Skip to main content

Advertisement

Log in

Persistent High Mortality in Advanced HIV/TB Despite Appropriate Antiretroviral and Antitubercular Therapy: an Emerging Challenge

  • HIV Pathogenesis and Treatment (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Approximately 1.1 million, or 13 %, of all TB cases in 2013 were coinfected with HIV, and in some African countries, such as Botswana and Swaziland, 60–80 % of TB cases are coinfected with HIV. Effective therapies for both HIV and TB exist, yet patients presenting with TB and advanced HIV still experience high rates of morbidity and mortality despite initiation of both antitubercular and antiretroviral therapy (ART). Previous reviews and research have focused largely on TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) as a type of complicated outcome on ART in advanced HIV/TB, but recent data indicate that immunologic failure despite suppressive ART is associated with early mortality. In this review, we examine recent findings regarding early mortality in HIV/TB and emerging concepts in the pathophysiology of TB-IRIS, in order to provide an integrated view of factors determining outcomes in coinfected people as well as highlight key needs for future research and therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. WHO. Global TB Report 2014.

  2. Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis. 2005;191:150–8.

    Article  PubMed  Google Scholar 

  3. Lawn SD, Myer L, Edwards D, Bekker LG, Wood R. Short-term and long-term risk of tuberculosis associated with CD4 cell recovery during antiretroviral therapy in South Africa. AIDS. 2009;23:1717–25.

    Article  PubMed Central  PubMed  Google Scholar 

  4. WHO. The stop TB strategy: building on and enhancing DOTS to meet the TB-related millenium development goals. In: Organization, W. H., ed. 2006.

  5. Ravimohan S, Tamuhla N, Steenhoff AP, Letlhogile R, Nfanyana K, Bellamy SL, et al. Immunological profiling of tuberculosis-associated immune reconstitution inflammatory syndrome and non-immune reconstitution inflammatory syndrome death in HIV-infected adults with pulmonary tuberculosis starting antiretroviral therapy: a prospective observational cohort study. Lancet Infect Dis. 2015. doi:10.1016/S1473-3099(15)70008-3. In this study patients with advanced HIV/TB who were starting ART were grouped into 3 possible outcomes within 6 months after ART initiation: paradoxical TB-IRIS, non-IRIS death, and controls. Patients with TB-IRIS had lower, while those who died had higher, pre-ART levels of multiple biomarkers of immune activation. At week 4 of ART, both IRIS patients those who died had increasing levels of selected markers of immune activation, but those who died had remarkably little CD4 or pathogen-specific cellular immune recovery.

  6. Havlir DV, Kendall MA, Ive P, Kumwenda J, Swindells S, Qasba SS, et al. Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med. 2011;365:1482–91. This randomized trial compared earlier ART (within 2 weeks after the initiation of treatment for tuberculosis) with later ART (between 8 and 12 weeks after the initiation of treatment for tuberculosis) in HIV-1 infected patients with CD4 counts < 250 cells/μL. Among patients with CD4 counts < 50 mm/μL, early ART initiation was associated with decreased risk of AIDS progression and death.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Blanc FX, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E, et al. Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med. 2011;365:1471–81. In this randomized clinical trial HIV-infected patients were randomized to receive early (2 weeks after beginning tuberculosis treatment) or later ART initiation (8 weeks after). Patients randomized to earlier ART had improved survival compared to those randomized to receive later ART.

    Article  CAS  PubMed  Google Scholar 

  8. Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray AL, et al. Integration of antiretroviral therapy with tuberculosis treatment. N Engl J Med. 2011;365:1492–501. In this randomized clinical trial HIV-infected patients were randomized to receive ART during versus after TB treatment completion. Patients randomized to start ART during TB treatment had improved survival.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lawn SD, Myer L, Bekker LG, Wood R. Tuberculosis-associated immune reconstitution disease: incidence, risk factors and impact in an antiretroviral treatment service in South Africa. AIDS. 2007;21:335–41.

    Article  PubMed  Google Scholar 

  10. Naidoo K, Yende-Zuma N, Padayatchi N, Jithoo N, Nair G, Bamber S, et al. The immune reconstitution inflammatory syndrome after antiretroviral therapy initiation in patients with tuberculosis: findings from the SAPiT trial. Ann Intern Med. 2012;157:313–24. In this sub-study of a randomized clinical trial, HIV-infected patients who started on ART early during TB therapy had an increased risk of TB-IRIS.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Laureillard D, Marcy O, Madec Y, Chea S, Chan S, Borand L, et al. Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome after early initiation of antiretroviral therapy in a randomized clinical trial. AIDS. 2013;27:2577–86. In this sub-study of another randomized clinical trial, HIV-infected patients who started on ART early during TB therapy had an increased risk of TB-IRIS.

    Article  CAS  PubMed  Google Scholar 

  12. Luetkemeyer AF, Kendall MA, Nyirenda M, Wu X, Ive P, Benson CA, et al. (2013) Tuberculosis immune reconstitution inflammatory syndrome in A5221 STRIDE: timing, severity and implications for HIV-TB programs. J Acquir Immune Defic Syndr. Similar to the studies of Laureillard and Naidoo et al., above, in this sub-study of a randomized clinical trial, HIV-infected patients who started on ART early during TB therapy had an increased risk of TB-IRIS.

  13. Lai RP, Nakiwala JK, Meintjes G, Wilkinson RJ. The immunopathogenesis of the HIV tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol. 2013;43:1995–2002. This is a useful review of TB-IRIS immunology.

    Article  CAS  PubMed  Google Scholar 

  14. Meintjes G, Rabie H, Wilkinson RJ, Cotton MF. Tuberculosis-associated immune reconstitution inflammatory syndrome and unmasking of tuberculosis by antiretroviral therapy. Clin Chest Med. 2009;30:797–810. x.

    Article  PubMed  Google Scholar 

  15. Leone S, Nicastri E, Giglio S, Narciso P, Ippolito G, Acone N. Immune reconstitution inflammatory syndrome associated with Mycobacterium tuberculosis infection: a systematic review. Int J Infect Dis. 2010;14:e283–91.

    Article  PubMed  Google Scholar 

  16. Meintjes G, Lawn SD, Scano F, Maartens G, French MA, Worodria W, et al. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis. 2008;8:516–23.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Muller M, Wandel S, Colebunders R, Attia S, Furrer H, Egger M. Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10:251–61.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178:2249–54.

    Article  CAS  PubMed  Google Scholar 

  19. Geldmacher C, Ngwenyama N, Schuetz A, Petrovas C, Reither K, Heeregrave EJ, et al. Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med. 2010;207:2869–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Antonucci G, Girardi E, Raviglione MC, Ippolito G. Risk factors for tuberculosis in HIV-infected persons. A prospective cohort study. The Gruppo Italiano di Studio Tubercolosi e AIDS (GISTA). JAMA. 1995;274:143–8.

    Article  CAS  PubMed  Google Scholar 

  21. Holmes CB, Wood R, Badri M, Zilber S, Wang B, Maartens G, et al. CD4 decline and incidence of opportunistic infections in Cape Town, South Africa: implications for prophylaxis and treatment. J Acquir Immune Defic Syndr. 2006;42:464–9.

    Article  PubMed  Google Scholar 

  22. Reid MJ, Shah NS. Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings. Lancet Infect Dis. 2009;9:173–84.

    Article  PubMed  Google Scholar 

  23. Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12:581–91.

    Article  CAS  PubMed  Google Scholar 

  24. Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondaneche MC, Tuerlinckx D, Blanche S, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guerin infection and a sibling with clinical tuberculosis. J Clin Invest. 1997;100:2658–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Keane J. Tumor necrosis factor blockers and reactivation of latent tuberculosis. Clin Infect Dis. 2004;39:300–2.

    Article  CAS  PubMed  Google Scholar 

  26. Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O’Rie T, et al. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol. 2011;187:2222–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McIlleron H, Watkins ML, Folb PI, Ress SR, Wilkinson RJ. Rifampin levels, interferon-gamma release and outcome in complicated pulmonary tuberculosis. Tuberculosis (Edinb). 2007;87:557–64.

    Article  CAS  Google Scholar 

  28. Jones-Lopez EC, Okwera A, Mayanja-Kizza H, Ellner JJ, Mugerwa RD, Whalen CC. Delayed-type hypersensitivity skin test reactivity and survival in HIV-infected patients in Uganda: should anergy be a criterion to start antiretroviral therapy in low-income countries? Am J Trop Med Hyg. 2006;74:154–61.

    PubMed  Google Scholar 

  29. Lancioni CL, Mahan CS, Johnson DF, Walusimbi M, Chervenak KA, Nalukwago S, et al. Effects of antiretroviral therapy on immune function of HIV-infected adults with pulmonary tuberculosis and CD4+ >350 cells/mm3. J Infect Dis. 2011;203:992–1001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bourgarit A, Carcelain G, Martinez V, Lascoux C, Delcey V, Gicquel B, et al. Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients. AIDS. 2006;20:F1–7.

    Article  CAS  PubMed  Google Scholar 

  31. Schluger NW, Perez D, Liu YM. Reconstitution of immune responses to tuberculosis in patients with HIV infection who receive antiretroviral therapy. Chest. 2002;122:597–602.

    Article  PubMed  Google Scholar 

  32. Lawn SD, Badri M, Wood R. Tuberculosis among HIV-infected patients receiving HAART: long term incidence and risk factors in a South African cohort. AIDS. 2005;19:2109–16.

    Article  PubMed  Google Scholar 

  33. WHO. WHO policy on collaborative TB/HIV activities: guidelines for national programmes and other stakeholders. In: Organization, W. H., ed. 2012.

  34. Hoffmann CJ, Charalambous S, Thio CL, Martin DJ, Pemba L, Fielding KL, et al. Hepatotoxicity in an African antiretroviral therapy cohort: the effect of tuberculosis and hepatitis B. AIDS. 2007;21:1301–8.

    Article  PubMed  Google Scholar 

  35. McIlleron H, Meintjes G, Burman WJ, Maartens G. Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis. 2007;196 Suppl 1:S63–75.

    Article  PubMed  Google Scholar 

  36. Simmonds FA. The causes of death in pulmonary tuberculosis. Tubercle. 1963;44:230–5.

    Article  CAS  PubMed  Google Scholar 

  37. Anderson JP. Deaths from pulmonary tuberculosis in Leicester during 1956 and 1957. Tubercle. 1959;40:99–105.

    Article  CAS  PubMed  Google Scholar 

  38. Ansari NA, Kombe AH, Kenyon TA, Hone NM, Tappero JW, Nyirenda ST, et al. Pathology and causes of death in a group of 128 predominantly HIV-positive patients in Botswana, 1997–1998. Int J Tuberc Lung Dis. 2002;6:55–63.

    CAS  PubMed  Google Scholar 

  39. Wong EB, Omar T, Setlhako GJ, Osih R, Feldman C, Murdoch DM, et al. Causes of death on antiretroviral therapy: a post-mortem study from South Africa. PLoS One. 2012;7:e47542. This study demonstrates causes of death in patients on ART by autopsy studies, and indicates that many advanced HIV/TB patients who are on TB treatment still die of disseminated TB. It also provides rare data on autopsies in patients who died early on ART.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Greenberg AE, Lucas S, Tossou O, Coulibaly IM, Coulibaly D, Kassim S, et al. Autopsy-proven causes of death in HIV-infected patients treated for tuberculosis in Abidjan, Cote d’Ivoire. AIDS. 1995;9:1251–4.

    Article  CAS  PubMed  Google Scholar 

  41. Martinson NA, Karstaedt A, Venter WD, Omar T, King P, Mbengo T, et al. Causes of death in hospitalized adults with a premortem diagnosis of tuberculosis: an autopsy study. AIDS. 2007;21:2043–50.

    Article  PubMed  Google Scholar 

  42. Wiktor SZ, Sassan-Morokro M, Grant AD, Abouya L, Karon JM, Maurice C, et al. Efficacy of trimethoprim-sulphamethoxazole prophylaxis to decrease morbidity and mortality in HIV-1-infected patients with tuberculosis in Abidjan, Cote d’Ivoire: a randomised controlled trial. Lancet. 1999;353:1469–75.

    Article  CAS  PubMed  Google Scholar 

  43. Anglaret X, Chene G, Attia A, Toure S, Lafont S, Combe P, et al. Early chemoprophylaxis with trimethoprim-sulphamethoxazole for HIV-1-infected adults in Abidjan, Cote d’Ivoire: a randomised trial. Cotrimo-CI Study Group. Lancet. 1999;353:1463–8.

    Article  CAS  PubMed  Google Scholar 

  44. Nunn AJ, Mwaba P, Chintu C, Mwinga A, Darbyshire JH, Zumla A. Role of co-trimoxazole prophylaxis in reducing mortality in HIV infected adults being treated for tuberculosis: randomised clinical trial. BMJ. 2008;337:a257.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Chene G, Sterne JA, May M, Costagliola D, Ledergerber B, Phillips AN, et al. Prognostic importance of initial response in HIV-1 infected patients starting potent antiretroviral therapy: analysis of prospective studies. Lancet. 2003;362:679–86.

    Article  CAS  PubMed  Google Scholar 

  46. Gupta A, Nadkarni G, Yang WT, Chandrasekhar A, Gupte N, Bisson GP, et al. Early mortality in adults initiating antiretroviral therapy (ART) in low- and middle-income countries (LMIC): a systematic review and meta-analysis. PLoS One. 2011;6:e28691.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Barber DL, Andrade BB, Sereti I, Sher A. Immune reconstitution inflammatory syndrome: the trouble with immunity when you had none. Nat Rev Microbiol. 2012;10:150–6. This review proposes that high antigen loads interact with severe immunodeficiency to increase the risk of IRIS.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Murdoch DM, Venter WD, Feldman C, Van Rie A. Incidence and risk factors for the immune reconstitution inflammatory syndrome in HIV patients in South Africa: a prospective study. AIDS. 2008;22:601–10.

    Article  CAS  PubMed  Google Scholar 

  49. Conesa-Botella A, Loembé MM, Manabe YC, Worodria W, Mazakpwe D, Luzinda K et al. Urinary lipoarabinomannan as predictor for the tuberculosis immune reconstitution inflammatory syndrome. J Acquir Immune Defic Syndr. 2011;58(5):463–8.

  50. Bourgarit A, Carcelain G, Samri A, Parizot C, Lafaurie M, Abgrall S, et al. Tuberculosis-associated immune restoration syndrome in HIV-1-infected patients involves tuberculin-specific CD4 Th1 cells and KIR-negative gammadelta T cells. J Immunol. 2009;183:3915–23.

    Article  CAS  PubMed  Google Scholar 

  51. Meintjes G, Wilkinson KA, Rangaka MX, Skolimowska K, van Veen K, Abrahams M, et al. Type 1 helper T cells and FoxP3-positive T cells in HIV-tuberculosis-associated immune reconstitution inflammatory syndrome. Am J Respir Crit Care Med. 2008;178:1083–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pean P, Nerrienet E, Madec Y, Borand L, Laureillard D, Fernandez M, et al. Natural killer cell degranulation capacity predicts early onset of the immune reconstitution inflammatory syndrome (IRIS) in HIV-infected patients with tuberculosis. Blood. 2012;119:3315–20.

    Article  CAS  PubMed  Google Scholar 

  53. Conradie F, Foulkes AS, Ive P, Yin X, Roussos K, Glencross DK, et al. Natural killer cell activation distinguishes Mycobacterium tuberculosis-mediated immune reconstitution syndrome from chronic HIV and HIV/MTB coinfection. J Acquir Immune Defic Syndr. 2011;58:309–18.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Andrade BB, Singh A, Narendran G, Schechter ME, Nayak K, Subramanian S, et al. Mycobacterial antigen driven activation of CD14++CD16- monocytes is a predictor of tuberculosis-associated immune reconstitution inflammatory syndrome. PLoS Pathog. 2014;10(10):e1004433.

  55. Sierra-Madero JG, Ellenberg SS, Rassool MS, Tierney A, Belaunzarán-Zamudio PF, López-Martínez A et al. Effect of the CCR5 antagonist maraviroc on the occurrence of immune reconstitution inflammatory syndrome in HIV (CADIRIS): a double-blind, randomised, placebo-controlled trial. The Lancet HIV. 2014;1(2):e60–e67.

  56. Meintjes G, Wilkinson RJ, Morroni C, Pepper DJ, Rebe K, Rangaka MX, et al. Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS. 2010;24:2381–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Critchley JA, Young F, Orton L, Garner P. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:223–37. This is the only trial of corticosteroids in adults with HIV/TB-IRIS. The study showed improved surrogate outcomes in patients randomized to prednisone.

    Article  CAS  PubMed  Google Scholar 

  58. Guo S, Zhao J. Immunotherapy for tuberculosis: what’s the better choice? Front Biosci (Landmark Ed). 2012;17:2684–90.

    Article  Google Scholar 

  59. Churchyard GJ, Kaplan G, Fallows D, Wallis RS, Onyebujoh P, Rook GA. Advances in immunotherapy for tuberculosis treatment. Clin Chest Med. 2009;30:769–82. ix.

    Article  PubMed  Google Scholar 

  60. Meintjes G, Skolimowska KH, Wilkinson KA, Matthews K, Tadokera R, Conesa-Botella A, et al. Corticosteroid-modulated immune activation in the tuberculosis immune reconstitution inflammatory syndrome. Am J Respir Crit Care Med. 2012;186:369–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bucy RP, Hockett RD, Derdeyn CA, Saag MS, Squires K, Sillers M, et al. Initial increase in blood CD4(+) lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J Clin Invest. 1999;103:1391–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Lederman MM, Calabrese L, Funderburg NT, Clagett B, Medvik K, Bonilla H, et al. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J Infect Dis. 2011;204:1217–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Boulware DR, Hullsiek KH, Puronen CE, Rupert A, Baker JV, French MA, et al. Higher levels of CRP, D-dimer, IL-6, and hyaluronic acid before initiation of antiretroviral therapy (ART) are associated with increased risk of AIDS or death. J Infect Dis. 2011;203:1637–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kalayjian RC, Machekano RN, Rizk N, Robbins GK, Gandhi RT, Rodriguez BA, et al. Pretreatment levels of soluble cellular receptors and interleukin-6 are associated with HIV disease progression in subjects treated with highly active antiretroviral therapy. J Infect Dis. 2010;201:1796–805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Zeng M, Southern PJ, Reilly CS, Beilman GJ, Chipman JG, Schacker TW, et al. Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Goicoechea M, Smith DM, Liu L, May S, Tenorio AR, Ignacio CC, et al. Determinants of CD4+ T cell recovery during suppressive antiretroviral therapy: association of immune activation, T cell maturation markers, and cellular HIV-1 DNA. J Infect Dis. 2006;194:29–37.

    Article  PubMed  Google Scholar 

  67. Koo MS, Manca C, Yang G, O’Brien P, Sung N, Tsenova L, et al. Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS One. 2011;6:e17091.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Subbian S, Tsenova L, O’Brien P, Yang G, Koo MS, Peixoto B, et al. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs. PLoS Pathog. 2011;7:e1002262.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Subbian S, Tsenova L, O’Brien P, Yang G, Koo MS, Peixoto B, et al. Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology. Am J Pathol. 2011;179:289–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ivanyi J, Zumla A. Nonsteroidal antiinflammatory drugs for adjunctive tuberculosis treatment. J Infect Dis. 2013;208:185–8.

    Article  PubMed  Google Scholar 

  71. Mayanja-Kizza H, Jones-Lopez E, Okwera A, Wallis RS, Ellner JJ, Mugerwa RD, et al. Immunoadjuvant prednisolone therapy for HIV-associated tuberculosis: a phase 2 clinical trial in Uganda. J Infect Dis. 2005;191:856–65.

    Article  CAS  PubMed  Google Scholar 

  72. Dawson R, Condos R, Tse D, Huie ML, Ress S, Tseng CH, et al. Immunomodulation with recombinant interferon-gamma1b in pulmonary tuberculosis. PLoS One. 2009;4:e6984.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Fry TJ, Connick E, Falloon J, Lederman MM, Liewehr DJ, Spritzler J, et al. A potential role for interleukin-7 in T-cell homeostasis. Blood. 2001;97:2983–90.

    Article  CAS  PubMed  Google Scholar 

  74. Sereti I, Dunham RM, Spritzler J, Aga E, Proschan MA, Medvik K, et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood. 2009;113:6304–14. This study indicated that rhIL-7 improves T cell numbers in patients with HIV.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Levy Y, Sereti I, Tambussi G, Routy JP, Lelievre JD, Delfraissy JF, et al. Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis. 2012;55:291–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Younas M, Hue S, Lacabaratz C, Guguin A, Wiedemann A, Surenaud M, et al. IL-7 modulates in vitro and in vivo human memory T regulatory cell functions through the CD39/ATP axis. J Immunol. 2013;191:3161–8.

    Article  CAS  PubMed  Google Scholar 

  77. Mahnke YD, Greenwald JH, DerSimonian R, Roby G, Antonelli LR, Sher A, et al. Selective expansion of polyfunctional pathogen-specific CD4(+) T cells in HIV-1-infected patients with immune reconstitution inflammatory syndrome. Blood. 2012;119:3105–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Antonelli LR, Mahnke Y, Hodge JN, Porter BO, Barber DL, DerSimonian R, et al. Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood. 2010;116:3818–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Andrade BB, Singh A, Narendran G, Schechter ME, Nayak K, Subramanian S, et al. Mycobacterial antigen driven activation of CD14++CD16− monocytes is a predictor of tuberculosis-associated immune reconstitution inflammatory syndrome. PLoS Pathog. 2014;10:e1004433.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Goovaerts O, Jennes W, Massinga-Loembe M, Ceulemans A, Worodria W, Mayanja-Kizza H, et al. LPS-binding protein and IL-6 mark paradoxical tuberculosis immune reconstitution inflammatory syndrome in HIV patients. PLoS One. 2013;8:e81856.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Jarvis JN, Meintjes G, Rebe K, Williams GN, Bicanic T, Williams A, et al. Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS. 2012;26:1105–13. This study is important because it directly demonstrates the safety and efficacy of cytokine therapy in patients with advanced HIV infection and a severe opportunistic infection.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Gao XF, Yang ZW, Li J. Adjunctive therapy with interferon gamma for the treatment of pulmonary tuberculosis: a systematic review. Int J Infect Dis. 2011;15(9):e594–e600.

  83. Johnson JL, Ssekasanvu E, Okwera A, Mayanja H, Hirsch CS, Nakibali JG, et al. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am J Respir Crit Care Med. 2003;168:185–91.

    Article  PubMed  Google Scholar 

  84. Maeurer MJ, Trinder P, Hommel G, et al. Interleukin-7 or Interleukin-15 enhances survival of mycobacterium tuberculosis-Infected Mice. In: Kozel TR, ed. Infect Immun. 2000;68(5):2962–70.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Gregory Bisson declares a grant from NIAID, is a consultant to Pfizer and Celgene, and has provided expert testimony for Levaquin Litigation Fund, LLC.

Nicola Zetola declares that he has no conflict of interest.

Ronald Collman declares multiple grants from NIH.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Bisson.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisson, G.P., Zetola, N. & Collman, R.G. Persistent High Mortality in Advanced HIV/TB Despite Appropriate Antiretroviral and Antitubercular Therapy: an Emerging Challenge. Curr HIV/AIDS Rep 12, 107–116 (2015). https://doi.org/10.1007/s11904-015-0256-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-015-0256-x

Keywords

Navigation