Malhotra I, King C, et al. HIV, cytomegalovirus, and malaria infections during pregnancy lead to inflammation and shifts in memory B cell subsets in Kenyan neonates. J Immunol. 2019;202(5):1465–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. • Dirajlal-Fargo S, Mussi-Pinhata MM, Weinberg A, Yu Q, Cohen R, Harris DR, et al. HIV-exposed-uninfected infants have increased inflammation and monocyte activation. AIDS. 2019;33(5):845–53. This study showed that inflammatory markers and immune activation in HEU infants are not correlated with maternal levels, suggesting that their immune system abnormalities are not merely due to a pro-inflammatory in utero environment.

    CAS  PubMed  Google Scholar 

  63. Prendergast AJ, Chasekwa B, Rukobo S, Govha M, Mutasa K, Ntozini R, et al. Intestinal damage and inflammatory biomarkers in human immunodeficiency virus (HIV)-exposed and HIV-infected Zimbabwean infants. J Infect Dis. 2017;216(6):651–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McComsey GA, Kitch D, Sax PE, Tierney C, Jahed NC, Melbourne K, et al. Associations of inflammatory markers with AIDS and non-AIDS clinical events after initiation of antiretroviral therapy: AIDS clinical trials group A5224s, a substudy of ACTG A5202. J Acquir Immune Defic Syndr. 2014;65(2):167–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. •• Schoeman JC, Moutloatse GP, Harms AC, Vreeken RJ, Scherpbier HJ, Van Leeuwen L, et al. Fetal metabolic stress disrupts immune homeostasis and induces proinflammatory responses in human immunodeficiency virus type 1- and combination antiretroviral therapy-exposed infants. J Infect Dis. 2017;216(4):436–46. This work demonstrates that neonatal metabolic stress induces mitochondral dysfuction and a pro-inflammatory response in HEU infants.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams PL, Crain MJ, Yildirim C, Hazra R, Van Dyke RB, Rich K, et al. Congenital anomalies and in utero antiretroviral exposure in human immunodeficiency virus-exposed uninfected infants. JAMA Pediatr. 2015;169(1):48–55.

    PubMed  PubMed Central  Google Scholar 

  67. Uthman OA, Nachega JB, Anderson J, Kanters S, Mills EJ, Renaud F, et al. Timing of initiation of antiretroviral therapy and adverse pregnancy outcomes: a systematic review and meta-analysis. Lancet HIV. 2017;4(1):e21–30.

    PubMed  Google Scholar 

  68. Nguyen B, Foisy MM, Hughes CA. Pharmacokinetics and safety of the integrase inhibitors elvitegravir and dolutegravir in pregnant women with HIV. Ann Pharmacother. 2019;53(8):833–844.

    CAS  PubMed  Google Scholar 

  69. Rough K, Sun JW, Seage GR 3rd, Williams PL, Huybrechts KF, Bateman BT, et al. Zidovudine use in pregnancy and congenital malformations. AIDS. 2017;31(12):1733–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Veroniki AA, Antony J, Straus SE, Ashoor HM, Finkelstein Y, Khan PA, et al. Comparative safety and effectiveness of perinatal antiretroviral therapies for HIV-infected women and their children: systematic review and network meta-analysis including different study designs. PLoS One. 2018;13(6):e0198447.

    PubMed  PubMed Central  Google Scholar 

  71. Rasi V, Cortina-Borja M, Peters H, Sconza R, Thorne C. Brief report: surveillance of congenital anomalies after exposure to raltegravir or elvitegravir during pregnancy in the United Kingdom and Ireland, 2008–2018. J Acquir Immune Defic Syndr. 2019;80(3):264–8.

    PubMed  Google Scholar 

  72. Sibiude J, Le Chenadec J, Bonnet D, Tubiana R, Faye A, Dollfus C, et al. In utero exposure to zidovudine and heart anomalies in the ANRS French perinatal cohort and the nested PRIMEVA randomized trial. Clin Infect Dis. 2015;61(2):270–80.

    CAS  PubMed  Google Scholar 

  73. Vannappagari V, Albano JD, Koram N, Tilson H, Scheuerle AE, Napier MD. Prenatal exposure to zidovudine and risk for ventricular septal defects and congenital heart defects: data from the Antiretroviral Pregnancy Registry. Eur J Obstet Gynecol Reprod Biol. 2016;197:6–10.

    CAS  PubMed  Google Scholar 

  74. Lipshultz SE, Williams PL, Zeldow B, Wilkinson JD, Rich KC, van Dyke RB, et al. Cardiac effects of in-utero exposure to antiretroviral therapy in HIV-uninfected children born to HIV-infected mothers. AIDS. 2015;29(1):91–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Berard A, Sheehy O, Zhao JP, Abrahamowicz M, Loutfy M, Boucoiran I, et al. Antiretroviral combination use during pregnancy and the risk of major congenital malformations. AIDS. 2017;31(16):2267–77.

    PubMed  Google Scholar 

  76. Zash R, Jacobson DL, Diseko M, Mayondi G, Mmalane M, Essex M, et al. Comparative safety of dolutegravir-based or efavirenz-based antiretroviral treatment started during pregnancy in Botswana: an observational study. Lancet Glob Health. 2018;6(7):e804–e10.

    PubMed  PubMed Central  Google Scholar 

  77. Bornhede R, Soeria-Atmadja S, Westling K, Pettersson K, Naver L. Dolutegravir in pregnancy-effects on HIV-positive women and their infants. Eur J Clin Microbiol Infect Dis. 2018;37(3):495–500.

    CAS  PubMed  Google Scholar 

  78. •• Zash R, Makhema J, Shapiro RL. Neural-tube defects with dolutegravir treatment from the time of conception. N Engl J Med. 2018;379(10):979–81. This study reports a potential increase risk of NTD in HEU infants with the use of maternal DTG.

    PubMed  PubMed Central  Google Scholar 

  79. Zash R, Holmes L, Makhema J, Diseko M, Jacobson D, Mayondi G, et al. Surveillance for neural tube defects following antiretroviral exposure from conception. Abstract. In: 22nd International AIDS Conference. Amsterdam, Netherlands. 2018.

  80. Zamek-Gliszczynski MJ, Zhang X, Mudunuru J, Du Y, Chen JL, Taskar KS, et al. Clinical extrapolation of the effects of dolutegravir and other HIV integrase inhibitors on folate transport pathways. Drug Metab Dispos. 2019;47(8):890–898.

    CAS  PubMed  Google Scholar 

  81. Ngoma MS, Hunter JA, Harper JA, Church PT, Mumba S, Chandwe M, et al. Cognitive and language outcomes in HIV-uninfected infants exposed to combined antiretroviral therapy in utero and through extended breast-feeding. AIDS. 2014;28(Suppl 3):S323–30.

    CAS  PubMed  Google Scholar 

  82. Springer PE, Slogrove AL, Laughton B, Bettinger JA, Saunders HH, Molteno CD, et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.

    PubMed  Google Scholar 

  83. Chaudhury S, Williams PL, Mayondi GK, Leidner J, Holding P, Tepper V, et al. Neurodevelopment of HIV-exposed and HIV-unexposed uninfected children at 24 months. Pediatrics. 2017;140(4).

    PubMed  PubMed Central  Google Scholar 

  84. Boivin MJ, Maliwichi-Senganimalunje L, Ogwang LW, Kawalazira R, Sikorskii A, Familiar-Lopez I, et al. Neurodevelopmental effects of ante-partum and post-partum antiretroviral exposure in HIV-exposed and uninfected children versus HIV-unexposed and uninfected children in Uganda and Malawi: a prospective cohort study. Lancet HIV. 2019;6(8):e518–e530.

    PubMed  Google Scholar 

  85. Debeaudrap P, Bodeau-Livinec F, Pasquier E, Germanaud D, Ndiang ST, Nlend AN, et al. Neurodevelopmental outcomes in HIV-infected and uninfected African children. AIDS. 2018;32(18):2749–57.

    PubMed  Google Scholar 

  86. Jantarabenjakul W, Chonchaiya W, Puthanakit T, Theerawit T, Payapanon J, Sophonphan J, et al. Low risk of neurodevelopmental impairment among perinatally acquired HIV-infected preschool children who received early antiretroviral treatment in Thailand. J Int AIDS Soc. 2019;22(4):e25278.

    PubMed  PubMed Central  Google Scholar 

  87. Wu J, Li J, Li Y, Loo KK, Yang H, Wang Q, et al. Neurodevelopmental outcomes in young children born to HIV-positive mothers in rural Yunnan, China. Pediatr Int. 2018;60(7):618–25.

    PubMed  Google Scholar 

  88. Fasunla AJ, Ogunbosi BO, Odaibo GN, Nwaorgu OG, Taiwo B, Olaleye DO, et al. Comparison of auditory brainstem response in HIV-1 exposed and unexposed newborns and correlation with the maternal viral load and CD4+ cell counts. AIDS. 2014;28(15):2223–30.

    PubMed  PubMed Central  Google Scholar 

  89. le Roux SM, Donald KA, Kroon M, Phillips TK, Lesosky M, Esterhuyse L, et al. HIV viremia during pregnancy and neurodevelopment of HIV-exposed uninfected children in the context of universal antiretroviral therapy and breastfeeding: a prospective study. Pediatr Infect Dis J. 2019;38(1):70–5.

    PubMed  Google Scholar 

  90. Cassidy AR, Williams PL, Leidner J, Mayondi G, Ajibola G, Makhema J, et al. In utero efavirenz exposure and neurodevelopmental outcomes in HIV-exposed uninfected children in Botswana. Pediatr Infect Dis J. 2019;38(8):828–834.

    PubMed  Google Scholar 

  91. le Roux SM, Donald KA, Brittain K, Phillips TK, Zerbe A, Nguyen KK, et al. Neurodevelopment of breastfed HIV-exposed uninfected and HIV-unexposed children in South Africa. AIDS. 2018;32(13):1781–91.

    PubMed  PubMed Central  Google Scholar 

  92. • McHenry MS, McAteer CI, Oyungu E, McDonald BC, Bosma CB, Mpofu PB, et al. Neurodevelopment in young children born to HIV-infected mothers: a meta-analysis. Pediatrics. 2018;141(2):2017–888. This meta-analysis shows that HEU infants are at an increased risk of neurodevelopmental impairment.

    PubMed  PubMed Central  Google Scholar 

  93. Caniglia EC, Patel K, Huo Y, Williams PL, Kapetanovic S, Rich KC, et al. Atazanavir exposure in utero and neurodevelopment in infants: a comparative safety study. AIDS. 2016;30(8):1267–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kacanek D, Williams PL, Mayondi G, Holding P, Leidner J, Moabi K, et al. Pediatric neurodevelopmental functioning after in utero exposure to triple-NRTI vs. dual-NRTI + PI ART in a randomized trial, Botswana. J Acquir Immune Defic Syndr. 2018;79(3):e93–e100.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Budd MA, Calli K, Samson L, Bowes J, Hsieh AYY, Forbes JC, et al. Blood mitochondrial DNA content in HIV-exposed uninfected children with autism spectrum disorder. Viruses. 2018;10(2):E77.

    PubMed Central  Google Scholar 

  96. Ivy W 3rd, Nesheim SR, Paul SM, Ibrahim AR, Chan M, Niu X, et al. Cancer among children with perinatal exposure to HIV and antiretroviral medications--New Jersey, 1995–2010. J Acquir Immune Defic Syndr. 2015;70(1):62–6.

    PubMed  PubMed Central  Google Scholar 

  97. Hleyhel M, Goujon S, Delteil C, Vasiljevic A, Luzi S, Stephan JL, et al. Risk of cancer in children exposed to didanosine in utero. AIDS. 2016;30(8):1245–56.

    CAS  PubMed  Google Scholar 

  98. •• Hleyhel M, Goujon S, Sibiude J, Tubiana R, Dollfus C, Faye A, et al. Risk of cancer in children exposed to antiretroviral nucleoside analogues in utero: the French experience. Environ Mol Mutagen. 2019;60(5):404–9. This study demonstrated an increased risk of cancer in HEU who were exposed to didanosine.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison Ross Eckard.

Ethics declarations

Conflict of Interest

Dr. Kirk reports personal fees, non-financial support and other from Thera Technologies, outside the submitted work. Dr. Eckard reports personal fees and non-financial support from Theratechnologies, Inc. and Gilead Sciences, outside the submitted work. Dr. Hagood has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Complications of HIV and Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckard, A.R., Kirk, S.E. & Hagood, N.L. Contemporary Issues in Pregnancy (and Offspring) in the Current HIV Era. Curr HIV/AIDS Rep 16, 492–500 (2019). https://doi.org/10.1007/s11904-019-00465-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-019-00465-2

Keywords

Navigation