Skip to main content

Advertisement

Log in

Sézary Syndrome: Clinical and Biological Aspects

  • T-Cell and Other Lymphoproliferative Malignancies (P Porcu, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Sézary syndrome (SS) is a rare and aggressive type of cutaneous T cell lymphoma (CTCL) characterized by an intensely pruritic, exfoliative rash, known as erythroderma, with cutaneous and systemic dissemination of clonal CD4+ T cells into the blood and lymph nodes. This review aims to present recent advancements in the biological and clinical aspects of SS. We begin by providing an overview of the diagnostic criteria for SS and reviewing some of its epidemiological and clinical aspects. We then discuss updates in the etiology of this elusive disease and the genetic and molecular landscapes that define it. Finally, we provide a short overview of the current therapeutic strategies for SS as well as recent advances in the prognosis of this disease. A brief set of recommendations is provided regarding future directions in research and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yamashita T, Abbade LP, Marques ME, Marques SA. Mycosis fungoides and Sézary syndrome: clinical, histopathological and immunohistochemical review and update. An Bras Dermatol. 2012;87:817–28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weinstock MA, Gardstein B. Twenty-year trends in the reported incidence of mycosis fungoides and associated mortality. Am J Public Health. 1999;89:1240–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Su MW, Dorocicz I, Dragowska WH, et al. Aberrant expression of T-plastin in Sezary cells. Cancer Res. 2003;63:7122–27.

    CAS  PubMed  Google Scholar 

  4. Tang N, Gibson H, Germeroth T, et al. T-plastin (PLS3) gene expression differentiates Sezary syndrome from mycosis fungoides and inflammatory skin diseases and can serve as a biomarker to monitor disease progression. Br J Dermatol. 2010;162:463–66.

    Article  CAS  PubMed  Google Scholar 

  5. Marie-Cardine A, Huet D, Ortonne N, et al. Killer cell Ig-like receptors CD158a and CD158b display a coactivatory function, involving the c-Jun NH2-terminal protein kinase signaling pathway, when expressed on malignant CD4+ T cells from a patient with Sezary syndrome. Blood. 2007;109:5064–65.

    Article  CAS  PubMed  Google Scholar 

  6. Booken N, Gratchev A, Utikal J, et al. Sezary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3. Leukemia. 2008;22:393–9.

    Article  CAS  PubMed  Google Scholar 

  7. Loebel DA, Tsoi B, Wong N, Tam PP. A conserved noncoding intronic transcript at the mouse Dnm3 locus. Genomics. 2005;85:782–9.

    Article  CAS  PubMed  Google Scholar 

  8. Van der Fits L, Out-Luiting JJ, Tensen CP, Zoutman WH, Vermeer MH. Exploring the IL-21-STAT3 axis as therapeutic target for Sézary syndrome. J Invest Dermatol. 2014;134:2639–47. This reference describes a key signaling pathway altered in Sézary syndrome patient cells.

    Article  PubMed  Google Scholar 

  9. Kiel MJ, Sahasrabuddhe AA, Rolland DCM, et al. Genomic analysis reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome. Nat Comm. 2015;6:1–10. This very significant study reveals recurrent mutations in Sézary syndrome patients and suggests commonly altered pathways in the development of disease.

  10. Wong HK, Mishra A, Hake T, Porcu P. Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). Br J Haematol. 2011;155:150–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moriarty B, Whittaker S. Diagnosis, prognosis and management of erythrodermic cutaneous T-cell lymphoma. Expert Rev Hematol. 2015;8:159–71.

    Article  CAS  PubMed  Google Scholar 

  12. Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110:1713–22.

    Article  CAS  PubMed  Google Scholar 

  13. Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sèzary syndrome): part II. Prognosis, management, and future directions. J Am Acad Derm. 2014;70(223):e1-223.e17. This comprehensive review summarizes the current recommendations for treatment of cutaneous T cell lymphoma.

  14. Klemke CD, Booken N, Weiss C, et al. Histopathological and immunophenotypical criteria for the diagnosis of Sézary syndrome in differentiation from other erythrodermic skin diseases: a European Organisation for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Task Force Study of 97 cases. Br J Dermatol. 2015;173:93–105. This thorough study provides recommendations to aid in pathologic diagnosis of Sézary syndrome as well as the features that distinguish this diagnosis.

    Article  CAS  PubMed  Google Scholar 

  15. Bunn PA, Lamberg SI. Report of the committee on staging and classification of cutaneous t-cell lymphomas. Cancer Treat Rep. 1979;63:725–8.

    PubMed  Google Scholar 

  16. Olsen EA, Whittaker S, Kim YH, et al. Clinical end points and response criteria in mycosis fungoides and Sézary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol. 2007;29:2598–607.

    Article  Google Scholar 

  17. Fraser-Andrews EA, Mitchell T, Ferreira S, et al. Molecular staging of lymph nodes from 60 patients with mycosis fungoides and Sézary syndrome: correlation with histopathology and outcome suggests prognostic relevance in mycosis fungoides. Br J Dermatol. 2006;155:756–62.

    Article  CAS  PubMed  Google Scholar 

  18. Matutes E, Robinson D, O’Brien M, et al. Candidate counterparts of Sézary cells and adult T-cell lymphoma-leukaemia cells in normal peripheral blood: an ultrastructural study with the immunogold method and monoclonal antibodies. Leuk Res. 1983;7:787–801.

    Article  CAS  PubMed  Google Scholar 

  19. Liu L, Abken H, Pföhler C, et al. Accumulation of CD4+CD7− T cells in inflammatory skin lesions: evidence for preferential adhesion to vascular endothelial cells. Clin Exp Immunol. 2000;121:94–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harmon CB, Witzig TE, Katzmann JA, Pittelkow MR. Detection of circulating T cells with CD4+CD7− immunophenotype in patients with benign and malignant lymphoproliferative dermatoses. J Am Acad Dermatol. 1996;35:404–10.

    Article  CAS  PubMed  Google Scholar 

  21. Vaughan J, Harrington AM, Hari PN, Kroft SH, Olteanu H. Immunophenotypic stability of Sézary cells by flow cytometry: usefulness of flow cytometry in assessing response to and guiding alemtuzumab therapy. Am J Clin Pathol. 2012;137:403–11.

    Article  PubMed  Google Scholar 

  22. Dummer R, Nestle FO, Niederer E, et al. Genotypic, phenotypic and functional analysis of CD4+CD7+ and CD4+CD7− T lymphocyte subsets in Sézary syndrome. Arch Dermatol Res. 1999;291:307–11.

    Article  CAS  PubMed  Google Scholar 

  23. Vonderheid EC, Bernengo MG, Burg G, et al. Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas. J Am Acad Dermatol. 2002;46:95–106.

    Article  PubMed  Google Scholar 

  24. Scala E, Abeni D, Pomponi D, et al. Single TCR-Vβ2 evaluation discloses the circulating T cell clone in Sezary syndrome: one family fits all! Arch Dermatol Res. 2015;307:487–93. This study describes a recurrent circulating T cell receptor clone in patients and discusses implications for the histogenesis of Sézary syndrome.

  25. Boonk SE, Cetinozman F, Vermeer MH, Jansen PM, Willemze R. Differential expression of TOX by skin-infiltrating T cells in Sézary syndrome and erythrodermic dermatitis. J Cutan Pathol. 2015;42:604–9. This study describes a new biomarker for diagnosis of Sézary syndrome to distinguish from other erythrodermic diseases.

  26. Schrader AM, Jansen PM, Willemze R. TOX expression in cutaneous B-cell lymphomas. Arch Dermatol Res. 2016. This recent survey demonstrates the expression of TOX in B cell neoplasms.

  27. Jones CL, Ferreira S, Mckenzie RC, et al. Regulation of T-plastin expression by promoter hypomethylation in primary cutaneous T-cell lymphoma. J Invest Dermatol. 2012;132:2042–49.

    Article  CAS  PubMed  Google Scholar 

  28. Van Doorn R, Slieker RC, Boonk SE, et al. Epigenomic analysis of Sézary syndrome defines patterns of aberrant DNA methylation and identifies diagnostic markers. J Invest Dermatol. 2016. doi:10.1016/j.jid.2016.03.042. This study defined genome-wide patterns of DNA methylation in Sézary syndrome and identified distinct methylation markers that can be used in diagnosis.

  29. Michel L, Jean-Louis F, Begue E, Bensussan A, Bagot M. Use of PLS3, Twist, CD158k/KIR3DL2, and NKp46 gene expression combination for reliable Sézary syndrome diagnosis. Blood. 2013;121:1477–78. This paper provides suggestions for the use of recently described diagnostic biomarkers in Sézary syndrome patient diagnosis.

  30. Hurabielle C, Michel L, Ram-Wolff C, et al. Expression of Sézary biomarkers in the blood of patients with erythrodermic mycosis fungoides. J Invest Dermatol. 2016;136:317–20. This review discusses novel biomarkers and their potential uses in the diagnosis of Sézary syndrome.

  31. Boonk SE, Zoutman WH, Marie-Cardine A, et al. Evaluation of immunophenotypic and molecular biomarkers for Sézary syndrome using standard operating procedures: multicenter study of 59 cases. J Invest Dermatol. 2016. doi:10.1016/j.jid.2016.01.038. This study provides recommendations for diagnosis of Sézary syndrome using immunologic and molecular biomarker analysis.

  32. Bradford PT, Devesa SS, Anderson WF, Toro JR. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009;113:5064–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Imam MH, Shenoy PJ, Flowers CR, Phillips A, Lechowicz MJ. Incidence and survival patterns of cutaneous T-cell lymphomas in the United States. Leuk Lymphoma. 2013;54:752–59. This survey describes updates to the epidemiology and prognosis of cutaneous T cell lymphomas.

  34. Korgavkar K, Xiong M, Weinstock M. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013;149:1295–99. This survey updates the epidemiology of cutaneous T cell lymphoma.

  35. Wilcox RA. Cutaneous T-cell lymphoma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89:837–51. This comprehensive review summarizes recent advances in management and diagnosis of cutaneous T cell lymphoma.

  36. Samimi S, Rook AH, Kim EJ. Update on epidemiology of cutaneous T-cell lymphoma. Curr Derm Rep. 2013;2:35–41. This paper summarizes new findings related to the incidence of cutaneous T cell lymphoma.

  37. Aschebrook- Kilfoy B, Cocco P, La Vecchia C, et al. Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sézary syndrome: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:98–105. This is the first large study to describe risk factors for Sézary syndrome.

  38. Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Arch Dermatol. 2007;143:854–9.

    Article  PubMed  Google Scholar 

  39. Wong HK, Wilson AJ, Gibson HM, et al. Increased expression of CTLA-4 in malignant T-cells from patients with mycosis fungoides—cutaneous T cell lymphoma. J Invest Dermatol. 2006;126:212–19.

    Article  CAS  PubMed  Google Scholar 

  40. Hu SC. Mycosis fungoides and Sézary syndrome: role of chemokines and chemokine receptors. World J Dermatol. 2015;4:69–79. This review summarizes the recent findings related to chemokine signaling in cutaneous T-cell lymphoma.

  41. Klemke CD, Brade J, Weckesser S, et al. The diagnosis of Sézary syndrome on peripheral blood by flow cytometry requires the use of multiple biomarkers. Br K Dermatol. 2008;159:871–80.

    Article  Google Scholar 

  42. Capriotti E, Vonderheid EC, Thoburn CJ, et al. Expression of T-plastin, FoxP3 and other tumor-associated markers by leukemic T-cells of cutaneous T-cell lymphoma. Leuk Lymphoma. 2008;49:1190–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krejsgaard LM, Gjerdrum LM, Ralfkiaer E, et al. Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome. Leukemia. 2008;22:2230–39.

    Article  CAS  PubMed  Google Scholar 

  44. Narducci MG, Scala E, Bresin A, et al. Skin homing of Sézary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood. 2006;107:1108–15.

    Article  CAS  PubMed  Google Scholar 

  45. Wilcox RA, Wada DA, Ziesmer SC, et al. Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood. 2009;114:2936–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schlapbach C, Ochsenbein A, Kaelin U, et al. High numbers of DC-SIGN+ dendritic cells in lesional skin of cutaneous T-cell lymphoma. J Am Acad Dermatol. 2010;62:995–1004.

    Article  PubMed  Google Scholar 

  47. Krejsgaard CS, Vetter-Kauczok A, Woetmann A, et al. Jak3-and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia. 2006;20:1759–66.

    Article  CAS  PubMed  Google Scholar 

  48. Miyagaki T, Sugaya M, Suga H, et al. Angiogenin levels are increased in lesional skin and sera in patients with erythrodermic cutaneous T cell lymphoma. Arch Dermatol Res. 2012;304:401–6.

    Article  CAS  PubMed  Google Scholar 

  49. Kawaguchi M, Sugaya M, Suga H, et al. Serum levels of angiopoietin-2, but not angiopoietin-1, are elevated in patients with erythrodermic cutaneous T-cell lymphoma. Acta Derm Venereol. 2014;94:9–13. This study describes angiogenic signaling within lesioned skin of patients with cutaneous T cell lymphoma.

  50. Berger CL, Tigelaar R, Cohen J, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood. 2005;105:1640–47.

    Article  CAS  PubMed  Google Scholar 

  51. Wysocka M, Zaki MH, French LE, et al. Sézary syndrome patients demonstrate a defect in dendritic cell populations: effects of CD40 ligand and treatment with GM-CSF on dendritic cell numbers and the production of cytokines. Blood. 2002;100:3287–94.

    Article  CAS  PubMed  Google Scholar 

  52. Bouaziz JD, Ortonne N, Giustiniani J, et al. Circulating natural killer lymphocytes are potential cytotoxic effectors against autologous malignant cells in Sézary syndrome patients. J Invest Dermatol. 2005;125:1273–78.

    Article  CAS  PubMed  Google Scholar 

  53. Yawalkar N, Ferenczi K, Jones DA, et al. Profound loss of T-cell receptor repertoire complexity in cutaneous T-cell lymphoma. Blood. 2003;102:4059–66.

    Article  CAS  PubMed  Google Scholar 

  54. Krejsgaard T, Odum N, Geisler C, et al. Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome. Leukemia. 2012;26:424–32.

    Article  CAS  PubMed  Google Scholar 

  55. Rabenhorst A, Schlaak M, Heukamp LC, et al. Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood. 2012;120:2042–54.

    Article  CAS  PubMed  Google Scholar 

  56. Axelrod PI, Lorber B, Vonderheid EC. Infections complicating mycosis fungoides and Sézary syndrome. J Am Med Assoc. 1992;267:1354–8.

    Article  CAS  Google Scholar 

  57. Lin WM, Lewis JM, Filler RB, et al. Characterization of the DNA copy-number genome in the blood of cutaneous T-cell lymphoma patients. J Invest Dermatol. 2012;132:188–97.

    Article  CAS  PubMed  Google Scholar 

  58. De Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Gen. 2015;47:1465–70. This broad-scope genome sequencing study reveals recurrent mutations that may impact disease progression.

  59. Cristofoletti C, Picchio MC, Russo G. MicroRNA-mediated gene expression in Sezary syndrome: an overview. Intl Trends Immunol. 2013;3:53–60. This paper describes alterations to the microRNA landscape occurring in Sézary syndrome patients.

  60. Cristofoletti C, Picchio MC, Lazzxeri C, et al. Comprehensive analysis of PTEN status in Sezary syndrome. Blood. 2013;122:3511–20. This study evaluated PTEN expression in Sézary syndrome patient cells.

  61. Mao X, Orchard G, Lillington DM, et al. Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas. Blood. 2003;101:1513–9.

    Article  CAS  PubMed  Google Scholar 

  62. Scarisbrick JJ, Woolford AJ, Calonje E, et al. Frequent abnormalities of the p15 and p16 genes in mycosis fungoides and sezary syndrome. J Invest Dermatol. 2002;118:493–9.

    Article  CAS  PubMed  Google Scholar 

  63. Laharanne E, Chevret E, Idrissi Y, et al. CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod Pathol. 2010;23:547–58.

    Article  CAS  PubMed  Google Scholar 

  64. Wang L, Ni X, Covington KR, et al. Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015;47:1426–34. This broad-scope genomic sequencing study reveals recurrent mutations involved in T cell signaling in Sézary syndrome.

  65. Mishra A, La Perle K, Kwiatkowski S, et al. Mechanism, consequences, and therapeutic targeting of abnormal IL15 signaling in cutaneous T-cell lymphoma. Cancer Discovery. 2016;6:1–20. This study describes the epigenetic regulation of IL15 signaling in the oncogenesis of cutaneous T cell lymphoma.

  66. Suga H, Sugaya M, Miyagaki T, et al. The role of IL-32 in cutaneous T-cell lymphoma. J Invest Dermatol. 2014;134:1428–35. This paper describes the implications of IL-32 expression in neoplastic T cells in cutaneous T cell lymphoma.

  67. Ungewickell A, Bhaduri A, Rios E, et al. Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015;47:1056–60. This genomic sequencing study describes frequent mutations in tumor-necrosis factor receptor and describes the implication for disease progression.

  68. Ehrlich M. DNA methylation in cancer: Too much, but also too little. Oncogene. 2002;12:5400–13.

    Article  Google Scholar 

  69. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  CAS  PubMed  Google Scholar 

  70. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300:489–92.

    Article  CAS  PubMed  Google Scholar 

  71. Karenko L, Hahtola S, Ranki A. Molecular cytogenetics in the study of cutaneous T-cell lymphomas (CTCL). Cytogenet Genome Res. 2007;118:353–61.

    Article  CAS  PubMed  Google Scholar 

  72. Wong HK, Gibson H, Hake T, et al. Promoter-specific hypomethylation is associated with overexpression of PLS3, GATA6, and TWIST1 in the Sezary syndrome. J Invest Dermatol. 2015;135:2084–92. This study reveals epigenetic alterations leading to aberrant expression of non-lymphoid genes and discusses the implications for disease progression in Sézary syndrome.

  73. Pham D, Vincentz JW, Firulli AB, Kaplan MH. Twist1 regulates Ifng expression in Th1 cells by interfering with Runx3 function. J Immunol. 2012;189:832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Begue E, Michel L, Jean-Louis F, Bagot M, Bensussan A. Promoter hypomethylation and expression of PLS3 in human Sezary lymphoma cells. SOJ Immunol. 2012;1:4.

    Google Scholar 

  75. Van Doorn R, Zoutman WH, Dijkman R, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 2005;23:3886–96.

    Article  PubMed  Google Scholar 

  76. Ballabio E, Mitchell T, van Kester MS, et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood. 2010;116:1105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Narducci MG, Arcelli D, Picchio MC, et al. MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sézary syndrome. Cell Death Dis. 2011;2:e151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ralfkiaer U, Hagedorn PH, Bangsgaard N, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 2011;118:5891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sandoval J, Diaz-Lagares A, Salgado R, et al. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. J Invest Dermatol. 2015;135:1128–37. This study discusses alterations in the microRNA profile in cutaneous T cell lymphoma and the potential epigenetic mechanisms behind them.

  80. Lee CS, Ungewickell A, Bhaduri A, et al. Transcriptome sequencing in Sézary syndrome identifies Sézary cell and mycosis fungoides-associated lncRNAs and novel transcripts. Blood. 2012;120:3288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sommer VH, Clemmensen OJ, Nielsen O, et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma: evidence for an antiapoptotic function of STAT3. Leukemia. 2004;18:1288–95.

    Article  CAS  PubMed  Google Scholar 

  82. Izban KF, Egrin M, Qin JZ, et al. Constitutive expression of NF-kappa B is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis. Hum Pathol. 2000;31:1482–90.

    Article  CAS  PubMed  Google Scholar 

  83. Mao X, Orchard G, Vonderheid EC, et al. Heterogeneous abnormalities of CCND1 and RB1 in primary cutaneous T-cell lymphomas suggesting impaired cell cycle control in disease pathogenesis. J Invest Dermatol. 2006;126:1388–95.

    Article  CAS  PubMed  Google Scholar 

  84. Qin JZ, Dummer R, Burg G, Döbbeling U. Constitutive and interleukin-7/interleukin-15 stimulated DNA binding of Myc, Jun, and novel Myc-like proteins in cutaneous T-cell lymphoma cells. Blood. 1999;93:260–7.

    CAS  PubMed  Google Scholar 

  85. Kiessling MK, Oberholzer PA, Mondal C, et al. High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade. Blood. 2011;117:2433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gibson HM, Mishra A, Chan DV, et al. Impaired proteasome function activates GATA3 in T-cells and upregulates CTLA-4: relevance for Sezary syndrome. J Invest Dermatol. 2013;133:249–57. This paper discusses a novel mechanism in the Sézary syndrome—that of impaired proteasome function—which alters protein composition in patient cells.

  87. Wu J, Wood GS. Reduction of Fas/CD95 promoter methylation, upregulation of Fas protein, and enhancement of sensitivity to apoptosis in cutaneous T-cell lymphoma. Arch Dermatol. 2011;147:443–9.

    Article  CAS  PubMed  Google Scholar 

  88. Esmailzadeh S, Huang Y, Su MW, Zhou Y, Jiang X. BIN1 tumor suppressor regulates Fas/Fas ligand-mediated apoptosis through c-FLIP in cutaneous T-cell lymphoma. Leukemia. 2015;29:1402–13. This paper reveals a new tumor suppressor for cutaneous T-cell lymphoma and describes the molecular mechanism.

  89. Jain S, Stroopinsky D, Yin L, et al. Mucin 1 is a potential therapeutic target in cutaneous T-cell lymphoma. Blood. 2015;126:354–62. This study reveals a factor involved in reactive oxygen species-mediated damage as novel target for treatment of cutaneous T cell lymphoma.

  90. Mishra A, Sullivan L, Caligiuri MA. Molecular pathways: interleukin-15 signaling in health and in cancer. Clin Cancer Res. 2014;20:2044–50. This comprehensive review discusses the role of IL-15 in cutaneous hemostasis and hematologic malignancy.

  91. Marzec M, Liu X, Kasprzycka M, et al. IL-2 and IL-15-induced activation of the rapamycin-sensitive mTORC1 pathway in malignant CD4+ T lymphocytes. Blood. 2008;111:2181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marzec M, Halasa K, Kasprzychka M, et al. Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells. Cancer Res. 2008;68:1083–91.

    Article  CAS  PubMed  Google Scholar 

  93. Benton EC, Crichton S, Talpur R, et al. A cutaneous lymphoma international prognostic index (CLIPi) for mycosis fungoides and Sezary syndrome. Euro J Cancer. 2013;49:2859–68. This paper provides recommendations for prognostic markers in the use of management of cutaneous T-cell lymphoma patients.

    Article  CAS  Google Scholar 

  94. Agar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol. 2010;28:4730–9.

    Article  PubMed  Google Scholar 

  95. Benner MF, Jansen PM, Vermeer MH, Willemze R. Prognostic factors in transformed mycosis fungoides: a retrospective analysis of 100 cases. Blood. 2012;119:1643–9.

    Article  CAS  PubMed  Google Scholar 

  96. Kim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT. Long-term outcome of 525 patients with mycosis fungoides and Sézary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol. 2003;139:857–66.

    PubMed  Google Scholar 

  97. Talpur R, Singh L, Daulat S, et al. Long term outcomes of 1263 patients with mycosis fungoides and Sézary syndrome from 1982 to 2009. Clin Can Res. 2012;18:10.

    Article  Google Scholar 

  98. Kubica AW, Davis MD, Weaver AL, Killian JM, Pittelkow MR. Sézary syndrome: a study of 176 patients at Mayo Clinic. J Am Acad Dermatol. 2012;67:1189–99.

    Article  PubMed  Google Scholar 

  99. Alberti-Violetti S, Talpur R, Schlichte M, Sui D, Duvic M. Advanced-stage mycosis fungoides and Sézary syndrome: survival and response to treatment. Clinical Lymphoma Myeloma and Leukemia. 2015;15:e105–12. This paper summarizes clinical outcome data for numerous relevant therapies in advanced stage cutaneous T cell lymphoma.

  100. Fierro MT, Ponti R, Titli S, et al. TCRγ-chain gene rearrangement by GeneScan: incidence and significance of clonal heterogeneity in Sézary syndrome. J Invest Dermatol. 2010;130:2312–19.

    Article  CAS  PubMed  Google Scholar 

  101. Scarisbrick JJ, Kim YH, Whittaker SJ, et al. Prognostic factors, prognostic indices and staging in mycosis fungoides and Sézary syndrome: where are we now? Br J Dermatol. 2014;170:1226–36. This review discusses recent advances in understanding impacts of prognostic factors on patient outcome in cutaneous T cell lymphoma.

  102. Väkevä L, Mäkinen-Kiljunen S, Ranki A. Allergen-specific IgE responses are found in pre-Sézary syndrome patients and in erythrodermic atopic patients but not in true Sézary syndrome patients. J Am Acad Dermatol. 2015;72:352–3. This study describes differential IgE responses in a subset of patients with early-stage disease.

  103. Scala E, Abeni D, Russo G, Narducci MG. IgE reactivity and survival probabilities in Sézary syndrome. J Acad Dermatol. 2015;72:e177. This study describes IgE reactivity in Sézary syndrome patients and their corresponding prognosis.

  104. Caprini E, Cristofoletti C, Arcelli D, et al. Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays. Cancer Res. 2009;69:8438–46.

    Article  CAS  PubMed  Google Scholar 

  105. Salgado R, Servitje O, Gallardo F, et al. Oligonucleotide array-CGH identifies genomic subgroups and prognostic markers for tumor stage mycosis fungoides. J Invest Dermatol. 2010;130:1126–35.

    Article  CAS  PubMed  Google Scholar 

  106. Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer. 2007;7:357–69.

    Article  CAS  PubMed  Google Scholar 

  107. Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.

    Article  CAS  PubMed  Google Scholar 

  108. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124:30–9. This review describes the available HDAC inhibitors on the market for treatment of cancer and their mechanisms.

  109. Prince HM, Dickenson M. Romidepsin for cutaneous T-cell lymphoma. Clin Cancer Res. 2012;18:1–7.

    Article  Google Scholar 

  110. Rodd AL, Ververis K, Karagiannis TC. Current and emerging therapeutics for cutaneous T-cell lymphoma: histone deacetylase inhibitors. Lymphoma. 2012;2012:1–10.

    Google Scholar 

  111. Olsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:3109–15.

    Article  CAS  PubMed  Google Scholar 

  112. Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Whittaker SJ, Demierre MF, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–91.

    Article  CAS  PubMed  Google Scholar 

  114. Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wong HK. Novel biomarkers, dysregulated epigenetics, and therapy in cutaneous T-cell lymphoma. Discov Med. 2013;87:71–8. This thorough review provides discussion of recently recognized biomarkers and novel targets for therapy in cutaneous T cell lymphoma.

  116. Bernengo MG, Quaglino P, Comessatti A, et al. Low-dose intermittent alemtuzumab in the treatment of Sézary syndrome: clinical and immunologic findings in 14 patients. Haematologica. 2007;92:784–94.

    Article  CAS  PubMed  Google Scholar 

  117. Lechowicz MJ, Lazarus HM, Carreras J, et al. Allogeneic hematopoietic cell transplantation for mycosis fungoides and Sezary syndrome. Bone Marrow Transplant. 2014;49:1360–65. This paper summarizes results of clinical use of allogeneic transplant in cutaneous T cell lymphoma patients.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierluigi Porcu or Anjali Mishra.

Ethics declarations

Conflict of Interest

Rebecca Kohnken, Stephanie Fabbro, Justin Hastings, and Anjali Mishra each declare no potential conflict of interest.

Pierluigi Porcu is a section editor for Current Hematologic Malignancy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on T-Cell and Other Lymphoproliferative Malignancies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohnken, R., Fabbro, S., Hastings, J. et al. Sézary Syndrome: Clinical and Biological Aspects. Curr Hematol Malig Rep 11, 468–479 (2016). https://doi.org/10.1007/s11899-016-0351-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-016-0351-0

Keywords

Navigation