Skip to main content

Advertisement

Log in

Progress in the Management of Smoldering Multiple Myeloma

  • Multiple Myeloma (P Kapoor, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Smoldering multiple myeloma (SMM) is defined as an asymptomatic clonal proliferation of pre-malignant plasma cells and an increased risk of progression to multiple myeloma (MM) relative to monoclonal gammopathy of undetermined significance. Whether patients with SMM should be treated prior to development of symptomatic disease is fiercely debated and is a highly active area of research.

Recent Findings

The ECOG E3A06 study demonstrated that early treatment with lenalidomide significantly reduced the risk of progression to MM compared to observation in patients with high risk SMM. The IMWG recently validated a risk stratification model to include cytogenetics and a personalized risk calculator for individual patients. Beyond this, molecular genomic aberrations and immunological phenomena that promote progression from asymptomatic disease to MM have been recently characterized and may help to more precisely identify patients who are most suitable for early intervention.

Summary

As highly effective and tolerable therapies for plasma cell disorders evolve, the field is approaching a paradigm shift that involves the adoption of intervention for patients with SMM who are at high risk for progression to symptomatic myeloma in order to prevent morbidity and mortality. This review highlights our current understanding of the biology of patients with SMM, clarifies the rationale for early intervention, and summarizes early results of various treatment strategies for patients with high-risk smoldering myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Cancer Society. Cancer facts & figures 2019. 2019.

  2. Costa LJ, Bal S, Chhabra S. Population-level trends in early mortality and overall survival of patients with multiple myeloma. Are we facing stagnation? Blood. 2019;134(Supplement_1):4760. https://doi.org/10.1182/blood-2019-121786.

    Article  Google Scholar 

  3. Terpos E, Morgan G, Dimopoulos MA, Drake MT, Lentzsch S, Raje N, et al. International Myeloma Working Group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol. 2013;31(18):2347–57. https://doi.org/10.1200/JCO.2012.47.7901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dimopoulos MA, Sonneveld P, Leung N, Merlini G, Ludwig H, Kastritis E, et al. International Myeloma Working Group recommendations for the diagnosis and management of myeloma-related renal impairment. J Clin Oncol. 2016;34(13):1544–57. https://doi.org/10.1200/JCO.2015.65.0044.

    Article  PubMed  Google Scholar 

  5. Landgren O, Kyle R, Pfeiffer R. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113:5412–7. https://doi.org/10.1182/blood-2008-12-194241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weiss B, Abadie J, Verma P. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood. 2009;113:5418–22. https://doi.org/10.1182/blood-2008-12-195008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48. https://doi.org/10.1016/S1470-2045(14)70442-5.

    Article  PubMed  Google Scholar 

  8. Kyle RA, Larson DR, Therneau TM, Dispenzieri A, Kumar S, Cerhan JR, et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. N Engl J Med. 2018;378(3):241–9. https://doi.org/10.1056/NEJMoa1709974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kyle RA, Remstein ED, Therneau TM, Dispenzieri A, Kurtin PJ, Hodnefield JM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007;356(25):2582–90. https://doi.org/10.1056/NEJMoa070389.

    Article  CAS  PubMed  Google Scholar 

  10. Dispenzieri A, Kyle RA, Katzmann JA, Therneau TM, Larson D, Benson J, et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood. 2008;111(2):785–9. https://doi.org/10.1182/blood-2007-08-108357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lakshman A, Rajkumar SV, Buadi FK, Binder M, Gertz MA, Lacy MQ, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018;8(6):59. https://doi.org/10.1038/s41408-018-0077-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosinol L, Blade J, Esteve J, Aymerich M, Rozman M, Montoto S, et al. Smoldering multiple myeloma: natural history and recognition of an evolving type. Br J Haematol. 2003;123(4):631–6. https://doi.org/10.1046/j.1365-2141.2003.04654.x.

    Article  CAS  PubMed  Google Scholar 

  13. Ravi P, Kumar S, Larsen JT, Gonsalves W, Buadi F, Lacy MQ, et al. Evolving changes in disease biomarkers and risk of early progression in smoldering multiple myeloma. Blood Cancer J. 2016;6(7):e454. https://doi.org/10.1038/bcj.2016.65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fernandez de Larrea C, Isola I, Pereira A, Cibeira MT, Magnano L, Tovar N, et al. Evolving M-protein pattern in patients with smoldering multiple myeloma: impact on early progression. Leukemia. 2018;32(6):1427–34. https://doi.org/10.1038/s41375-018-0013-4.

    Article  CAS  PubMed  Google Scholar 

  15. Notarfranchi L, Vescovini R, Segreto R, Bonomini S, Storti P, Marchica V, et al. Short-term risk for progression in patients with smoldering multiple myeloma: the impact of CD56 expression. Blood. 2020;136(Supplement 1):11. https://doi.org/10.1182/blood-2020-139214.

    Article  Google Scholar 

  16. Bustoros M, Kastritis E, Sklavenitis-Pistofidis R. Bone marrow biopsy in low-risk monoclonal gammopathy of undetermined significance reveals a novel smoldering multiple myeloma risk group. Am J Hematol. 2019;94:E146–9. https://doi.org/10.1002/ajh.25441.

    Article  PubMed  Google Scholar 

  17. Kumar SK, Rajkumar SV. The multiple myelomas—current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15(7):409–21. https://doi.org/10.1038/s41571-018-0018-y.

    Article  CAS  PubMed  Google Scholar 

  18. Barwick BG, Gupta VA, Vertino PM, Boise LH. Cell of origin and genetic alterations in the pathogenesis of multiple myeloma. Front Immunol. 2019;10:1121. https://doi.org/10.3389/fimmu.2019.01121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neben K, Jauch A, Hielscher T, Hillengass J, Lehners N, Seckinger A, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol. 2013;31(34):4325–32. https://doi.org/10.1200/JCO.2012.48.4923.

    Article  PubMed  Google Scholar 

  20. Rajkumar SV, Gupta V, Fonseca R, Dispenzieri A, Gonsalves WI, Larson D, et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia. 2013;27(8):1738–44. https://doi.org/10.1038/leu.2013.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Mateos M-V, Kumar S, Dimopoulos MA, González-Calle V, Kastritis E, Hajek R, et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 2020;10(10):102. https://doi.org/10.1038/s41408-020-00366-3This is the most recent and validated risk stratification model for SMM and has also incorporated cytogenetics into the model, likely indicating the beginning of a trend to incorporate genomic data into SMM risk stratification.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rustad EH, Yellapantula VD, Glodzik D, Maclachlan KH, Diamond B, Boyle EM, et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov. 2020;1:258–73. https://doi.org/10.1158/2643-3230.Bcd-20-0132.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oben B, Froyen G, Maclachlan KH, Zheng-Lin B, Yellapantula V, Abascal F, et al. Whole-genome sequencing reveals evidence of two biologically and clinically distinct entities: progressive versus stable myeloma precursor disease. Blood. 2020;136(Supplement 1):47–8. https://doi.org/10.1182/blood-2020-136403.

    Article  Google Scholar 

  24. Aktas-Samur A, Fulciniti M, Derebail S, Szalat R, Parmigiani G, Corre J, et al. High throughput genomic analysis identifies low-risk smoldering multiple myeloma. Blood. 2020;136(Supplement 1):2. https://doi.org/10.1182/blood-2020-139066.

    Article  Google Scholar 

  25. Bolli N, Maura F, Minvielle S, Gloznik D, Szalat R, Fullam A, et al. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun. 2018;9(1):3363. https://doi.org/10.1038/s41467-018-05058-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. • Bustoros M, Sklavenitis-Pistofidis R, Park J, Redd R, Zhitomirsky B, Dunford AJ, et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J Clin Oncol. 2020. https://doi.org/10.1200/JCO.20.00437 JCO2000437. This paper detailed the most important mutations that predict progression of SMM to MM.

  27. Bolli N, Biancon G, Moarii M, Gimondi S, Li Y, de Philippis C, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32:2604–16. https://doi.org/10.1038/s41375-018-0037-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies F, et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2018;33:159–70. https://doi.org/10.1038/s41375-018-0196-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Affer M, Chesi M, Chen WG, Keats JJ, Demchenko YN, Roschke AV, et al. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia. 2014;28(8):1725–35. https://doi.org/10.1038/leu.2014.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R, et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell. 2008;13(2):167–80. https://doi.org/10.1016/j.ccr.2008.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shou Y, Martelli ML, Gabrea A, Qi Y, Brents LA, Roschke A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci U S A. 2000;97(1):228–33. https://doi.org/10.1073/pnas.97.1.228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Misund K, Keane N, Stein CK, Asmann YW, Day G, Welsh S, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34(1):322–6. https://doi.org/10.1038/s41375-019-0543-4.

    Article  PubMed  Google Scholar 

  33. Walker BA, Wardell CP, Brioli A, Boyle E, Kaiser MF, Begum DB, et al. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J. 2014;4(3):e191. https://doi.org/10.1038/bcj.2014.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boyle EM, Davies FE, Deshpande S, Tytarenko RG, Ashby C, Wang Y, et al. Analysis of the sub-clonal structure of smoldering myeloma over time provides a new means of disease monitoring and highlights evolutionary trajectories leading to myeloma. Blood. 2019;134(Supplement_1):4333. https://doi.org/10.1182/blood-2019-126679.

    Article  Google Scholar 

  35. Merz M, Hielscher T, Schult D, Mai EK, Raab MS, Hillengass J, et al. Cytogenetic subclone formation and evolution in progressive smoldering multiple myeloma. Leukemia. 2020;34(4):1192–6. https://doi.org/10.1038/s41375-019-0634-2.

    Article  PubMed  Google Scholar 

  36. Perez-Persona E, Vidriales MB, Mateo G, Garcia-Sanz R, Mateos MV, de Coca AG, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586–92. https://doi.org/10.1182/blood-2007-05-088443.

    Article  CAS  PubMed  Google Scholar 

  37. Dhodapkar MV, Krasovsky J, Olson K. T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc Natl Acad Sci U S A. 2002;99(20):13009–13. https://doi.org/10.1073/pnas.202491499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dhodapkar MV, Krasovsky J, Osman K, Geller MD. Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med. 2003;198(11):1753–7. https://doi.org/10.1084/jem.20031030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med. 2003;197(12):1667–76. https://doi.org/10.1084/jem.20021650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Termini R, Terpos E, Pérez A, Jelinek T, Kokkali N-A, Bargay J, et al. Longitudinal immunogenomic profiling of tumor and immune cells for minimally-invasive monitoring of smoldering multiple myeloma (SMM): the immunocell study. Blood. 2020;136(Supplement 1):1–2. https://doi.org/10.1182/blood-2020-136251.

    Article  Google Scholar 

  41. Bailur JK, McCachren SS, Doxie DB, Shrestha M, Pendleton K, Nooka AK, et al. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight. 2019;5. https://doi.org/10.1172/jci.insight.127807.

  42. • Zavidij O, Haradhvala NJ, Mouhieddine TH, Sklavenitis-Pistofidis R, Cai S, Reidy M, et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat Can. 2020. https://doi.org/10.1038/s43018-020-0053-3This paper highlights key aspects of the immunological milieu of myeloma precursor states.

  43. Dhodapkar MV, Sexton R, Das R, Dhodapkar KM, Zhang L, Sundaram R, et al. Prospective analysis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopathy. Blood. 2015;126(22):2475–8. https://doi.org/10.1182/blood-2015-03-632919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Costa F, Vescovini R, Notarfranchi L, Storti P, Marchica V, Dalla Palma AB, et al. PD-L1/PD-1 pattern of distribution within bone marrow microenvironment cells in patients with smoldering myeloma and active multiple myeloma. Blood. 2020;136(Supplement 1):49–50. https://doi.org/10.1182/blood-2020-139275.

    Article  Google Scholar 

  45. Paiva B, Mateos MV, Sanchez-Abarca LI, Puig N, Vidriales MB, Lopez-Corral L, et al. Immune status of high-risk smoldering multiple myeloma patients and its therapeutic modulation under LenDex: a longitudinal analysis. Blood. 2016;127(9):1151–62. https://doi.org/10.1182/blood-2015-10-662320.

    Article  CAS  PubMed  Google Scholar 

  46. Brice P, Bastion Y, Lepage E, Brousse N, Haïoun C, Moreau P, et al. Comparison in low-tumor-burden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon alfa: a randomized study from the Groupe d’Etude des Lymphomes Folliculaires. Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 1997;15(3):1110–7. https://doi.org/10.1200/jco.1997.15.3.1110.

    Article  CAS  PubMed  Google Scholar 

  47. Kyle RA, Greipp PR. Smoldering multiple myeloma. N Engl J Med. 1980;302(24):1347–9. https://doi.org/10.1056/NEJM198006123022405.

    Article  CAS  PubMed  Google Scholar 

  48. Riccardi A, Mora O, Tinelli C, Valentini D, Brugnatelli S, Spanedda R, et al. Long-term survival of stage I multiple myeloma given chemotherapy just after diagnosis or at progression of the disease: a multicentre randomized study. Br J Cancer. 2000;82(7):1254–60. https://doi.org/10.1054/bjoc.1999.1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Witzig TE, Laumann KM, Lacy MQ, Hayman SR, Dispenzieri A, Kumar S, et al. A phase III randomized trial of thalidomide plus zoledronic acid versus zoledronic acid alone in patients with asymptomatic multiple myeloma. Leukemia. 2013;27(1):220–5. https://doi.org/10.1038/leu.2012.236.

    Article  CAS  PubMed  Google Scholar 

  50. D'Arena G, Gobbi PG, Broglia C, Sacchi S, Quarta G, Baldini L, et al. Pamidronate versus observation in asymptomatic myeloma: final results with long-term follow-up of a randomized study. Leuk Lymphoma. 2011;52(5):771–5. https://doi.org/10.3109/10428194.2011.553000.

    Article  CAS  PubMed  Google Scholar 

  51. Musto P, Petrucci MT, Bringhen S, Guglielmelli T, Caravita T, Bongarzoni V, et al. A multicenter, randomized clinical trial comparing zoledronic acid versus observation in patients with asymptomatic myeloma. Cancer. 2008;113(7):1588–95. https://doi.org/10.1002/cncr.23783.

    Article  PubMed  Google Scholar 

  52. Zangari M, Berno T, Salama ME, Sana S, Talamo G, Pena K, et al. Effect of low dose bortezomib on bone formation in smoldering myeloma patients. Blood. 2013;122(21):3204. https://doi.org/10.1182/blood.V122.21.3204.3204.

    Article  Google Scholar 

  53. McCarthy PL, Owzar K, Hofmeister CC, Hurd DD, Hassoun H, Richardson PG, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1770–81. https://doi.org/10.1056/NEJMoa1114083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCarthy PL, Holstein SA, Petrucci MT, Richardson PG, Hulin C, Tosi P, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017;35(29):3279–89. https://doi.org/10.1200/jco.2017.72.6679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. • Mateos MV, Hernandez MT, Giraldo P, de la Rubia J, de Arriba F, Lopez Corral L, et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med. 2013;369(5):438–47. https://doi.org/10.1056/NEJMoa1300439This is the first randomized phase III trial to show a PFS and OS benefit in treating SMM with lenalidomide and steroids.

    Article  CAS  PubMed  Google Scholar 

  56. Mateos MV, Hernandez MT, Giraldo P, de la Rubia J, de Arriba F, Corral LL, et al. Lenalidomide plus dexamethasone versus observation in patients with high-risk smouldering multiple myeloma (QuiRedex): long-term follow-up of a randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(8):1127–36. https://doi.org/10.1016/S1470-2045(16)30124-3.

    Article  CAS  PubMed  Google Scholar 

  57. •• Lonial S, Jacobus S, Fonseca R, Weiss M, Kumar S, Orlowski RZ, et al. Randomized trial of lenalidomide versus observation in smoldering multiple myeloma. J Clin Oncol. 2020;38(11):1126–37. https://doi.org/10.1200/jco.19.01740This study confirmed the PFS benefit of lenalidomide in the treatment of SMM and serves as a benchmark for future studies.

    Article  CAS  PubMed  Google Scholar 

  58. Mailankody S, Kazandjian D, Korde N, Roschewski M, Manasanch E, Bhutani M, et al. Baseline mutational patterns and sustained MRD negativity in patients with high-risk smoldering myeloma. Blood Adv. 2017;1(22):1911–8. https://doi.org/10.1182/bloodadvances.2017005934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kazandjian D, Hill E, Morrison C, Dew A, Korde N, Mailankody S, et al. Treatment of high risk (HR) smoldering multiple myeloma (SMM) with carfilzomib, lenalidomide, and dexamethasone (KRd) followed by lenalidomide maintenance (-R): a phase 2 clinical and correlative study. Blood. 2020;136(Supplement 1):43–5. https://doi.org/10.1182/blood-2020-136148.

    Article  Google Scholar 

  60. Puíg N, Contreras T. Analysis of treatment efficacy in the GEM-CESAR trial for high-risk smoldering multiple myeloma patients: comparison between the standard and IMWG MRD criteria and QIP-MS including FLC (QIP-FLC-MS). ASCO Virtual Sci Program: American Society of Clinical Oncology. 2020;38(15_suppl):8512.

    Google Scholar 

  61. Mateos M-V, Martinez-Lopez J, Rodriguez Otero P, Gonzalez-Calle V, Gonzalez MS, Oriol A, et al. Curative strategy (GEM-CESAR) for high-risk smoldering myeloma (SMM): carfilzomib, lenalidomide and dexamethasone (KRd) as induction followed by HDT-ASCT, consolidation with Krd and maintenance with Rd. Blood. 2019;134(Supplement_1):781. https://doi.org/10.1182/blood-2019-125204.

    Article  Google Scholar 

  62. Landgren CO, Chari A, Cohen YC, Spencer A, Voorhees P, Estell JA, et al. Daratumumab monotherapy for patients with intermediate-risk or high-risk smoldering multiple myeloma: a randomized, open-label, multicenter, phase 2 study (CENTAURUS). Leukemia. 2020;34(7):1840–52. https://doi.org/10.1038/s41375-020-0718-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Usmani SZ, Schjesvold F, Oriol A, Karlin L, Cavo M, Rifkin RM, et al. Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e448–e58. https://doi.org/10.1016/S2352-3026(19)30109-7.

    Article  PubMed  Google Scholar 

  64. Mateos M-V, Blacklock H, Schjesvold F, Oriol A, Simpson D, George A, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e459–e69. https://doi.org/10.1016/S2352-3026(19)30110-3.

    Article  PubMed  Google Scholar 

  65. Manasanch EE, Han G, Mathur R, Qing Y, Zhang Z, Lee H, et al. A pilot study of pembrolizumab in smoldering myeloma: report of the clinical, immune, and genomic analysis. Blood Adv. 2019;3(15):2400–8. https://doi.org/10.1182/bloodadvances.2019000300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nooka AK, Wang ML, Yee AJ, Kaufman JL, Bae J, Peterkin D, et al. Assessment of safety and immunogenicity of PVX-410 vaccine with or without lenalidomide in patients with smoldering multiple myeloma: a nonrandomized clinical trial. JAMA Oncol. 2018;4(12):e183267. https://doi.org/10.1001/jamaoncol.2018.3267.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mateos M-V, González-Calle V. Timing of treatment of smoldering myeloma: early treatment. Blood Adv. 2018;2(21):3045–9. https://doi.org/10.1182/bloodadvances.2018021220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kapoor P, Rajkumar SV. Smoldering multiple myeloma: to treat or not to treat. Cancer J. 2019;25(1):65–71. https://doi.org/10.1097/ppo.0000000000000350.

    Article  PubMed  Google Scholar 

  69. Fonseca R, Gonzalez-Velez M. Treatment of smoldering multiple myeloma: expectant observation should still be the standard. Am Soc Clin Oncol Educ Book. 2020;40:364–70. https://doi.org/10.1200/EDBK_280179.

    Article  Google Scholar 

  70. Goodman AM, Kim MS, Prasad V. Persistent challenges with treating multiple myeloma early. Blood. 2020;137:456–8. https://doi.org/10.1182/blood.2020009752.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.M.S. and N.S.C. contributed equally to the literature review and writing of the manuscript.

Corresponding author

Correspondence to Natalie S. Callander.

Ethics declarations

Conflict of Interest

T.M.S. has no conflicts of interest or other disclosures. N.S.C. has received research funding from Cellectar.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Multiple Myeloma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, T.M., Callander, N.S. Progress in the Management of Smoldering Multiple Myeloma. Curr Hematol Malig Rep 16, 172–182 (2021). https://doi.org/10.1007/s11899-021-00623-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-021-00623-7

Keywords

Navigation