Skip to main content

Advertisement

Log in

Decision Analysis of Transplantation for Patients with Myelodysplasia: “Who Should We Transplant Today?”

  • Stem Cell Transplantation (R Maziarz, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Myelodysplastic syndrome (MDS) is a heterogeneous hematological disorder characterized by a spectrum of clinical presentation, cytogenetic, and somatic gene mutations and the risk of transformation to acute leukemia. Management options include observation, supportive care, blood transfusion, administration of growth factors and/or hypomethylating agents, and hematopoietic cell transplant (HCT) either upfront or after disease progression.

Recent Findings

Currently, HCT is the only curative therapy available for patients with MDS, with multiple factors such as donor availability, patient, and disease characteristics being involved in making the decision to proceed with transplant.

Summary

In this article, we summarize (1) overall prognosis and natural history of MDS, (2) currently available non-HCT therapy with a focus on hypomethylating agents (HMA), (3) outcomes after HCT in patients with MDS, (4) factors to be considered to proceed to HCT for treatment of MDS, and (5) more recent/ongoing studies relevant to HCT decision-making processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Steensma DP. Myelodysplastic syndromes current treatment algorithm 2018. Blood Cancer J. 2018;8(5):47.

    PubMed  PubMed Central  Google Scholar 

  2. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

    CAS  PubMed  Google Scholar 

  4. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27 quiz 99.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.

    CAS  PubMed  Google Scholar 

  7. Nazha A, Narkhede M, Radivoyevitch T, Seastone DJ, Patel BJ, Gerds AT, et al. Incorporation of molecular data into the Revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. Leukemia. 2016;30(11):2214–20.

    CAS  PubMed  Google Scholar 

  8. Della Porta MG, Malcovati L, Strupp C, Ambaglio I, Kuendgen A, Zipperer E, et al. Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome. Haematologica. 2011;96(3):441–9.

    PubMed  Google Scholar 

  9. Greenberg PL, Stone RM, Al-Kali A, Barta SK, Bejar R, Bennett JM, et al. Myelodysplastic syndromes, Version 2.2017. NCCN Clin Pract Guidelines Oncol. 2017;15(1):60.

    Google Scholar 

  10. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355(14):1456–65.

    CAS  PubMed  Google Scholar 

  11. List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 2005;352(6):549–57.

    CAS  PubMed  Google Scholar 

  12. Nimer SD. Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol. 2006;24(16):2576–82.

    CAS  PubMed  Google Scholar 

  13. Estey EH, Thall PF, Cortes JE, Giles FJ, O’Brien S, Pierce SA, et al. Comparison of idarubicin + ara-C-, fludarabine + ara-C-, and topotecan + ara-C-based regimens in treatment of newly diagnosed acute myeloid leukemia, refractory anemia with excess blasts in transformation, or refractory anemia with excess blasts. Blood. 2001;98(13):3575–83.

    CAS  PubMed  Google Scholar 

  14. Beran M, Shen Y, Kantarjian H, O’Brien S, Koller CA, Giles FJ, et al. High-dose chemotherapy in high-risk myelodysplastic syndrome: covariate-adjusted comparison of five regimens. Cancer. 2001;92(8):1999–2015.

    CAS  PubMed  Google Scholar 

  15. McCabe DC, Caudill MA. DNA methylation, genomic silencing, and links to nutrition and cancer. Nutr Rev. 2005;63(6 Pt 1):183–95.

    PubMed  Google Scholar 

  16. McCabe MT, Brandes JC, Vertino PM. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009;15(12):3927–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Blaise D, Furst S, Crocchiolo R, El-Cheikh J, Granata A, Harbi S, et al. Haploidentical T cell-replete transplantation with post-transplantation cyclophosphamide for patients in or above the sixth decade of age compared with allogeneic hematopoietic stem cell transplantation from an human leukocyte antigen-matched related or unrelated donor. Biol Blood Marrow Transplant. 2016;22(1):119–24.

    PubMed  Google Scholar 

  18. Blaise D, Nguyen S, Bay JO, Chevallier P, Contentin N, Dhedin N, et al. Allogeneic stem cell transplantation from an HLA-haploidentical related donor: SFGM-TC recommendations (part 1). Pathologie-biologie. 2014;62(4):180–4.

    CAS  PubMed  Google Scholar 

  19. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794–803.

    CAS  PubMed  Google Scholar 

  20. Roberts DA, Steensma DP. Outlook and management of patients with myelodysplastic syndromes failed by hypomethylating agents. Curr Hematol Malig Rep. 2015;10(3):318–28.

    PubMed  Google Scholar 

  21. Komrokji RS. Treatment of higher-risk myelodysplastic syndromes after failure of hypomethylating agents. Clin Lymphoma Myeloma Leuk. 2015;15(Suppl):S56–9.

    PubMed  Google Scholar 

  22. Prebet T, Gore SD, Esterni B, Gardin C, Itzykson R, Thepot S, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29(24):3322–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lubbert M, Bertz H, Ruter B, Marks R, Claus R, Wasch R, et al. Non-intensive treatment with low-dose 5-aza-2′-deoxycytidine (DAC) prior to allogeneic blood SCT of older MDS/AML patients. Bone Marrow Transplant. 2009;44(9):585–8.

    CAS  PubMed  Google Scholar 

  24. Itzykson R, Thépot S, Quesnel B, Dreyfus F, Recher C, Wattel E, et al. Long-term outcome of higher-risk MDS patients treated with azacitidine: an update of the GFM compassionate program cohort. Blood. 2012;119(25):6172–3.

    CAS  PubMed  Google Scholar 

  25. Lubbert M, Suciu S, Baila L, Ruter BH, Platzbecker U, Giagounidis A, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol. 2011;29(15):1987–96.

    PubMed  Google Scholar 

  26. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40.

    CAS  PubMed  Google Scholar 

  27. Platzbecker U, Schetelig J, Finke J, Trenschel R, Scott BL, Kobbe G, et al. Allogeneic hematopoietic cell transplantation in patients age 60-70 years with de novo high-risk myelodysplastic syndrome or secondary acute myelogenous leukemia: comparison with patients lacking donors who received azacitidine. Biol Blood Marrow Transplant. 2012;18(9):1415–21.

    PubMed  PubMed Central  Google Scholar 

  28. • Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Perez WS, Anasetti C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104(2):579–85 This decision analysis study by Cutler et al. indicated that in MAC HCT from a matched sibling donor, patients in the Int-2 and high-risk IPSS groups have longer life expectancy when transplanted early, and delay of HCT results in loss of life years.

    CAS  PubMed  Google Scholar 

  29. Sakai Y, Tanaka Y, Yanagihara T, Watanabe M, Duan X, Terasawa M, et al. The Rac activator DOCK2 regulates natural killer cell-mediated cytotoxicity in mice through the lytic synapse formation. Blood. 2013;122(3):386–93.

    CAS  PubMed  Google Scholar 

  30. Sekeres MA, Othus M, List AF, Odenike O, Stone RM, Gore SD, et al. Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol. 2017;35(24):2745–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakamura R, Palmer J, Parker P, Stein A, Stiller T, Pullarkat V, et al. Improved outcome after reduced intensity allogeneic hematopoietic stem cell transplantation (RI-HCT) for myelodysplastic syndrome (MDS) using tacrolimus/sirolimus-based Gvhd prophylaxis. Blood. 2009;114:2771.

    Google Scholar 

  33. Martino R, Perez-Simon JA, Moreno E, Queralto JM, Caballero D, Mateos M, et al. Reduced-intensity conditioning allogeneic blood stem cell transplantation with fludarabine and oral busulfan with or without pharmacokinetically targeted busulfan dosing in patients with myeloid leukemia ineligible for conventional conditioning. Biol Blood Marrow Transplant. 2005;11(6):437–47.

    CAS  PubMed  Google Scholar 

  34. Oran B, Giralt S, Saliba R, Hosing C, Popat U, Khouri I, et al. Allogeneic hematopoietic stem cell transplantation for the treatment of high-risk acute myelogenous leukemia and myelodysplastic syndrome using reduced-intensity conditioning with fludarabine and melphalan. Biol Blood Marrow Transplant. 2007;13(4):454–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Laport GG, Sandmaier BM, Storer BE, Scott BL, Stuart MJ, Lange T, et al. Reduced-intensity conditioning followed by allogeneic hematopoietic cell transplantation for adult patients with myelodysplastic syndrome and myeloproliferative disorders. Biol Blood Marrow Transplant. 2008;14(2):246–55.

    PubMed  PubMed Central  Google Scholar 

  36. Nakamura R, Rodriguez R, Palmer J, Stein A, Naing A, Tsai N, et al. Reduced-intensity conditioning for allogeneic hematopoietic stem cell transplantation with fludarabine and melphalan is associated with durable disease control in myelodysplastic syndrome. Bone Marrow Transplant. 2007;40(9):843–50.

    CAS  PubMed  Google Scholar 

  37. Nakamura R, Palmer JM, O’Donnell MR, Stiller T, Thomas SH, Chao J, et al. Reduced intensity allogeneic hematopoietic stem cell transplantation for MDS using tacrolimus/sirolimus-based GVHD prophylaxis. Leuk Res. 2012;36(9):1152–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McClune BL, Weisdorf DJ, Pedersen TL, Tunes da Silva G, Tallman MS, Sierra J, et al. Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome. J Clin Oncol. 2010;28(11):1878–87.

    PubMed  PubMed Central  Google Scholar 

  39. Saber W, Cutler CS, Nakamura R, Zhang MJ, Atallah E, Rizzo JD, et al. Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS). Blood. 2013;122(11):1974–82 Authors of study reported that for patients with myelodysplastic syndromes, donor source remains an important determinant of post-transplantation outcomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sorror ML, Sandmaier BM, Storer BE, Maris MB, Baron F, Maloney DG, et al. Comorbidity and disease status based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation. J Clin Oncol. 2007;25(27):4246–54.

    PubMed  Google Scholar 

  41. de Witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753–62.

    PubMed  PubMed Central  Google Scholar 

  42. Lim Z, Brand R, Martino R, van Biezen A, Finke J, Bacigalupo A, et al. Allogeneic hematopoietic stem-cell transplantation for patients 50 years or older with myelodysplastic syndromes or secondary acute myeloid leukemia. J Clin Oncol. 2010;28(3):405–11.

    PubMed  Google Scholar 

  43. Muffly L, Pasquini MC, Martens M, Brazauskas R, Zhu X, Adekola K, et al. Increasing use of allogeneic hematopoietic cell transplantation in patients aged 70 years and older in the United States. Blood. 2017;130(9):1156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Atallah E, Logan B, Chen M, Cutler C, Deeg J, Jacoby M, et al. Comparison of patient age groups in transplantation for myelodysplastic syndrome: the Medicare Coverage With Evidence Development Study. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.5140. Data from this CIBMTR study conducted for evidence development for Centers for Medicare and Medicaid Services (CMS) indicate similar survival in patients with MDS who are older than 65 years compared with younger patients aged 255–64.

  45. Greenberg PL, Attar E, Bennett JM, Bloomfield CD, Borate U, De Castro CM, et al. Myelodysplastic syndromes: clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2013;11(7):838–74.

    CAS  Google Scholar 

  46. Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jayani R, Rosko A, Olin R, Artz A. Use of geriatric assessment in hematopoietic cell transplant. J Geriatr Oncol. 2020;(2):225–236. https://doi.org/10.1016/j.jgo.2019.09.012.

  48. Derman BA, Kordas K, Ridgeway J, Chow S, Dale W, Lee SM, et al. Results from a multidisciplinary clinic guided by geriatric assessment before stem cell transplantation in older adults. Blood Advan. 2019;3(22):3488–98.

    Google Scholar 

  49. Koreth J, Pidala J, Perez WS, Deeg HJ, Garcia-Manero G, Malcovati L, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol. 2013;31(21):2662–70 This study by Koreth et al. extended a Markov decision model to elderly MDS patients and showed for patients with de novo MDS, aged 60–70 years with low/Int-1 disease risk, early transplantation is not the preferred strategy unless MDS-associated quality of life impairment is substantial. For Int-2/high IPSS risk, early RIC HCT can offer a life expectancy benefit, with quality adjusted survival benefit detectable earlier.

    PubMed  PubMed Central  Google Scholar 

  50. Malcovati L, Papaemmanuil E, Ambaglio I, Elena C, Galli A, Della Porta MG, et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014;124(9):1513–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32(25):2691–8.

    PubMed  PubMed Central  Google Scholar 

  52. Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376(6):536–47 This large CIBMTR study for somatic mutations in MDS showed a negative impact of TP53 mutation on survival. The study also showed that the presence of RAS pathway mutations was associated with shorter survival due to relapse while the presence of JAK2 mutations was associated with shorter survival due to NRM.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Aldoss I, Stiller T, Tsai NC, Song JY, Cao T, Bandara NA, et al. Therapy-related acute lymphoblastic leukemia has distinct clinical and cytogenetic features compared to de novo acute lymphoblastic leukemia, but outcomes are comparable in transplanted patients. Haematologica. 2018;103(10):1662–8.

    PubMed  PubMed Central  Google Scholar 

  54. Armitage JO. Bone marrow transplantation. N Engl J Med. 1994;330(12):827–38.

    CAS  PubMed  Google Scholar 

  55. Anasetti C, Amos D, Beatty PG, Appelbaum FR, Bensinger W, Buckner CD, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320(4):197–204.

    CAS  PubMed  Google Scholar 

  56. Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110(13):4576–83.

    CAS  PubMed  Google Scholar 

  57. Worel N, Buser A, Greinix HT, Hagglund H, Navarro W, Pulsipher MA, et al. Suitability criteria for adult related donors: a consensus statement from the Worldwide Network for Blood and Marrow Transplantation Standing Committee on Donor Issues. Biol Blood Marrow Transplant. 2015;21(12):2052–60.

    PubMed  Google Scholar 

  58. Dehn J, Spellman S, Hurley CK, Shaw BE, Barker JN, Burns LJ, et al. Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: guidelines from the NMDP/CIBMTR. Blood. 2019;134(12):924–34.

    CAS  PubMed  Google Scholar 

  59. Kroger N. From nuclear to a global family: more donors for MDS. Blood. 2013;122(11):1848–50.

    CAS  PubMed  Google Scholar 

  60. Koreth J, Biernacki M, Aldridge J, Kim HT, Alyea EP 3rd, Armand P, et al. Syngeneic donor hematopoietic stem cell transplantation is associated with high rates of engraftment syndrome. Biol Blood Marrow Transplant. 2011;17(3):421–8.

    PubMed  Google Scholar 

  61. Kroger N, Brand R, van Biezen A, Bron D, Blaise D, Hellstrom-Lindberg E, et al. Stem cell transplantation from identical twins in patients with myelodysplastic syndromes. Bone Marrow Transplant. 2005;35(1):37–43.

    CAS  PubMed  Google Scholar 

  62. Hows JM, Passweg JR, Tichelli A, Locasciulli A, Szydlo R, Bacigalupo A, et al. Comparison of long-term outcomes after allogeneic hematopoietic stem cell transplantation from matched sibling and unrelated donors. Bone Marrow Transplant. 2006;38(12):799–805.

    CAS  PubMed  Google Scholar 

  63. Blaise D, Kuentz M, Fortanier C, Bourhis JH, Milpied N, Sutton L, et al. Randomized trial of bone marrow versus lenograstim-primed blood cell allogeneic transplantation in patients with early-stage leukemia: a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol. 2000;18(3):537–46.

    CAS  PubMed  Google Scholar 

  64. Powles R, Mehta J, Kulkarni S, Treleaven J, Millar B, Marsden J, et al. Allogeneic blood and bone-marrow stem-cell transplantation in haematological malignant diseases: a randomised trial. Lancet (London, England). 2000;355(9211):1231–7.

    CAS  Google Scholar 

  65. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med. 2001;344(3):175–81.

    CAS  PubMed  Google Scholar 

  66. Morton J, Hutchins C, Durrant S. Granulocyte-colony-stimulating factor (G-CSF)-primed allogeneic bone marrow: significantly less graft-versus-host disease and comparable engraftment to G-CSF-mobilized peripheral blood stem cells. Blood. 2001;98(12):3186–91.

    CAS  PubMed  Google Scholar 

  67. Couban S, Simpson DR, Barnett MJ, Bredeson C, Hubesch L, Howson-Jan K, et al. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood. 2002;100(5):1525–31.

    CAS  PubMed  Google Scholar 

  68. Schmitz N, Beksac M, Hasenclever D, Bacigalupo A, Ruutu T, Nagler A, et al. Transplantation of mobilized peripheral blood cells to HLA-identical siblings with standard-risk leukemia. Blood. 2002;100(3):761–7.

    CAS  PubMed  Google Scholar 

  69. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367(16):1487–96.

    CAS  PubMed  Google Scholar 

  70. Guardiola P, Runde V, Bacigalupo A, Ruutu T, Locatelli F, Boogaerts MA, et al. Retrospective comparison of bone marrow and granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells for allogeneic stem cell transplantation using HLA identical sibling donors in myelodysplastic syndromes. Blood. 2002;99(12):4370–8.

    CAS  PubMed  Google Scholar 

  71. Robin M, Porcher R, Ades L, Raffoux E, Michallet M, Francois S, et al. HLA-matched allogeneic stem cell transplantation improves outcome of higher risk myelodysplastic syndrome a prospective study on behalf of SFGM-TC and GFM. Leukemia. 2015;29(7):1496–501.

    CAS  PubMed  Google Scholar 

  72. Alessandrino EP, Porta MG, Malcovati L, Jackson CH, Pascutto C, Bacigalupo A, et al. Optimal timing of allogeneic hematopoietic stem cell transplantation in patients with myelodysplastic syndrome. Am J Hematol. 2013;88(7):581–8.

    PubMed  PubMed Central  Google Scholar 

  73. Sierra J, Perez WS, Rozman C, Carreras E, Klein JP, Rizzo JD, et al. Bone marrow transplantation from HLA-identical siblings as treatment for myelodysplasia. Blood. 2002;100(6):1997–2004.

    CAS  PubMed  Google Scholar 

  74. Appelbaum FR, Anderson J. Allogeneic bone marrow transplantation for myelodysplastic syndrome: outcomes analysis according to IPSS score. Leukemia. 1998;12(Suppl 1):S25–9.

    PubMed  Google Scholar 

  75. Gerds AT, Gooley TA, Estey EH, Appelbaum FR, Deeg HJ, Scott BL. Pretransplantation therapy with azacitidine vs induction chemotherapy and posttransplantation outcome in patients with MDS. Biol Blood Marrow Transplant. 2012;18(8):1211–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Damaj G, Duhamel A, Robin M, Beguin Y, Michallet M, Mohty M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012;30(36):4533–40.

    CAS  PubMed  Google Scholar 

  77. Festuccia M, Deeg HJ, Gooley TA, Baker K, Wood BL, Fang M, et al. Minimal identifiable disease and the role of conditioning intensity in hematopoietic cell transplantation for myelodysplastic syndrome and acute myelogenous leukemia evolving from myelodysplastic syndrome. Biol Blood Marrow Transplant. 2016;22(7):1227–33.

    PubMed  PubMed Central  Google Scholar 

  78. Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35(11):1154–61.

    PubMed  PubMed Central  Google Scholar 

  79. Myllymaki M, Redd RA, Cutler CS, Saber W, Hu Z-H, Wang T, et al. Telomere length and telomerase complex mutations predict fatal treatment toxicity after stem cell transplantation in patients with myelodysplastic syndrome. Blood. 2018;132(Supplement 1):796.

    Google Scholar 

  80. Saber W, Le Rademacher J, Sekeres M, Logan B, Lewis M, Mendizabal A, et al. Multicenter biologic assignment trial comparing reduced-intensity allogeneic hematopoietic cell transplant to hypomethylating therapy or best supportive care in patients aged 50 to 75 with intermediate-2 and high-risk myelodysplastic syndrome: Blood and Marrow Transplant Clinical Trials Network #1102 study rationale, design, and methods. Biol Blood Marrow Transplant. 2014;20(10):1566–72.

    PubMed  PubMed Central  Google Scholar 

  81. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2009;15(3):367–9.

    PubMed  PubMed Central  Google Scholar 

  82. El-Jawahri A, Kim HT, Steensma DP, Cronin AM, Stone RM, Watts CD, et al. Does quality of life impact the decision to pursue stem cell transplantation for elderly patients with advanced MDS? Bone Marrow Transplant. 2016;51(8):1121–6.

    CAS  PubMed  Google Scholar 

  83. Nazha A, Komrokji RS, Meggendorfer M, Mukherjee S, Al Ali N, Walter W, et al. A personalized prediction model to risk stratify patients with myelodysplastic syndromes. Blood. 2018;132(Supplement 1):793.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Sally Mokhtari for critical review and assistance with editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryotaro Nakamura.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stem Cell Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, S., Nakamura, R. Decision Analysis of Transplantation for Patients with Myelodysplasia: “Who Should We Transplant Today?”. Curr Hematol Malig Rep 15, 305–315 (2020). https://doi.org/10.1007/s11899-020-00573-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-020-00573-6

Keywords

Navigation