Skip to main content
Log in

Implications of Circulating Hepatitis B Virus RNA Levels in Assessment of Response to Antiviral Therapy

  • Hepatitis B (J Lim, Section Editor)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Treatment of chronic hepatitis B infection with nucleos(t)ide analogues induces a significant inhibition of HBV DNA titer. However, reduction of viral DNA load is not an ideal marker to predict sustainable antiviral effect. Circulating HBV RNA has been, recently, explored as a novel biomarker for monitoring viral persistence and the progression of liver disease. This review aims to discuss the characteristics of circulating HBV RNA and to evaluate its applications in hepatitis B infection management.

Recent Findings

HBV RNA is readily detectable in the blood of infected patients. Circulating viral RNA is originated from polyadenylated pgRNA that is packaged in, and secreted with, either naked core particles or virion-like particles. Serum pgRNA could be presented in full length or multiple-spliced forms. The amount and composition of pgRNA in blood can be used to gauge intrahepatic cccDNA transcriptional activity, predict drug response, and reflect liver histologic changes.

Summary

Circulating HBV pgRNA is exclusively transcribed from cccDNA in the liver. As an alternative to liver biopsy, non-invasive measurement of serum HBV RNA in patients receiving antiviral treatment might provide clinicians a safe and effective tool to oversee therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Liang TJ, Block TM, McMahon BJ, Ghany MG, Urban S, Guo JT, et al. Present and future therapies of hepatitis B: from discovery to cure. Hepatology. 2015;62(6):1893–908.

    PubMed  PubMed Central  Google Scholar 

  2. Lok AS, McMahon BJ, Brown RS Jr, Wong JB, Ahmed AT, Farah W, et al. Antiviral therapy for chronic hepatitis B viral infection in adults: a systematic review and meta-analysis. Hepatology. 2016;63(1):284–306.

    CAS  PubMed  Google Scholar 

  3. Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH, et al. AASLD guidelines for treatment of chronic hepatitis B. Hepatology. 2016;63(1):261–83.

    PubMed  Google Scholar 

  4. Janssen HL, van Zonneveld M, Senturk H, Zeuzem S, Akarca US, Cakaloglu Y, et al. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet. 2005;365(9454):123–9.

    CAS  PubMed  Google Scholar 

  5. Perrillo R. Benefits and risks of interferon therapy for hepatitis B. Hepatology. 2009;49(5 Suppl):S103–11.

    CAS  PubMed  Google Scholar 

  6. • Ning X, Nguyen D, Mentzer L, Adams C, Lee H, Ashley R, et al. Secretion of genome-free hepatitis B virus--single strand blocking model for virion morphogenesis of para-retrovirus. PLoS Pathog. 2011;7(9):e1002255 Demonstrated that viral DNA synthesis was not required for HBV virion morphogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. •• Bai L, Zhang X, Li W, Wu M, Liu J, Kozlowski M, et al. Extracellular HBV RNAs are heterogeneous in length and circulate as virions and capsid-antibody-complexes in chronic hepatitis B patients. J Virol. 2018. https://doi.org/10.1128/JVI.00798-18. Most recent paper revealed that HBV RNA in circulation could be derived from naked core particles.

  8. Ning X, Luckenbaugh L, Liu K, Bruss V, Sureau C, Hu J. Common and distinct capsid and surface protein requirements for secretion of complete and genome-free hepatitis B virions. J Virol. 2018;92(14).

  9. Mak LY, Wong DK, Cheung KS, Seto WK, Lai CL, Yuen MF. Review article: hepatitis B core-related antigen (HBcrAg): an emerging marker for chronic hepatitis B virus infection. Aliment Pharmacol Ther. 2018;47(1):43–54.

    CAS  PubMed  Google Scholar 

  10. Wooddell CI, Yuen MF, Chan HL, Gish RG, Locarnini SA, Chavez D, et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci Transl Med. 2017;9(409).

  11. Tsuge M, Murakami E, Imamura M, Abe H, Miki D, Hiraga N, et al. Serum HBV RNA and HBeAg are useful markers for the safe discontinuation of nucleotide analogue treatments in chronic hepatitis B patients. J Gastroenterol. 2013;48(10):1188–204.

    CAS  PubMed  Google Scholar 

  12. Block TM, Zhou T, Anbarasan N, Gish R. Evolving new strategies for the medical management of chronic hepatitis B virus infection. Gastroenterol Hepatol (N Y). 2016;12(11):679–89.

    Google Scholar 

  13. Huang YW, Takahashi S, Tsuge M, Chen CL, Wang TC, Abe H, et al. On-treatment low serum HBV RNA level predicts initial virological response in chronic hepatitis B patients receiving nucleoside analogue therapy. Antivir Ther. 2015;20(4):369–75.

    CAS  PubMed  Google Scholar 

  14. • Wang J, Shen T, Huang X, Kumar GR, Chen X, Zeng Z, et al. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol. 2016;65(4):700–10 Serum HBV pgRNA was present in virion like particle and the HBV DNA/RNA ratio was reversed after NUC.

    CAS  PubMed  Google Scholar 

  15. •• Wang J, Yu Y, Li G, Shen C, Meng Z, Zheng J, et al. Relationship between serum HBV-RNA levels and intrahepatic viral as well as histologic activity markers in entecavir-treated patients. J Hepatol. 2018;68(1):16–24 Solid evidence shown to connect HBV RNA level with cccDNA transcriptional activity and liver histologic changes.

    CAS  Google Scholar 

  16. Jones SA, Boregowda R, Spratt TE, Hu J. In vitro epsilon RNA-dependent protein priming activity of human hepatitis B virus polymerase. J Virol. 2012;86(9):5134–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones SA, Clark DN, Cao F, Tavis JE, Hu J. Comparative analysis of hepatitis B virus polymerase sequences required for viral RNA binding, RNA packaging, and protein priming. J Virol. 2014;88(3):1564–72.

    PubMed  PubMed Central  Google Scholar 

  18. Patel N, White SJ, Thompson RF, Bingham R, Weiss EU, Maskell DP, et al. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat Microbiol. 2017;2:17098.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirsch RC, Lavine JE, Chang LJ, Varmus HE, Ganem D. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription. Nature. 1990;344(6266):552–5.

    CAS  PubMed  Google Scholar 

  20. Jones SA, Hu J. Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention. Emerg Microbes Infect. 2013;2(9):e56.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeong JK, Yoon GS, Ryu WS. Evidence that the 5′-end cap structure is essential for encapsidation of hepatitis B virus pregenomic RNA. J Virol. 2000;74(12):5502–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao F, Jones S, Li W, Cheng X, Hu Y, Hu J, et al. Sequences in the terminal protein and reverse transcriptase domains of the hepatitis B virus polymerase contribute to RNA binding and encapsidation. J Viral Hepat. 2014;21(12):882–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479-480:672–86.

    CAS  PubMed  Google Scholar 

  24. Giersch K, Allweiss L, Volz T, Dandri M, Lutgehetmann M. Serum HBV pgRNA as a clinical marker for cccDNA activity. J Hepatol. 2017;66(2):460–2.

    CAS  PubMed  Google Scholar 

  25. Lam AM, Ren S, Espiritu C, Kelly M, Lau V, Zheng L, et al. Hepatitis B virus capsid assembly modulators, but not nucleoside analogs, inhibit the production of extracellular pregenomic RNA and spliced RNA variants. Antimicrob Agents Chemother. 2017;61(8):e00680–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerelsaikhan T, Tavis JE, Bruss V. Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. J Virol. 1996;70(7):4269–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. • Kock J, Theilmann L, Galle P, Schlicht HJ. Hepatitis B virus nucleic acids associated with human peripheral blood mononuclear cells do not originate from replicating virus. Hepatology. 1996;23(3):405–13 Provided the first evidence that HBV virion particles harbored polyadenylated viral RNA.

    CAS  PubMed  Google Scholar 

  28. Stoll-Becker S, Repp R, Glebe D, Schaefer S, Kreuder J, Kann M, et al. Transcription of hepatitis B virus in peripheral blood mononuclear cells from persistently infected patients. J Virol. 1997;71(7):5399–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Baginski I, Chemin I, Bouffard P, Hantz O, Trepo C. Detection of polyadenylated RNA in hepatitis B virus-infected peripheral blood mononuclear cells by polymerase chain reaction. J Infect Dis. 1991;163(5):996–1000.

    CAS  PubMed  Google Scholar 

  30. Zoulim F, Vitvitski L, Bouffard P, Pichoud C, Rougier P, Lamelin JP, et al. Detection of pre-S1 proteins in peripheral blood mononuclear cells from patients with HBV infection. J Hepatol. 1991;12(2):150–6.

    CAS  PubMed  Google Scholar 

  31. Rokuhara A, Matsumoto A, Tanaka E, Umemura T, Yoshizawa K, Kimura T, et al. Hepatitis B virus RNA is measurable in serum and can be a new marker for monitoring lamivudine therapy. J Gastroenterol. 2006;41(8):785–90.

    CAS  PubMed  Google Scholar 

  32. •• Jansen L, Kootstra NA, van Dort KA, Takkenberg RB, Reesink HW, Zaaijer HL. Hepatitis B virus pregenomic RNA is present in virions in plasma and is associated with a response to pegylated interferon alfa-2a and nucleos(t)ide analogues. J Infect Dis. 2016;213(2):224–32 In CHB patients, reduction of serum HBV RNA predicted good response to IFN treatment.

    CAS  PubMed  Google Scholar 

  33. Su Q, Wang SF, Chang TE, Breitkreutz R, Hennig H, Takegoshi K, et al. Circulating hepatitis B virus nucleic acids in chronic infection: representation of differently polyadenylated viral transcripts during progression to nonreplicative stages. Clin Cancer Res. 2001;7(7):2005–15.

    CAS  PubMed  Google Scholar 

  34. Hacker HJ, Zhang W, Tokus M, Bock T, Schroder CH. Patterns of circulating hepatitis B virus serum nucleic acids during lamivudine therapy. Ann N Y Acad Sci. 2004;1022:271–81.

    CAS  PubMed  Google Scholar 

  35. Hatakeyama T, Noguchi C, Hiraga N, Mori N, Tsuge M, Imamura M, et al. Serum HBV RNA is a predictor of early emergence of the YMDD mutant in patients treated with lamivudine. Hepatology. 2007;45(5):1179–86.

    CAS  PubMed  Google Scholar 

  36. Huang YW, Chayama K, Tsuge M, Takahashi S, Hatakeyama T, Abe H, et al. Differential effects of interferon and lamivudine on serum HBV RNA inhibition in patients with chronic hepatitis B. Antivir Ther. 2010;15(2):177–84.

    CAS  PubMed  Google Scholar 

  37. van Bommel F, Bartens A, Mysickova A, Hofmann J, Kruger DH, Berg T, et al. Serum hepatitis B virus RNA levels as an early predictor of hepatitis B envelope antigen seroconversion during treatment with polymerase inhibitors. Hepatology. 2015;61(1):66–76.

    PubMed  Google Scholar 

  38. • van Bommel F, van Bommel A, Krauel A, Wat C, Pavlovic V, Yang L, et al. Serum HBV RNA as a predictor of peginterferon alfa-2a (40KD) response in patients with HBeAg-positive chronic hepatitis B. J Infect Dis. 2018; Low-circulating HBV RNA level was associated with HBeAg seroconversion.

  39. Su TS, Lai CJ, Huang JL, Lin LH, Yauk YK, Chang CM, et al. Hepatitis B virus transcript produced by RNA splicing. J Virol. 1989;63(9):4011–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ogston CW, Razman DG. Spliced RNA of woodchuck hepatitis virus. Virology. 1992;189(1):245–52.

    CAS  PubMed  Google Scholar 

  41. Obert S, Zachmann-Brand B, Deindl E, Tucker W, Bartenschlager R, Schaller H. A splice hepadnavirus RNA that is essential for virus replication. EMBO J. 1996;15(10):2565–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Sheng Q, Ding Y, Chen R, Sun X, Chen X, et al. HBV RNA virion-like particles produced under nucleos(t)ide analogues treatment are mainly replication-deficient. J Hepatol. 2017;S0168–8278(17)32413–3.

  43. Suzuki T, Masui N, Kajino K, Saito I, Miyamura T. Detection and mapping of spliced RNA from a human hepatoma cell line transfected with the hepatitis B virus genome. Proc Natl Acad Sci U S A. 1989;86(21):8422–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gunther S, Sommer G, Iwanska A, Will H. Heterogeneity and common features of defective hepatitis B virus genomes derived from spliced pregenomic RNA. Virology. 1997;238(2):363–71.

    CAS  PubMed  Google Scholar 

  45. • Chen J, Wu M, Wang F, Zhang W, Wang W, Zhang X, et al. Hepatitis B virus spliced variants are associated with an impaired response to interferon therapy. Sci Rep. 2015;5:16459 Comprehensive list of spliced HBV pgRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Terre S, Petit MA, Brechot C. Defective hepatitis B virus particles are generated by packaging and reverse transcription of spliced viral RNAs in vivo. J Virol. 1991;65(10):5539–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Heise T, Sommer G, Reumann K, Meyer I, Will H, Schaal H. The hepatitis B virus PRE contains a splicing regulatory element. Nucleic Acids Res. 2006;34(1):353–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chowdhury JB, Roy D, Ghosh S. Identification of a unique splicing regulatory cluster in hepatitis B virus pregenomic RNA. FEBS Lett. 2011;585(20):3348–53.

    PubMed  Google Scholar 

  49. Duriez M, Mandouri Y, Lekbaby B, Wang H, Schnuriger A, Redelsperger F, et al. Alternative splicing of hepatitis B virus: a novel virus/host interaction altering liver immunity. J Hepatol. 2017;67(4):687–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheen IS, Tsou YK, Lin SM, Lin CJ, Lin CC, Hsu CW, et al. Nuclear HBcAg and histology activity index as independent predictors of the expression of singly spliced HBV-RNA. J Viral Hepat. 2007;14(1):70–4.

    PubMed  Google Scholar 

  51. Ma ZM, Lin X, Wang YX, Tian XC, Xie YH, Wen YM. A double-spliced defective hepatitis B virus genome derived from hepatocellular carcinoma tissue enhanced replication of full-length virus. J Med Virol. 2009;81(2):230–7.

    CAS  PubMed  Google Scholar 

  52. Rosmorduc O, Petit MA, Pol S, Capel F, Bortolotti F, Berthelot P, et al. In vivo and in vitro expression of defective hepatitis B virus particles generated by spliced hepatitis B virus RNA. Hepatology. 1995;22(1):10–9.

    CAS  PubMed  Google Scholar 

  53. • Abraham TM, Lewellyn EB, Haines KM, Loeb DD. Characterization of the contribution of spliced RNAs of hepatitis B virus to DNA synthesis in transfected cultures of Huh7 and HepG2 cells. Virology. 2008;379(1):30–7 Spliced pgRNA could be efficiently packaged into nucleocapsid.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang CC, Kuo TM, Yeh CT, Hu CP, Chen YL, Tsai YL, et al. One single nucleotide difference alters the differential expression of spliced RNAs between HBV genotypes A and D. Virus Res. 2013;174(1–2):18–26.

    CAS  PubMed  Google Scholar 

  55. Soussan P, Pol J, Garreau F, Schneider V, Le Pendeven C, Nalpas B, et al. Expression of defective hepatitis B virus particles derived from singly spliced RNA is related to liver disease. J Infect Dis. 2008;198(2):218–25.

    CAS  PubMed  Google Scholar 

  56. Lin YM, Chen BF. A putative hepatitis B virus splice variant associated with chronic hepatitis and liver cirrhosis. Virology. 2017;510:224–33.

    CAS  PubMed  Google Scholar 

  57. Redelsperger F, Lekbaby B, Mandouri Y, Giang E, Duriez M, Desire N, et al. Production of hepatitis B defective particles is dependent on liver status. Virology. 2012;431(1–2):21–8.

    CAS  PubMed  Google Scholar 

  58. Ziemer M, Garcia P, Shaul Y, Rutter WJ. Sequence of hepatitis B virus DNA incorporated into the genome of a human hepatoma cell line. J Virol. 1985;53(3):885–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen PJ, Chen CR, Sung JL, Chen DS. Identification of a doubly spliced viral transcript joining the separated domains for putative protease and reverse transcriptase of hepatitis B virus. J Virol. 1989;63(10):4165–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bayliss J, Lim L, Thompson AJ, Desmond P, Angus P, Locarnini S, et al. Hepatitis B virus splicing is enhanced prior to development of hepatocellular carcinoma. J Hepatol. 2013;59(5):1022–8.

    CAS  PubMed  Google Scholar 

Download references

Funding

Preparation of this manuscript was supported, in part, by grants from the Commonwealth of Pennsylvania, the Hepatitis B Foundation, and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianlun Zhou.

Ethics declarations

Conflict of Interest

Timothy Block reports grants and other from Arbutus Biopharma, other from Glycotest, other from Contravir, grants from Commonwealth of PA, outside the submitted work. In addition, Timothy Block has a patent method to detect HCC licensed to Glycotest, and I am studying the role of mRNA from the host as well as the virus (HBV) in the blood of people with liver diseases, including chronic HBV. The work described in this manuscript relates to these studies. Tianlun Zhou, Chuanmin Wang, and Aejaz Sayeed each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hepatitis B

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Wang, C., Sayeed, A. et al. Implications of Circulating Hepatitis B Virus RNA Levels in Assessment of Response to Antiviral Therapy. Curr Hepatology Rep 17, 451–458 (2018). https://doi.org/10.1007/s11901-018-0433-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-018-0433-7

Keywords

Navigation