Skip to main content

Advertisement

Log in

Secondary Sclerosing Cholangiopathies

  • Review
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review synthesizes recent evidence of secondary sclerosing cholangiopathies, specifically IgG4-sclerosing cholangiopathy, post-transplant cholangiopathies, COVID-19-induced cholangiopathy, and sclerosing cholangiopathies due to critical illness.

Recent Findings

The clinical diagnostic criteria and practice guidelines have been updated for IgG4-sclerosing cholangiopathy. Cholangiopathy associated with livers donated after circulatory death has been further characterized, though incidence is expected to decline significantly as the use of normothermic perfusion technologies expands. COVID-19 sclerosing cholangiopathy, a likely novel entity similar in pathogenesity to sclerosing cholangiopathy of critical illness, has been identified during the SARS-CoV-2 pandemic.

Summary

The evaluation of progressive cholestasis requires consideration of rarer forms of secondary cholangiopathies based on clinical context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Broomé U, Olsson R, Lööf L, Bodemar G, Hultcrantz R, Danielsson A, et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut. 1996;38(4):610–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Valle MB, Björnsson E, Lindkvist B. Mortality and cancer risk related to primary sclerosing cholangitis in a Swedish population-based cohort. Liver Int Off J Int Assoc Study Liver. 2012;32(3):441–8.

    Google Scholar 

  3. Ruemmele P, Hofstaedter F, Gelbmann CM. Secondary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol. 2009;6(5):287–95.

    Article  PubMed  Google Scholar 

  4. Ludwig DR, Anderson MA, Itani M, Sharbidre KG, Lalwani N, Paspulati RM. Secondary sclerosing cholangitis: mimics of primary sclerosing cholangitis. Abdom Radiol N Y. 2023;48(1):151–65.

    Article  Google Scholar 

  5. Möller K, Braden B, Culver EL, Jenssen C, Zadeh ES, Alhyari A, et al. Secondary sclerosing cholangitis and IgG4-sclerosing cholangitis — a review of cholangiographic and ultrasound imaging. Endosc Ultrasound. 2022;12(2):181–99.

    PubMed Central  Google Scholar 

  6. Gudnason HO, Björnsson ES. Secondary sclerosing cholangitis in critically ill patients: current perspectives. Clin Exp Gastroenterol. 2017;23(10):105–11.

    Article  Google Scholar 

  7. Trauner M, Fickert P, Wagner M. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis. 2007;27(1):77–98.

    Article  CAS  PubMed  Google Scholar 

  8. Leonhardt S, Veltzke-Schlieker W, Adler A, Schott E, Hetzer R, Schaffartzik W, et al. Trigger mechanisms of secondary sclerosing cholangitis in critically ill patients. Crit Care. 2015;19(1):131.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beuers U, Hohenester S, de Buy Wenniger LJM, Kremer AE, Jansen PLM, Elferink RPJO. The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatol Baltim Md. 2010;52(4):1489–96.

    Article  CAS  Google Scholar 

  10. Tanaka A. IgG4-related sclerosing cholangitis and primary sclerosing cholangitis. Gut Liver. 2019;13(3):300–7.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  11. Okazaki K, Uchida K, Ikeura T, Takaoka M. Current concept and diagnosis of IgG4-related disease in the hepato-bilio-pancreatic system. J Gastroenterol. 2013;48(3):303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brooling J, Leal R. Secondary sclerosing cholangitis: a review of recent literature. Curr Gastroenterol Rep. 2017;19(9):44.

    Article  PubMed  Google Scholar 

  13. Ghazale A, Chari ST, Zhang L, Smyrk TC, Takahashi N, Levy MJ, et al. Immunoglobulin G4-associated cholangitis: clinical profile and response to therapy. Gastroenterology. 2008;134(3):706–15.

    Article  PubMed  Google Scholar 

  14. Tanaka A, Mori M, Kubota K, Naitoh I, Nakazawa T, Takikawa H, et al. Epidemiological features of immunoglobulin G4-related sclerosing cholangitis in Japan. J Hepato-Biliary-Pancreat Sci. 2020;27(9):598–603.

    Article  Google Scholar 

  15. Liu Q, Li B, Li Y, Wei Y, Huang B, Liang J, et al. Altered faecal microbiome and metabolome in IgG4-related sclerosing cholangitis and primary sclerosing cholangitis. Gut. 2022;71(5):899–909.

    Article  PubMed  Google Scholar 

  16. Nakazawa T, Ohara H, Sano H, Ando T, Joh T. Schematic classification of sclerosing cholangitis with autoimmune pancreatitis by cholangiography. Pancreas. 2006;32(2):229.

    Article  PubMed  Google Scholar 

  17. • Nakazawa T, Kamisawa T, Okazaki K, Kawa S, Tazuma S, Nishino T, et al. Clinical diagnostic criteria for IgG4-related sclerosing cholangitis 2020: (Revision of the clinical diagnostic criteria for IgG4-related sclerosing cholangitis 2012). J Hepato-Biliary-Pancreat Sci. 2021;28(3):235–42 The authors have revised the 2012 clinical diagnostic criteria for IgG4-related disease.

    Article  Google Scholar 

  18. Manganis CD, Chapman RW, Culver EL. Review of primary sclerosing cholangitis with increased IgG4 levels. World J Gastroenterol. 2020;26(23):3126–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moon SH, Kim MH, Lee JK, Baek S, Woo YS, Cho DH, et al. Development of a scoring system for differentiating IgG4-related sclerosing cholangitis from primary sclerosing cholangitis. J Gastroenterol. 2017;52(4):483–93.

    Article  CAS  PubMed  Google Scholar 

  20. Ohara H, Okazaki K, Tsubouchi H, Inui K, Kawa S, Kamisawa T, et al. Clinical diagnostic criteria of IgG4-related sclerosing cholangitis 2012. J Hepato-Biliary-Pancreat Sci. 2012;19(5):536–42.

    Article  Google Scholar 

  21. Kamisawa T, Okazaki K. Diagnosis and treatment of IgG4-related disease. Curr Top Microbiol Immunol. 2017;401:19–33.

    PubMed  Google Scholar 

  22. Shirakashi M, Yoshifuji H, Kodama Y, Chiba T, Yamamoto M, Takahashi H, et al. Factors in glucocorticoid regimens associated with treatment response and relapses of IgG4-related disease: a multicentre study. Sci Rep. 2018;8(1):10262.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carruthers MN, Topazian MD, Khosroshahi A, Witzig TE, Wallace ZS, Hart PA, et al. Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis. 2015;74(6):1171–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ebbo M, Grados A, Samson M, Groh M, Loundou A, Rigolet A, et al. Long-term efficacy and safety of rituximab in IgG4-related disease: data from a French nationwide study of thirty-three patients. PLoS ONE. 2017;12(9):e0183844.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pretter PC, Orons PD, Zajko AB. The bile duct in liver transplantation. Semin Roentgenol. 1997;32(3):202–14.

    Article  CAS  PubMed  Google Scholar 

  26. Mourad MM, Liossis C, Gunson BK, Mergental H, Isaac J, Muiesan P, et al. Etiology and management of hepatic artery thrombosis after adult liver transplantation. Liver Transpl. 2014;20(6):713–23.

    Article  PubMed  Google Scholar 

  27. Piardi T, Lhuaire M, Bruno O, Memeo R, Pessaux P, Kianmanesh R, et al. Vascular complications following liver transplantation: a literature review of advances in 2015. World J Hepatol. 2016;8(1):36–57.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abbasoglu O, Levy MF, Vodapally MS, Goldstein RM, Husberg BS, Gonwa TA, et al. Hepatic artery stenosis after liver transplantation–incidence, presentation, treatment, and long term outcome. Transplantation. 1997;63(2):250–5.

    Article  CAS  PubMed  Google Scholar 

  29. Saad WEA, Davies MG, Sahler L, Lee DE, Patel NC, Kitanosono T, et al. Hepatic artery stenosis in liver transplant recipients: primary treatment with percutaneous transluminal angioplasty. J Vasc Interv Radiol. 2005;16(6):795–805.

    Article  PubMed  Google Scholar 

  30. Naidu S, Alzubaidi S, Knuttinen G, Patel I, Fleck A, Sweeney J, et al. Treatment of hepatic artery stenosis in liver transplant patients using drug-eluting versus bare-metal stents. J Clin Med. 2021;10(3):380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamby BA, Ramirez DE, Loss GE, Bazan HA, Smith TA, Bluth E, et al. Endovascular treatment of hepatic artery stenosis after liver transplantation. J Vasc Surg. 2013;57(4):1067–72.

    Article  PubMed  Google Scholar 

  32. Croome KP, Taner CB. The changing landscapes in DCD liver transplantation. Curr Transplant Rep. 2020;7(3):194–204.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Croome KP, Mathur AK, Aqel B, Yang L, Taner T, Heimbach JK, et al. Classification of distinct patterns of ischemic cholangiopathy following DCD liver transplantation: distinct clinical courses and long-term outcomes from a multicenter cohort. Transplantation. 2022;106(6):1206–14 These authors performed a multi-center study to classify DCD cholangiopathy into four main subtypes and describe the clinical implications of each subtype.

    Article  PubMed  Google Scholar 

  34. de Vries Y, von Meijenfeldt FA, Porte RJ. Post-transplant cholangiopathy: classification, pathogenesis, and preventive strategies. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4 Pt B):1507–15.

    Article  PubMed  Google Scholar 

  35. Mourad MM, Algarni A, Liossis C, Bramhall SR. Aetiology and risk factors of ischaemic cholangiopathy after liver transplantation. World J Gastroenterol WJG. 2014;20(20):6159–69.

    Article  PubMed  Google Scholar 

  36. Op den Dries S, Sutton ME, Lisman T, Porte RJ. Protection of bile ducts in liver transplantation: looking beyond ischemia. Transplantation. 2011;92(4):373–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kwong AJ, Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, et al. OPTN/SRTR 2019 Annual Data Report: Liver. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2021;21(Suppl 2):208–315.

    Article  Google Scholar 

  38. Notices of implemented actions - OPTN [Internet]. [cited 2023 Sep 16]. Available from: https://optn.transplant.hrsa.gov/policies-bylaws/notices-of-implemented-actions/ New MELD-exception criteria were enlisted for DCD-cholangiopathy in an effort to encourage use of DCD livers.

  39. Mehta S, Trotter JF. Policy corner: ischemic cholangiopathy associated with donation after cardiac death. Liver Transpl. 2023;29(6):653.

    Article  PubMed  Google Scholar 

  40. Halldorson JB, Rayhill S, Bakthavatsalam R, Montenovo M, Dick A, Perkins J, et al. Serum alkaline phosphatase and bilirubin are early surrogate markers for ischemic cholangiopathy and graft failure in liver transplantation from donation after circulatory death. Transplant Proc. 2015;47(2):465–8.

    Article  CAS  PubMed  Google Scholar 

  41. Schlegel A, Mergental H, Fondevila C, Porte RJ, Friend PJ, Dutkowski P. Machine perfusion of the liver and bioengineering. J Hepatol. 2023;78(6):1181–98.

    Article  CAS  PubMed  Google Scholar 

  42. Markmann JF, Abouljoud MS, Ghobrial RM, Bhati CS, Pelletier SJ, Lu AD, et al. Impact of portable normothermic blood-based machine perfusion on outcomes of liver transplant: the OCS Liver PROTECT randomized clinical trial. JAMA Surg. 2022;157(3):189–98.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hessheimer AJ, de la Rosa G, Gastaca M, Ruíz P, Otero A, Gómez M, et al. Abdominal normothermic regional perfusion in controlled donation after circulatory determination of death liver transplantation: outcomes and risk factors for graft loss. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2022;22(4):1169–81.

    Article  Google Scholar 

  44. van Rijn R, Schurink IJ, de Vries Y, van den Berg AP, Cortes Cerisuelo M, Darwish Murad S, et al. Hypothermic machine perfusion in liver transplantation — a randomized trial. N Engl J Med. 2021;384(15):1391–401.

    Article  PubMed  Google Scholar 

  45. Aqel B, Nguyen M, Reddy K, Moss A, Hewitt W, Jadlowiec C, et al. Normothermic mechanical perfusion (NMP) significantly reduces the risk of ischemic cholangiopathy in recipients of donation after cardiac death (DCD) liver transplants [Internet]. San Diego: American Transplant Congress; 2023. p. 2023. https://doi.org/10.1016/j.ajt.2023.05.013.

    Book  Google Scholar 

  46. Jayasekera CR, Barnhill M, Chascsa DM, Aqel B, Carey EJ, Vargas HE. Fenofibrate improves outcomes in ischemic cholangiopathy after liver transplantation. Gastroenterology. 2023;164(7):1321-1323.e2.

    Article  CAS  PubMed  Google Scholar 

  47. Bhogal HK, Sanyal AJ. The molecular pathogenesis of cholestasis in sepsis. Front Biosci Elite Ed. 2013;1(5):87–96.

    Article  Google Scholar 

  48. Leonhardt S, Veltzke-Schlieker W, Adler A, Schott E, Eurich D, Faber W, et al. Secondary sclerosing cholangitis in critically Ill patients: clinical presentation, cholangiographic features, natural history, and outcome: a series of 16 cases. Medicine (Baltimore). 2015;94(49): e2188.

    Article  PubMed  Google Scholar 

  49. Horvatits T, Drolz A, Trauner M, Fuhrmann V. Liver injury and failure in critical illness. Hepatol Baltim Md. 2019;70(6):2204–15.

    Article  Google Scholar 

  50. Martins P, Verdelho MM. Secondary sclerosing cholangitis in critically Ill patients: an underdiagnosed entity. GE Port J Gastroenterol. 2020;27(2):103–14.

    Article  PubMed  Google Scholar 

  51. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L. Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med. 1997;25(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  52. Lin T, Qu K, Xu X, Tian M, Gao J, Zhang C, et al. Sclerosing cholangitis in critically ill patients: an important and easily ignored problem based on a German experience. Front Med. 2014;8(1):118–26.

    Article  PubMed  Google Scholar 

  53. Fujita Y. Effects of PEEP on splanchnic hemodynamics and blood volume. Acta Anaesthesiol Scand. 1993;37(4):427–31.

    Article  CAS  PubMed  Google Scholar 

  54. Kirchner GI, Scherer MN, Obed A, Ruemmele P, Wiest R, Froh M, et al. Outcome of patients with ischemic-like cholangiopathy with secondary sclerosing cholangitis after liver transplantation. Scand J Gastroenterol. 2011;46(4):471–8.

    Article  PubMed  Google Scholar 

  55. Kirchner GI, Rümmele P. Update on sclerosing cholangitis in critically Ill patients. Viszeralmedizin. 2015;31(3):178–84.

    PubMed  PubMed Central  Google Scholar 

  56. Kulaksiz H, Heuberger D, Engler S, Stiehl A. Poor outcome in progressive sclerosing cholangitis after septic shock. Endoscopy. 2008;40(3):214–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kirchner GI, Hartl J, Schnitzbauer A, Scherer MN, Farkas S, Baier L, et al. Ischemic-like cholangiopathy with secondary sclerosing cholangitis: a good indication for liver transplantation?: 1929. Transplantation. 2012;94(10S):419.

    Article  Google Scholar 

  58. Shih AR, Hatipoglu D, Wilechansky R, Goiffon R, Deshpande V, Misdraji J, et al. Persistent cholestatic injury and secondary sclerosing cholangitis in COVID-19 patients. Arch Pathol Lab Med. 2022;146(10):1184–93.

    Article  CAS  PubMed  Google Scholar 

  59. Lagana SM, Kudose S, Iuga AC, Lee MJ, Fazlollahi L, Remotti HE, et al. Hepatic pathology in patients dying of COVID-19: a series of 40 cases including clinical, histologic, and virologic data. Mod Pathol. 2020;33(11):2147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet Lond Engl. 2020;395(10223):507–13.

    Article  CAS  Google Scholar 

  61. Faruqui S, Okoli FC, Olsen SK, Feldman DM, Kalia HS, Park JS, et al. Cholangiopathy after severe COVID-19: clinical features and prognostic implications. Am J Gastroenterol. 2021;116(7):1414–25 These authors have delineated the clinical features and prognostic implications of COVID-19 cholangiopathy.

    Article  CAS  PubMed  Google Scholar 

  62. Roth NC, Kim A, Vitkovski T, Xia J, Ramirez G, Bernstein D, et al. Post-COVID-19 cholangiopathy: a novel entity. Am J Gastroenterol. 2021;116(5):1077–82.

    Article  PubMed  Google Scholar 

  63. Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection [Internet]. bioRxiv; 2020 [cited 2023 Sep 10]. p. 2020.02.03.931766. Available from:https://www.biorxiv.org/content/10.1101/2020.02.03.931766v1

  64. Nardo AD, Schneeweiss-Gleixner M, Bakail M, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021;41(1):20–32.

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Liu S, Liu H, Li W, Lin F, Jiang L, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73(4):807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sonzogni A, Previtali G, Seghezzi M, Grazia Alessio M, Gianatti A, Licini L, et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int Off J Int Assoc Study Liver. 2020;40(9):2110–6.

    CAS  Google Scholar 

  67. Hartl L, Haslinger K, Angerer M, Semmler G, Schneeweiss-Gleixner M, Jachs M, et al. Progressive cholestasis and associated sclerosing cholangitis are frequent complications of COVID-19 in patients with chronic liver disease. Hepatol Baltim Md. 2022. https://doi.org/10.1002/hep.32582.

    Article  Google Scholar 

  68. Bütikofer S, Lenggenhager D, Wendel Garcia PD, Maggio EM, Haberecker M, Reiner CS, et al. Secondary sclerosing cholangitis as cause of persistent jaundice in patients with severe COVID-19. Liver Int. 2021;41(10):2404–17.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Keta-Cov research group. Electronic address: Vincent.mallet@aphp.fr, Keta-Cov research group. Intravenous ketamine and progressive cholangiopathy in COVID-19 patients. J Hepatol. 2021;74(5):1243–4.

    Article  Google Scholar 

  70. Meersseman P, Blondeel J, De Vlieger G, van der Merwe S, Monbaliu D. Secondary sclerosing cholangitis: an emerging complication in critically ill COVID-19 patients. Intensive Care Med. 2021;47(9):1037–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Onuiri J, Fiel MI. COVID Cholangiopathy can occur despite mild COVID Am J Clin Pathol. 2022;158(Supplement_1):S128-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MB and CJ both wrote and reviewed the manuscript.

Corresponding author

Correspondence to Michele S. Barnhill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

Michele Barnhill, MD, and Channa Jayasekera, MD, MSc, have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnhill, M.S., Jayasekera, C. Secondary Sclerosing Cholangiopathies. Curr Hepatology Rep 23, 145–152 (2024). https://doi.org/10.1007/s11901-024-00646-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-024-00646-7

Keywords

Navigation