Skip to main content
Log in

Risk of Liver Cancer in MASLD: Role of Genetic Risk Scores

  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the fastest growing cause of hepatocellular carcinoma (HCC). Several risk factors have been identified, including older age, male gender, Hispanic ethnicity, metabolic syndrome components, certain medications, tobacco and alcohol use. Genetic polymorphisms, such as PNPLA3, TM6SF2, and MBOAT7 variants, have been associated with increased risk of MASLD-related HCC. More recently, genetic risk scores (GRS) based on single-nucleotide polymorphisms (SNPs) have shown potential in predicting HCC risk. So far, there are a few studies that analyzed the impact of GRS in MASLD-related HCC, but they seem very promising in stratifying patients according to the risk of developing HCC. Although current GRS models have limitations, in the future, with a better understanding of these SNPs, and the discovery of other variants, they could integrate more comprehensive risk prediction models, including various data, such as etiology, fibrosis grade, serum markers, comorbidities and genetics, which will improve HCC risk prediction in MASLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021;184(10):2537–64. https://doi.org/10.1016/j.cell.2021.04.015.

    Article  PubMed  CAS  Google Scholar 

  2. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73(1):202–9. https://doi.org/10.1016/j.jhep.2020.03.039.

    Article  PubMed  Google Scholar 

  3. Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023. https://doi.org/10.1097/HEP.0000000000000520.

  4. Eslam M, Sanyal AJ, George J, Panel IC. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999-2014.e1. https://doi.org/10.1053/j.gastro.2019.11.312.

    Article  CAS  Google Scholar 

  5. Perazzo H, Pacheco AG, Griep RH, Collaborators. Changing from NAFLD through MAFLD to MASLD: Similar prevalence and risk factors in a large Brazilian cohort. J Hepatol. 2023. https://doi.org/10.1016/j.jhep.2023.08.025.

  6. Yang A, Zhu X, Zhang L, Ding Y. Transitioning from NAFLD to MAFLD and MASLD: Consistent prevalence and risk factors in a Chinese cohort. J Hepatol. 2023. https://doi.org/10.1016/j.jhep.2023.09.033.

    Article  PubMed  Google Scholar 

  7. Ioannou GN, Green P, Lowy E, Mun EJ, Berry K. Differences in hepatocellular carcinoma risk, predictors and trends over time according to etiology of cirrhosis. PLoS ONE. 2018;13(9): e0204412. https://doi.org/10.1371/journal.pone.0204412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kanwal F, Kramer JR, Mapakshi S, Natarajan Y, Chayanupatkul M, Richardson PA, et al. Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology. 2018;155(6):1828-37.e2. https://doi.org/10.1053/j.gastro.2018.08.024.

    Article  PubMed  Google Scholar 

  9. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33. https://doi.org/10.1002/hep.29466.

    Article  PubMed  CAS  Google Scholar 

  10. Prabhakar T, Kaushal K, Prasad M, Gupta E, Sood A, Jain AK, et al. Etiologic fractions in patients of hepatocellular carcinoma in India with and without a background of cirrhosis: a multi-centric study. Hepatol Int. 2023. https://doi.org/10.1007/s12072-023-10498-w.

  11. Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77(6):1598–606. https://doi.org/10.1016/j.jhep.2022.08.021.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 2022;76(3):681–93. https://doi.org/10.1016/j.jhep.2021.11.018.

    Article  PubMed  Google Scholar 

  13. Wolf E, Rich NE, Marrero JA, Parikh ND, Singal AG. Use of Hepatocellular Carcinoma Surveillance in Patients With Cirrhosis: A Systematic Review and Meta-Analysis. Hepatology. 2021;73(2):713–25. https://doi.org/10.1002/hep.31309.

    Article  PubMed  Google Scholar 

  14. Ioannou GN. Epidemiology and risk-stratification of NAFLD-associated HCC. J Hepatol. 2021;75(6):1476–84. https://doi.org/10.1016/j.jhep.2021.08.012.

    Article  PubMed  Google Scholar 

  15. Simon TG, Roelstraete B, Sharma R, Khalili H, Hagström H, Ludvigsson JF. Cancer Risk in Patients With Biopsy-Confirmed Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study. Hepatology. 2021;74(5):2410–23. https://doi.org/10.1002/hep.31845.

    Article  PubMed  CAS  Google Scholar 

  16. Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol. 2020;72(2):250–61. https://doi.org/10.1016/j.jhep.2019.08.025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–80. https://doi.org/10.1002/hep.29086.

    Article  PubMed  Google Scholar 

  18. Liver. EAftSot. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.2018.03.019.

  19. Mittal S, El-Serag HB, Sada YH, Kanwal F, Duan Z, Temple S, et al. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans is Associated With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2016;14(1):124-31.e1. https://doi.org/10.1016/j.cgh.2015.07.019.

    Article  PubMed  CAS  Google Scholar 

  20. Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. Int J Environ Res Public Health. 2021;18(10). https://doi.org/10.3390/ijerph18105227.

  21. Shah PA, Patil R, Harrison SA. NAFLD-related hepatocellular carcinoma: The growing challenge. Hepatology. 2023;77(1):323–38. https://doi.org/10.1002/hep.32542.

    Article  PubMed  CAS  Google Scholar 

  22. Simon TG, King LY, Chong DQ, Nguyen LH, Ma Y, VoPham T, et al. Diabetes, metabolic comorbidities, and risk of hepatocellular carcinoma: Results from two prospective cohort studies. Hepatology. 2018;67(5):1797–806. https://doi.org/10.1002/hep.29660.

    Article  PubMed  CAS  Google Scholar 

  23. Yang JD, Ahmed F, Mara KC, Addissie BD, Allen AM, Gores GJ, et al. Diabetes Is Associated With Increased Risk of Hepatocellular Carcinoma in Patients With Cirrhosis From Nonalcoholic Fatty Liver Disease. Hepatology. 2020;71(3):907–16. https://doi.org/10.1002/hep.30858.

    Article  PubMed  CAS  Google Scholar 

  24. Alexander M, Loomis AK, van der Lei J, Duarte-Salles T, Prieto-Alhambra D, Ansell D, et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med. 2019;17(1):95. https://doi.org/10.1186/s12916-019-1321-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nasereldin DS, White LJ, Hodge DO, Roberts LR, Patel T, Antwi SO. Association of metabolic health phenotypes, obesity, and hepatocellular carcinoma risk. Dig Liver Dis. 2022;54(7):964–72. https://doi.org/10.1016/j.dld.2021.12.002.

    Article  PubMed  CAS  Google Scholar 

  26. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108(6):881–91; quiz 92. https://doi.org/10.1038/ajg.2013.5.

  27. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology. 2013;144(2):323–32. https://doi.org/10.1053/j.gastro.2012.10.005.

    Article  PubMed  CAS  Google Scholar 

  28. Abdel-Rahman O, Helbling D, Schöb O, Eltobgy M, Mohamed H, Schmidt J, et al. Cigarette smoking as a risk factor for the development of and mortality from hepatocellular carcinoma: An updated systematic review of 81 epidemiological studies. J Evid Based Med. 2017;10(4):245–54. https://doi.org/10.1111/jebm.12270.

    Article  PubMed  Google Scholar 

  29. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2021;73 Suppl 1(Suppl 1):4–13. https://doi.org/10.1002/hep.31288.

  30. Kimura T, Tanaka N, Fujimori N, Sugiura A, Yamazaki T, Joshita S, et al. Mild drinking habit is a risk factor for hepatocarcinogenesis in non-alcoholic fatty liver disease with advanced fibrosis. World J Gastroenterol. 2018;24(13):1440–50. https://doi.org/10.3748/wjg.v24.i13.1440.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Åberg F, Puukka P, Salomaa V, Männistö S, Lundqvist A, Valsta L, et al. Risks of Light and Moderate Alcohol Use in Fatty Liver Disease: Follow-Up of Population Cohorts. Hepatology. 2020;71(3):835–48. https://doi.org/10.1002/hep.30864.

    Article  PubMed  CAS  Google Scholar 

  32. Uffelmann E, Huang QQ, Munung NS, De Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nature Reviews Methods Primers. 2021;1(1):59.

    Article  CAS  Google Scholar 

  33. Seko Y, Yamaguchi K, Itoh Y. The genetic backgrounds in nonalcoholic fatty liver disease. Clin J Gastroenterol. 2018;11(2):97–102. https://doi.org/10.1007/s12328-018-0841-9.

    Article  PubMed  Google Scholar 

  34. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol. 2018;68(2):268–79. https://doi.org/10.1016/j.jhep.2017.09.003.

    Article  PubMed  CAS  Google Scholar 

  35. Kawaguchi T, Shima T, Mizuno M, Mitsumoto Y, Umemura A, Kanbara Y, et al. Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers. PloS one. 2018;13(1). https://doi.org/10.1371/journal.pone.0185490.

  36. Ahmad MI, Khan MU, Kodali S, Shetty A, Bell SM, Victor D. Hepatocellular Carcinoma Due to Nonalcoholic Fatty Liver Disease: Current Concepts and Future Challenges. J Hepatocell Carcinoma. 2022;9:477–96. https://doi.org/10.2147/JHC.S344559.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Singal AG, Manjunath H, Yopp AC, Beg MS, Marrero JA, Gopal P, et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol. 2014;109(3):325–34. https://doi.org/10.1038/ajg.2013.476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dongiovanni P, Donati B, Fares R, Lombardi R, Mancina RM, Romeo S, et al. PNPLA3 I148M polymorphism and progressive liver disease. World J Gastroenterol. 2013;19(41):6969–78. https://doi.org/10.3748/wjg.v19.i41.6969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD, Dufour JF, et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014;61(1):75–81. https://doi.org/10.1016/j.jhep.2014.02.030.

    Article  PubMed  CAS  Google Scholar 

  40. Grimaudo S, Pipitone RM, Pennisi G, Celsa C, Cammà C, Di Marco V, et al. Association Between PNPLA3 rs738409 C>G Variant and Liver-Related Outcomes in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2020;18(4):935-44.e3. https://doi.org/10.1016/j.cgh.2019.08.011.

    Article  PubMed  CAS  Google Scholar 

  41. Burza MA, Pirazzi C, Maglio C, Sjöholm K, Mancina RM, Svensson PA, et al. PNPLA3 I148M (rs738409) genetic variant is associated with hepatocellular carcinoma in obese individuals. Dig Liver Dis. 2012;44(12):1037–41. https://doi.org/10.1016/j.dld.2012.05.006.

    Article  PubMed  CAS  Google Scholar 

  42. Mahdessian H, Taxiarchis A, Popov S, Silveira A, Franco-Cereceda A, Hamsten A, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A. 2014;111(24):8913–8. https://doi.org/10.1073/pnas.1323785111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu Y-L, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JBS, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5(1):1–6. https://doi.org/10.1038/ncomms5309.

    Article  CAS  Google Scholar 

  44. Luukkonen PK, Zhou Y, Hyötyläinen T, Leivonen M, Arola J, Orho-Melander M, et al. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol. 2016;65(6):1263–5. https://doi.org/10.1016/j.jhep.2016.07.045.

    Article  PubMed  CAS  Google Scholar 

  45. Donati B, Dongiovanni P, Romeo S, Meroni M, McCain M, Miele L, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep. 2017;7(1):4492. https://doi.org/10.1038/s41598-017-04991-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tan H-L, Zain SM, Mohamed R, Rampal S, Chin K-F, Basu RC, et al. Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J Gastroenterol. 2013;49(6):1056–64. https://doi.org/10.1007/s00535-013-0850-x.

    Article  PubMed  CAS  Google Scholar 

  47. Llovet JM, Willoughby CE, Singal AG, Greten TF, Heikenwälder M, El-Serag HB et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat Rev Gastroenterol Hepatol. 2023:1–17. https://doi.org/10.1038/s41575-023-00754-7.

  48. Ioannou GN, Green P, Kerr KF, Berry K. Models estimating risk of hepatocellular carcinoma in patients with alcohol or NAFLD-related cirrhosis for risk stratification. J Hepatol. 2019;71(3):523–33. https://doi.org/10.1016/j.jhep.2019.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sharma SA, Kowgier M, Hansen BE, Brouwer WP, Maan R, Wong D, et al. Toronto HCC risk index: A validated scoring system to predict 10-year risk of HCC in patients with cirrhosis. J Hepatol. 2017. https://doi.org/10.1016/j.jhep.2017.07.033.

    Article  PubMed  Google Scholar 

  50. Marot A, Henrion J, Knebel JF, Deltenre P. Individualized prediction of hepatocellular carcinoma occurrence in a large cohort of patients with cirrhosis. J Hepatol. 2018;69(4):975–6. https://doi.org/10.1016/j.jhep.2018.06.007.

    Article  PubMed  Google Scholar 

  51. Johnson PJ, Pirrie SJ, Cox TF, Berhane S, Teng M, Palmer D, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomarkers Prev. 2014;23(1):144–53. https://doi.org/10.1158/1055-9965.EPI-13-0870.

    Article  PubMed  CAS  Google Scholar 

  52. Best J, Bechmann LP, Sowa JP, Sydor S, Dechêne A, Pflanz K, et al. GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients With Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol. 2020;18(3):728-35.e4. https://doi.org/10.1016/j.cgh.2019.11.012.

    Article  PubMed  CAS  Google Scholar 

  53. Guan MC, Zhang SY, Ding Q, Li N, Fu TT, Zhang GX et al. The Performance of GALAD Score for Diagnosing Hepatocellular Carcinoma in Patients with Chronic Liver Diseases: A Systematic Review and Meta-Analysis. J Clin Med. 2023;12(3). https://doi.org/10.3390/jcm12030949.

  54. Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12(1):1–11. https://doi.org/10.1186/s13073-020-00742-5.

    Article  Google Scholar 

  55. Lewis ACF, Green RC. Polygenic risk scores in the clinic: new perspectives needed on familiar ethical issues. Genome Medicine. 2021;13(1):1–10. https://doi.org/10.1186/s13073-021-00829-7.

    Article  Google Scholar 

  56. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat Med. 2021;27(11):1876–84. https://doi.org/10.1038/s41591-021-01549-6.

  57. Pelusi S, Baselli G, Pietrelli A, Dongiovanni P, Donati B, McCain MV, et al. Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Sci Rep. 2019;9(1):3682. https://doi.org/10.1038/s41598-019-39998-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bianco C, Jamialahmadi O, Pelusi S, Baselli G, Dongiovanni P, Zanoni I, et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J Hepatol. 2021;74(4):775–82. https://doi.org/10.1016/j.jhep.2020.11.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Thomas CE, Diergaarde B, Kuipers AL, Adibi JJ, Luu HN, Chang X, et al. NAFLD polygenic risk score and risk of hepatocellular carcinoma in an East Asian population. Hepatol Commun. 2022;6(9):2310–21. https://doi.org/10.1002/hep4.1976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gellert-Kristensen H, Richardson TG, Davey Smith G, Nordestgaard BG, Tybjaerg-Hansen A, Stender S. Combined Effect of PNPLA3, TM6SF2, and HSD17B13 Variants on Risk of Cirrhosis and Hepatocellular Carcinoma in the General Population. Hepatology. 2020;72(3):845–56. https://doi.org/10.1002/hep.31238.

    Article  PubMed  CAS  Google Scholar 

  61. Wang Y, Tsuo K, Kanai M, Neale BM, Martin AR. Challenges and Opportunities for Developing More Generalizable Polygenic Risk Scores. Annu Rev Biomed Data Sci. 2022;5:293–320. https://doi.org/10.1146/annurev-biodatasci-111721-074830.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Slunecka JL, van der Zee MD, Beck JJ, Johnson BN, Finnicum CT, Pool R, et al. Implementation and implications for polygenic risk scores in healthcare. Hum Genomics. 2021;15(1):46. https://doi.org/10.1186/s40246-021-00339-y.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kawka M, Dawidziuk A, Jiao LR, Gall TMH. Artificial intelligence in the detection, characterisation and prediction of hepatocellular carcinoma: a narrative review. Transl Gastroenterol Hepatol. 2022;7:41. https://doi.org/10.21037/tgh-20-242.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harris PS, Hansen RM, Gray ME, Massoud OI, McGuire BM, Shoreibah MG. Hepatocellular carcinoma surveillance: An evidence-based approach. World J Gastroenterol. 2019;25(13):1550–9. https://doi.org/10.3748/wjg.v25.i13.1550.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hassan MM, Kaseb A, Etzel CJ, El-Serag H, Spitz MR, Chang P, et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol Carcinog. 2013;52 Suppl 1(0):E139–47. https://doi.org/10.1002/mc.22057.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Claudia Macali and Isabel wrote the manuscript and Jose Tadeu and Claudia Oliveira revised it.

Corresponding author

Correspondence to Claudia P. Oliveira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. The authors did not receive support from any organization for the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maccali, C., Pereira, I.V.A., Stefano, J.T. et al. Risk of Liver Cancer in MASLD: Role of Genetic Risk Scores. Curr Hepatology Rep 22, 228–237 (2023). https://doi.org/10.1007/s11901-023-00623-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-023-00623-6

Keywords

Navigation