Skip to main content

Advertisement

Log in

Therapeutic Targets in Myelodysplastic Neoplasms: Beyond Hypomethylating Agents

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss novel targeted therapies under investigation for treatment of myelodysplastic neoplasms (MDS).

Recent Findings

Over the last few years, results of phase 3 trials assessing novel therapies for high-risk MDS have been largely disappointing. Pevonedistat (NEDD-8 inhibitor) and APR-246 (TP53 reactivator) both did not meet trial endpoints. However, early phase trials of BCL-2, TIM3, and CD47 inhibitors have shown exciting data and are currently under phase 3 investigation. Moreover, combination of hypomethylating agents (HMA) with novel therapies targeting the mutational (IDH, FLT3, spliceosome complex) or immune (PD-1/PDL-1, TIM-3, IRAK-4) pathways are being investigated in early phase clinical trials and have shown adequate safety and promising efficacy.

Summary

Myelodysplastic neoplasms (MDS) are a group of hematopoietic neoplasms defined by cytopenias and morphological dysplasia. They are characterized by clonal proliferation of aberrant hematopoietic stem cells caused by recurrent genetic abnormalities. This leads to ineffective erythropoiesis, peripheral blood cytopenias, abnormal cell maturation, and a high risk of transformation into acute myeloid leukemia (AML). Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, it is not a suitable option for majority patients due to their age, comorbidities, and the high rate of treatment-related complications. HMAs remain the only FDA-approved treatment option for high-risk MDS. Due to intolerance, primary, and secondary resistance to HMA, there is a large unmet need to develop new safe and effective therapies for patients with MDS. In this review, we focus on the current management strategies and novel therapies in development for treatment of high-risk MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–1179.

  2. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  3. Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383(14):1358–74.

    Article  CAS  PubMed  Google Scholar 

  4. Chakraborty S, Shapiro LC, de Oliveira S, Rivera-Pena B, Verma A, Shastri A. Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J. 2021;11(9):152.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Flores-Figueroa E, Gutiérrez-Espíndola G, Montesinos JJ, Arana-Trejo RM, Mayani H. In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res. 2002;26(7):677–86.

    Article  CAS  PubMed  Google Scholar 

  6. Schinke C, Giricz O, Li W, Shastri A, Gordon S, Barreyro L, et al. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood. 2015;125(20):3144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. French registry of acute leukemia and myelodysplastic syndromes. Age distribution and hemogram analysis of the 4496 cases recorded during 1982–1983 and classified according to FAB criteria. Groupe Francais de Morphologie Hematologique Cancer. 1987;60(6):1385–94.

    Google Scholar 

  8. Neukirchen J, Schoonen WM, Strupp C, Gattermann N, Aul C, Haas R, et al. Incidence and prevalence of myelodysplastic syndromes: data from the Düsseldorf MDS-registry. Leuk Res. 2011;35(12):1591–6.

    Article  PubMed  Google Scholar 

  9. Cogle CR, Craig BM, Rollison DE, List AF. Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: high number of uncaptured cases by cancer registries. Blood. 2011;117(26):7121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Swart L, Smith A, Johnston TW, Haase D, Droste J, Fenaux P, et al. Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry. Br J Haematol. 2015;170(3):372–83.

    Article  PubMed  Google Scholar 

  11. Neukirchen J, Lauseker M, Blum S, Giagounidis A, Lübbert M, Martino S, et al. Validation of the revised international prognostic scoring system (IPSS-R) in patients with myelodysplastic syndrome: a multicenter study. Leuk Res. 2014;38(1):57–64.

    Article  PubMed  Google Scholar 

  12. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfeilstöcker M, Tuechler H, Sanz G, Schanz J, Garcia-Manero G, Solé F, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood. 2016;128(7):902–10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bernard E, Tuechler H, Greenberg PL, Hasserjian RP, Ossa JEA, Nannya Y, et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022;1(7):EVIDoa2200008.

  15. Fenaux P, Giagounidis A, Selleslag D, Beyne-Rauzy O, Mufti G, Mittelman M, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011;118(14):3765–76.

    Article  CAS  PubMed  Google Scholar 

  16. Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382(2):140–51.

    Article  CAS  PubMed  Google Scholar 

  17. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794–803.

    Article  CAS  PubMed  Google Scholar 

  19. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.

    Article  CAS  PubMed  Google Scholar 

  20. Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia. 2021;35(7):1873–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40.

    Article  CAS  PubMed  Google Scholar 

  22. Prébet T, Gore SD, Esterni B, Gardin C, Itzykson R, Thepot S, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29(24):3322–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zeidan AM, Salimi T, Epstein RS. Real-world use and outcomes of hypomethylating agent therapy in higher-risk myelodysplastic syndromes: why are we not achieving the promise of clinical trials? Future Oncol. 2021;17(36):5163–75.

    Article  CAS  PubMed  Google Scholar 

  24. Qin T, Jelinek J, Si J, Shu J, Issa J-PJ. Mechanisms of resistance to 5-aza-2’-deoxycytidine in human cancer cell lines. Blood. 2009;113(3):659–67.

  25. Valencia A, Masala E, Rossi A, Martino A, Sanna A, Buchi F, et al. Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia. 2014;28(3):621–8.

    Article  CAS  PubMed  Google Scholar 

  26. Gu X, Tohme R, Tomlinson B, Sakre N, Hasipek M, Durkin L, et al. Decitabine- and 5-azacytidine resistance emerges from adaptive responses of the pyrimidine metabolism network. Leukemia. 2021;35(4):1023–36.

    Article  CAS  PubMed  Google Scholar 

  27. Unnikrishnan A, Papaemmanuil E, Beck D, Deshpande NP, Verma A, Kumari A, et al. Integrative genomics identifies the molecular basis of resistance to azacitidine therapy in myelodysplastic syndromes. Cell Rep. 2017;20(3):572–85.

    Article  CAS  PubMed  Google Scholar 

  28. Dimicoli S, Wei Y, Bueso-Ramos C, Yang H, Dinardo C, Jia Y, et al. Overexpression of the toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syndromes. PLoS ONE. 2013;8(8):e71120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28(6):1280–8.

    Article  CAS  PubMed  Google Scholar 

  30. Craddock C, Quek L, Goardon N, Freeman S, Siddique S, Raghavan M, et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia. 2013;27(5):1028–36.

    Article  CAS  PubMed  Google Scholar 

  31. Prébet T, Gore SD, Thépot S, Esterni B, Quesnel B, Beyne Rauzy O, et al. Outcome of acute myeloid leukaemia following myelodysplastic syndrome after azacitidine treatment failure. Br J Haematol. 2012;157(6):764–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jabbour E, Garcia-Manero G, Batty N, Shan J, O’Brien S, Cortes J, et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer. 2010;116(16):3830–4.

    Article  CAS  PubMed  Google Scholar 

  33. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood. 2000;96(12):3932–8.

    Article  CAS  PubMed  Google Scholar 

  34. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4(3):362–75.

    Article  CAS  PubMed  Google Scholar 

  35. Jilg S, Reidel V, Müller-Thomas C, König J, Schauwecker J, Höckendorf U, et al. Blockade of BCL-2 proteins efficiently induces apoptosis in progenitor cells of high-risk myelodysplastic syndromes patients. Leukemia. 2016;30(1):112–23.

    Article  CAS  PubMed  Google Scholar 

  36. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–29.

    Article  CAS  PubMed  Google Scholar 

  37. Garcia JS, Wei AH, Borate U, Fong CY, Baer MR, Nolte F, et al. Safety, efficacy, and patient-reported outcomes of venetoclax in combination with azacitidine for the treatment of patients with higher-risk myelodysplastic syndrome: a phase 1b study. Blood. 2020;136(Supplement 1):55–7.

    Article  Google Scholar 

  38. Wei AH, Garcia JS, Borate U, Fong CY, Baer MR, Nowak D, et al. MDS-158: updated safety and efficacy of venetoclax in combination with azacitidine for the treatment of patients with treatment-naïve, higher-risk myelodysplastic syndromes: phase 1b results. Clin Lymphoma Myeloma Leuk. 2021;21:S343.

    Article  Google Scholar 

  39. Zeidan AM, Borate U, Pollyea DA, Brunner AM, Roncolato F, Garcia JS, et al. Venetoclax and azacitidine in the treatment of patients with relapsed/refractory myelodysplastic syndrome. Blood. 2021;138(Supplement 1):537.

    Article  Google Scholar 

  40. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ball BJ, Famulare CA, Stein EM, Tallman MS, Derkach A, Roshal M, et al. Venetoclax and hypomethylating agents (HMAs) induce high response rates in MDS, including patients after HMA therapy failure. Blood Adv. 2020;4(13):2866–70.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zeidan AM, Garcia JS, Fenaux P, Platzbecker U, Miyazaki Y, Xiao Z-J, et al. Phase 3 VERONA study of venetoclax with azacitidine to assess change in complete remission and overall survival in treatment-naïve higher-risk myelodysplastic syndromes. J Clin Oncol. 2021;39(15_suppl):TPS7054-TPS.

  43. Jan M, Chao MP, Cha AC, Alizadeh AA, Gentles AJ, Weissman IL, et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci USA. 2011;108(12):5009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7(6):708–17.

    Article  CAS  PubMed  Google Scholar 

  45. Shastri A, Will B, Steidl U, Verma A. Stem and progenitor cell alterations in myelodysplastic syndromes. Blood. 2017;129(12):1586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Asayama T, Tamura H, Ishibashi M, Kuribayashi-Hamada Y, Onodera-Kondo A, Okuyama N, et al. Functional expression of Tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget. 2017;8(51):88904–17.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17(3):341–52.

    Article  CAS  PubMed  Google Scholar 

  48. Li H, Chiappinelli KB, Guzzetta AA, Easwaran H, Yen RW, Vatapalli R, et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014;5(3):587–98.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Daver N, Boddu P, Garcia-Manero G, Yadav SS, Sharma P, Allison J, et al. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia. 2018;32(5):1094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brunner A, Borate U, Esteve J, Porkka K, Knapper S, Vey N, et al. AML-190: Anti-TIM-3 antibody MBG453 in combination with hypomethylating agents (HMAs) in patients with high-risk myelodysplastic syndrome (HR-MDS) and acute myeloid leukemia: a phase 1 study. Clin Lymphoma Myeloma Leuk. 2020;20:S188–9.

    Article  Google Scholar 

  51. Borate U, Esteve J, Porkka K, Knapper S, Vey N, Scholl S, et al. Phase Ib study of the anti-TIM-3 antibody MBG453 in combination with decitabine in patients with high-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Blood. 2019;134:570.

    Article  Google Scholar 

  52. Brunner AM, Esteve J, Porkka K, Knapper S, Traer E, Scholl S, et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study. Blood. 2021;138(Supplement 1):244.

    Article  Google Scholar 

  53. Zeidan AM, Ando K, Rauzy O, Turgut M, Wang M-C, Cairoli R, et al. Primary results of stimulus-MDS1: a randomized, double-blind, placebo-controlled phase II study of TIM-3 inhibition with sabatolimab added to hypomethylating agents (HMAs) in adult patients with higher-risk myelodysplastic syndromes (MDS). Blood. 2022;140(Supplement 1):2063–5.

    Article  Google Scholar 

  54. Zeidan AM, Esteve J, Giagounidis A, Kim H-J, Miyazaki Y, Platzbecker U, et al. The STIMULUS Program: clinical trials evaluating sabatolimab (MBG453) combination therapy in patients (Pts) with higher-risk myelodysplastic syndromes (HR-MDS) or acute myeloid leukemia (AML). Blood. 2020;136(Supplement 1):45–6.

    Article  Google Scholar 

  55. Zeidan AM, Al-Kali A, Borate U, Cluzeau T, DeZern AE, Esteve J, et al. Sabatolimab (MBG453) combination treatment regimens for patients (Pts) with higher-risk myelodysplastic syndromes (HR-MDS): the MDS studies in the stimulus immuno-myeloid clinical trial program. Blood. 2021;138:4669.

    Article  Google Scholar 

  56. McKeown MR, Corces MR, Eaton ML, Fiore C, Lee E, Lopez JT, et al. Superenhancer analysis defines novel epigenomic subtypes of non-APL AML, including an RARα dependency targetable by SY-1425, a potent and selective RARα agonist. Cancer Discov. 2017;7(10):1136–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jurcic JG, Raza A, Vlad G, Stein EM, Roshal M, Bixby DL, et al. Early results from a biomarker-directed phase 2 trial of Sy-1425 in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) demonstrate DHRS3 induction and myeloid differentiation following Sy-1425 treatment. Blood. 2017;130:2633.

    Google Scholar 

  58. McKeown MR, Johannessen L, Lee E, Fiore C, di Tomaso E. Antitumor synergy with SY-1425, a selective RARα agonist, and hypomethylating agents in retinoic acid receptor pathway activated models of acute myeloid leukemia. Haematologica. 2019;104(4):e138–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Botton S, Cluzeau T, Vigil CE, Cook RJ, Rousselot P, Rizzieri DA, et al. SY-1425, a potent and selective RARα agonist, in combination with azacitidine demonstrates a high complete response rate and a rapid onset of response in RARA-positive newly diagnosed unfit acute myeloid leukemia. Blood. 2020;136:4–5.

    Article  Google Scholar 

  60. Estey E, Hasserjian RP, Döhner H. Distinguishing AML from MDS: a fixed blast percentage may no longer be optimal. Blood. 2022;139(3):323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dezern AE, Marconi G, Deeren D, Campelo MD, Lübbert M, Krishnamurthy P, et al. A randomized, double-blind, placebo-controlled study of tamibarotene/azacitidine versus placebo/azacitidine in newly diagnosed adult patients selected for RARA+ HR-MDS (SELECT-MDS-1). Journal of Clinical Oncology. 2022;40(16_suppl):TPS7075-TPS.

  62. Chao MP, Takimoto CH, Feng DD, McKenna K, Gip P, Liu J, et al. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front Oncol. 2019;9:1380.

    Article  PubMed  Google Scholar 

  63. Pang WW, Pluvinage JV, Price EA, Sridhar K, Arber DA, Greenberg PL, et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci U S A. 2013;110(8):3011–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feng D, Gip P, McKenna KM, Zhao F, Mata O, Choi TS, et al. Combination treatment with 5F9 and azacitidine enhances phagocytic elimination of acute myeloid leukemia. Blood. 2018;132:2729.

    Article  Google Scholar 

  65. Sallman DA, Asch AS, Al Malki MM, Lee DJ, Donnellan WB, Marcucci G, et al. The first-in-class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: ongoing phase 1b results. Blood. 2019;134(Supplement_1):569.

  66. Chen JY, Johnson L, McKenna KM, Choi TS, Duan J, Feng D, et al. Impact of magrolimab treatment in combination with azacitidine on red blood cells in patients with higher-risk myelodysplastic syndrome (HR-MDS). J Clin Oncol. 2022;40(16_suppl):7054.

  67. Miao M, WU D, Xie S, Hong M, Chang C, Yu L, et al. A phase 1b study to evaluate safety and efficacy of IBI188 in combination with azacitidine (AZA) as a first-line treatment in subjects with newly diagnosed higher risk myelodysplastic syndrome. Blood. 2022;140(Supplement 1):4045–6.

  68. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458(7239):732–6.

    Article  CAS  PubMed  Google Scholar 

  69. Smith PG, Traore T, Grossman S, Narayanan U, Carew JS, Lublinksky A, et al. Azacitidine/decitabine synergism with the NEDD8-activating enzyme inhibitor MLN4924 in Pre-Clinical AML Models. Blood. 2011;118(21):578.

    Article  Google Scholar 

  70. Swords RT, Coutre S, Maris MB, Zeidner JF, Foran JM, Cruz J, et al. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood. 2018;131(13):1415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sekeres MA, Watts J, Radinoff A, Sangerman MA, Cerrano M, Lopez PF, et al. Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 2021;35(7):2119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Adès L, Girshova L, Doronin VA, Díez-Campelo M, Valcárcel D, Kambhampati S, et al. Pevonedistat plus azacitidine vs azacitidine alone in higher-risk MDS/chronic myelomonocytic leukemia or low-blast-percentage AML. Blood Adv. 2022;6(17):5132–45.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017;31(2):272–81.

    Article  CAS  PubMed  Google Scholar 

  74. Sallman DA, Foran JM, Watts JM, Stein E, Botton SD, Fathi AT, et al. Ivosidenib in patients with IDH1-mutant relapsed/refractory myelodysplastic syndrome (R/R MDS): Updated enrollment and results of a phase 1 dose-escalation and expansion substudy. J Clin Oncol. 2022;40(16_suppl):7053.

  75. Sebert M, Cluzeau T, Beyne Rauzy O, Stamatoulas Bastard A, Dimicoli-Salazar S, Thepot S, et al. Ivosidenib monotherapy is effective in patients with IDH1 mutated myelodysplastic syndrome (MDS): the Idiome phase 2 study by the GFM Group. Blood. 2021;138(Supplement 1):62.

    Article  Google Scholar 

  76. Venugopal S, Dinardo CD, Takahashi K, Konopleva M, Loghavi S, Borthakur G, et al. Phase II study of the IDH2-inhibitor enasidenib in patients with high-risk IDH2-mutated myelodysplastic syndromes (MDS). J Clin Oncol. 2021;39(15_suppl):7010.

  77. Ades L, Dimicoli-Salazar S, Sebert M, Cluzeau T, Stamatoulas Bastard A, Laribi K, et al. Enasidenib (ENA) is effective in patients with IDH2 mutated myelodysplastic syndrome (MDS): the Ideal phase 2 study by the GFM Group. Blood. 2021;138(Supplement 1):63.

    Article  Google Scholar 

  78. Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P, et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia. 2004;18(3):466–75.

    Article  CAS  PubMed  Google Scholar 

  79. Badar T, Patel KP, Thompson PA, DiNardo C, Takahashi K, Cabrero M, et al. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leuk Res. 2015;39(12):1367–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, et al. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90(4):276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Macdonald DA, Assouline SE, Brandwein J, Kamel-Reid S, Eisenhauer EA, Couban S, et al. A phase I/II study of sorafenib in combination with low dose cytarabine in elderly patients with acute myeloid leukemia or high-risk myelodysplastic syndrome from the National Cancer Institute of Canada Clinical Trials Group: trial IND.186. Leuk Lymphoma. 2013;54(4):760–6.

    Article  CAS  PubMed  Google Scholar 

  83. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.

    Article  CAS  PubMed  Google Scholar 

  84. Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119(14):3211–8.

    Article  CAS  PubMed  Google Scholar 

  85. Pellagatti A, Armstrong RN, Steeples V, Sharma E, Repapi E, Singh S, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood. 2018;132(12):1225–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maciejewski JP, Padgett RA. Defects in spliceosomal machinery: a new pathway of leukaemogenesis. Br J Haematol. 2012;158(2):165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B–8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24(4):497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee SC, Dvinge H, Kim E, Cho H, Micol JB, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22(6):672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steensma DP, Wermke M, Klimek VM, Greenberg PL, Font P, Komrokji RS, et al. Phase I first-in-human dose escalation study of the oral SF3B1 modulator H3B–8800 in myeloid neoplasms. Leukemia. 2021;35(12):3542–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garcia-Manero G, Sasaki K, Montalban-Bravo G, Daver NG, Jabbour EJ, Alvarado Y, et al. A phase II study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS). Blood. 2018;132:465.

    Article  Google Scholar 

  91. Zeidan AM, Cavenagh J, Voso MT, Taussig D, Tormo M, Boss I, et al. Efficacy and safety of azacitidine (AZA) in combination with the anti-PD-L1 durvalumab (durva) for the front-line treatment of older patients (pts) with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy (IC) and Pts with higher-risk myelodysplastic syndromes (HR-MDS): results from a large, international, randomized phase 2 study. Blood. 2019;134(Supplement_1):829-.

  92. Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 2019;21(5):640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gummadi VR, Boruah A, Ainan BR, Vare BR, Manda S, Gondle HP, et al. Discovery of CA-4948, an orally bioavailable IRAK4 inhibitor for treatment of hematologic malignancies. ACS Med Chem Lett. 2020;11(12):2374–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choudhary GS, Smith MA, Pellagatti A, Bhagat TD, Gordon S, Pandey S, et al. SF3B1 mutations induce oncogenic IRAK4 isoforms and activate targetable innate immune pathways in MDS and AML. Blood. 2019;134:4224.

    Article  Google Scholar 

  95. Garcia-Manero G, Winer ES, DeAngelo DJ, Tarantolo S, Sallman DA, Dugan J, et al. S129: takeaim leukemia- a phase 1/2a study of the irak4 inhibitor emavusertib (ca-4948) as monotherapy or in combination with azacitidine or venetoclax in relapsed/refractory aml or mds. HemaSphere. 2022;6:30–1.

    Article  PubMed Central  Google Scholar 

  96. Metzeler KH, Winer ES, Platzbecker U, Verma A, DeAngelo DJ, Tarantolo SR, et al. Molecular characterization of clinical response in relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndrome patients treated with single agent emavusertib. Blood. 2022;140(Supplement 1):9048–49. https://doi.org/10.1182/blood-2022-167477.

  97. Guanizo AC, Fernando CD, Garama DJ, Gough DJ. STAT3: a multifaceted oncoprotein. Growth Factors. 2018;36(1–2):1–14.

    Article  CAS  PubMed  Google Scholar 

  98. Shastri A, Choudhary G, Teixeira M, Gordon-Mitchell S, Ramachandra N, Bernard L, et al. Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. J Clin Invest. 2018;128(12):5479–88.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015;7(314):314ra185.

  100. Takakura A, Nelson EA, Haque N, Humphreys BD, Zandi-Nejad K, Frank DA, et al. Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways. Hum Mol Genet. 2011;20(21):4143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shastri A, Schinke C, Varshavsky Yanovsky A, Bhagat TD, Giricz O, Barreyro L, et al. Targeting of MDS and AML stem cells via inhibition of STAT3 by pyrimethamine. Blood. 2014;124(21):3602.

    Article  Google Scholar 

  102. Rivera BL, Chakraborty S, Shi Y, Zhang H, Choudhary GS, Gordon S, et al. Pyrimethamine, a STAT3 inhibitor, synergizes with venetoclax and shows efficacy in hypomethylating agent resistant MDS and AML. Blood. 2022;140(Supplement 1):6892–93. https://doi.org/10.1182/blood-2022-163255.

  103. Zhou H, Bai L, Xu R, Zhao Y, Chen J, McEachern D, et al. Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein. J Med Chem. 2019;62(24):11280–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell. 2019;36(5):498-511.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ivanova E, Tegla CA, Novikova E, Herrera AM, Mullins B, Latkowski JA, et al. Leveraging pre-clinical animal model of CTCL to explore therapeutic potential of a novel STAT3 degrader. Blood. 2022;140(Supplement 1):3557–8. https://doi.org/10.1182/blood-2022-156816.

  106. Bowie A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol. 2000;67(4):508–14.

    Article  CAS  PubMed  Google Scholar 

  107. Satoh T, Akira S. Toll-Like Receptor signaling and its inducible proteins. Microbiol Spectr. 2016;4(6). https://doi.org/10.1128/microbiolspec.MCHD-0040-2016

  108. Kawai T, Akira S. Signaling to NF-kappaB by toll-like receptors. Trends Mol Med. 2007;13(11):460–9.

    Article  CAS  PubMed  Google Scholar 

  109. Wei Y, Dimicoli S, Bueso-Ramos C, Chen R, Yang H, Neuberg D, et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia. 2013;27(9):1832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Reilly M, Miller RM, Thomson MH, Patris V, Ryle P, McLoughlin L, et al. Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody. Clin Pharmacol Ther. 2013;94(5):593–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Garcia-Manero G, Montalban-Bravo G, Yang H, Wei Y, Alvarado Y, DiNardo CD, et al. A clinical study of OPN-305, a toll-like receptor 2 (TLR-2) antibody, in patients with lower risk myelodysplastic syndromes (MDS) that have received prior hypomethylating agent (HMA) therapy. Blood. 2016;128(22):227.

    Article  Google Scholar 

  112. Garcia-Manero G, Jabbour EJ, Konopleva MY, Daver NG, Borthakur G, DiNardo CD, et al. Blood. 2018;132(Supplement 1):798.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Shastri.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pophali, P., Desai, S.R. & Shastri, A. Therapeutic Targets in Myelodysplastic Neoplasms: Beyond Hypomethylating Agents. Curr Hematol Malig Rep 18, 56–67 (2023). https://doi.org/10.1007/s11899-023-00693-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-023-00693-9

Keywords

Navigation