Skip to main content
Log in

Back to Biology: New Insights on Inheritance in Myeloproliferative Disorders

  • Myeloproliferative Disorders (C Harrison, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The myeloproliferative disorders (MPDs) are a group of hematologic diseases with significant overlap in both clinical phenotype and genetic etiology. While most often caused by acquired somatic mutations in hematopoietic stem cells, the presence of familial clustering in MPD cases suggests that inheritance is an important factor in the etiology of this disease. Though far less common than sporadic disease, inherited MPDs can be clinically indistinguishable from sporadic disease. Recently, germline mutations in Janus kinase 2 (JAK2) and MPL, two genes frequently mutated in sporadic MPD, have been shown to cause inherited thrombocytosis. Study of the function of these mutant proteins has led to a new understanding of the biological mechanisms that produce myeloproliferative disease. In this review, we summarize the data regarding inherited mutations that cause or predispose to MPDs, with a focus on the biological effects of mutant proteins. We propose that defining inherited MPDs in this manner has the potential to simplify diagnosis in a group of disorders that can be difficult to differentiate clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Skoda RC. Hereditary myeloproliferative disorders. Haematologica. 2010;95(1):6–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8. Used targeting next-generation sequencing to search for mutations in a large cohort of MPD patients. Found that the overall mutation rate in MPD is low and correlated survival to number of somatic mutations.

    Article  CAS  PubMed  Google Scholar 

  3. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. Identified CALR as a frequently mutated gene in MPD.

    Article  CAS  PubMed  Google Scholar 

  4. Makishima H, Maciejewski JP. Pathogenesis and consequences of uniparental disomy in cancer. Clin Cancer Res. 2011;17(12):3913–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kralovics R. Genetic complexity of myeloproliferative neoplasms. Leukemia. 2008;22(10):1841–8.

    Article  CAS  PubMed  Google Scholar 

  6. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112(6):2199–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L, Vanelli L, et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J Clin Oncol. 2007;25(35):5630–5.

    Article  PubMed  Google Scholar 

  8. Olcaydu D, Rumi E, Harutyunyan A, Passamonti F, Pietra D, Pascutto C, et al. The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica. 2011;96(3):367–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C, et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood. 2006;108(1):346–52.

    Article  CAS  PubMed  Google Scholar 

  10. Malak S, Labopin M, Saint-Martin C, Bellanne-Chantelot C, Najman A, French Group of Familial Myeloproliferative Disorders. Long term follow up of 93 families with myeloproliferative neoplasms: life expectancy and implications of JAK2V617F in the occurrence of complications. Blood Cells Mol Dis. 2012;49(3–4):170–6.

    Article  PubMed  Google Scholar 

  11. Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111(3):1686–9.

    Article  CAS  PubMed  Google Scholar 

  12. Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C, et al. Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood. 2009;114(8):1628–32.

    Article  CAS  PubMed  Google Scholar 

  13. Maffioli M, Genoni A, Caramazza D, Mora B, Bussini A, Merli M, et al. Looking for CALR mutations in familial myeloproliferative neoplasms. Leukemia. 2014;28(6):1357–60.

    Article  CAS  PubMed  Google Scholar 

  14. Lundberg P, Nienhold R, Ambrosetti A, Cervantes F, Perez-Encinas MM, Skoda RC. Somatic mutations in calreticulin can be found in pedigrees with familial predisposition to myeloproliferative neoplasms. Blood. 2014;123(17):2744–5.

    Article  CAS  PubMed  Google Scholar 

  15. Rumi E, Passamonti F, Pietra D, Della Porta MG, Arcaini L, Boggi S, et al. JAK2 (V617F) as an acquired somatic mutation and a secondary genetic event associated with disease progression in familial myeloproliferative disorders. Cancer. 2006;107(9):2206–11.

    Article  CAS  PubMed  Google Scholar 

  16. Pardanani A, Lasho T, McClure R, Lacy M, Tefferi A. Discordant distribution of JAK2V617F mutation in siblings with familial myeloproliferative disorders. Blood. 2006;107(11):4572–3.

    Article  CAS  PubMed  Google Scholar 

  17. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet. 2009;41(4):455–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41(4):450–4.

    Article  CAS  PubMed  Google Scholar 

  19. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41(4):446–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gordeuk VR, Stockton DW, Prchal JT. Congenital polycythemias/erythrocytoses. Haematologica. 2005;90(1):109–16.

    CAS  PubMed  Google Scholar 

  21. Teofili L, Larocca LM. Advances in understanding the pathogenesis of familial thrombocythaemia. Br J Haematol. 2011;152(6):701–12.

    Article  CAS  PubMed  Google Scholar 

  22. Prchal JT. Pathogenetic mechanisms of polycythemia vera and congenital polycythemic disorders. Semin Hematol. 2001;38(1 Suppl 2):10–20.

    Article  CAS  PubMed  Google Scholar 

  23. Rumi E. Familial chronic myeloproliferative disorders: the state of the art. Hematol Oncol. 2008;26(3):131–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kralovics R, Prchal JT. Genetic heterogeneity of primary familial and congenital polycythemia. Am J Hematol. 2001;68(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  25. Liu E, Jelinek J, Pastore YD, Guan Y, Prchal JF, Prchal JT. Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality assays and comparison with PRV-1 expression and BFU-E response to erythropoietin. Blood. 2003;101(8):3294–301.

    Article  CAS  PubMed  Google Scholar 

  26. Rives S, Pahl HL, Florensa L, Bellosillo B, Neusuess A, Estella J, et al. Molecular genetic analyses in familial and sporadic congenital primary erythrocytosis. Haematologica. 2007;92(5):674–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ghilardi N, Wiestner A, Skoda RC. Thrombopoietin production is inhibited by a translational mechanism. Blood. 1998;92(11):4023–30.

    CAS  PubMed  Google Scholar 

  28. Wiestner A, Schlemper RJ, van der Maas AP, Skoda RC. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet. 1998;18(1):49–52.

    Article  CAS  PubMed  Google Scholar 

  29. Ding J, Komatsu H, Iida S, Yano H, Kusumoto S, Inagaki A, et al. The Asn505 mutation of the c-MPL gene, which causes familial essential thrombocythemia, induces autonomous homodimerization of the c-mpl protein due to strong amino acid polarity. Blood. 2009;114(15):3325–8.

    Article  CAS  PubMed  Google Scholar 

  30. El-Harith e-HA, Roesl C, Ballmaier M, Germeshausen M, Frye-Boukhriss H, von Neuhoff N, et al. Familial thrombocytosis caused by the novel germ-line mutation p.Pro106Leu in the MPL gene. Br J Haematol. 2009;144(2):185–94.

    Article  CAS  Google Scholar 

  31. Moliterno AR, Williams DM, Gutierrez-Alamillo LI, Salvatori R, Ingersoll RG, Spivak JL. Mpl baltimore: a thrombopoietin receptor polymorphism associated with thrombocytosis. Proc Natl Acad Sci U S A. 2004;101(31):11444–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rumi E, Harutyunyan AS, Casetti I, Pietra D, Nivarthi H, Moriggl R, et al. A novel germline JAK2 mutation in familial myeloproliferative neoplasms. Am J Hematol. 2014;89(1):117–8.

    Article  CAS  PubMed  Google Scholar 

  33. Mead AJ, Rugless MJ, Jacobsen SE, Schuh A. Germline JAK2 mutation in a family with hereditary thrombocytosis. N Engl J Med. 2012;366(10):967–9.

    Article  CAS  PubMed  Google Scholar 

  34. Marty C, Saint-Martin C, Pecquet C, Grosjean S, Saliba J, Mouton C, et al. Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood. 2014;123(9):1372–83. Identified novel germline JAK2 mutations and showed that they are biologically less active than the V617F mutation.

    Article  CAS  PubMed  Google Scholar 

  35. Etheridge SL, Cosgrove ME, Sangkhae V, Corbo LM, Roh ME, Seeliger MA, et al. A novel activating, germline JAK2 mutation, JAK2R564Q, causes familial essential thrombocytosis. Blood. 2014;123(7):1059–68.

    Article  CAS  PubMed  Google Scholar 

  36. Mead AJ, Chowdhury O, Pecquet C, Dusa A, Woll P, Atkinson D, et al. Impact of isolated germline JAK2V617I mutation on human hematopoiesis. Blood. 2013;121(20):4156–65. Found that the V617I mutation induces cytokine hyperresponsiveness and may expand the bone marrow stem cell population.

    Article  CAS  PubMed  Google Scholar 

  37. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    Article  CAS  PubMed  Google Scholar 

  38. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108(10):3472–6.

    Article  CAS  PubMed  Google Scholar 

  39. Teofili L, Giona F, Torti L, Cenci T, Ricerca BM, Rumi C, et al. Hereditary thrombocytosis caused by MPLSer505Asn is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis. Haematologica. 2010;95(1):65–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood. 2008;112(1):141–9.

    Article  CAS  PubMed  Google Scholar 

  41. Prchal JT. Polycythemia vera and other primary polycythemias. Curr Opin Hematol. 2005;12(2):112–6.

    Article  PubMed  Google Scholar 

  42. Liu K, Martini M, Rocca B, Amos CI, Teofili L, Giona F, et al. Evidence for a founder effect of the MPL-S505N mutation in eight Italian pedigrees with hereditary thrombocythemia. Haematologica. 2009;94(10):1368–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Teofili L, Giona F, Martini M, Cenci T, Guidi F, Torti L, et al. Markers of myeloproliferative diseases in childhood polycythemia vera and essential thrombocythemia. J Clin Oncol. 2007;25(9):1048–53.

    Article  CAS  PubMed  Google Scholar 

  44. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108(4):1377–80.

    Article  CAS  PubMed  Google Scholar 

  45. Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115(10):2003–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood. 2003;102(10):3793–6.

    Article  CAS  PubMed  Google Scholar 

  47. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506(7488):328–33.

    Article  CAS  PubMed  Google Scholar 

  48. Harutyunyan AS, Kralovics R. Role of germline genetic factors in MPN pathogenesis. Hematol Oncol Clin N Am. 2012;26(5):1037–51.

    Article  Google Scholar 

  49. Skoda R, Prchal JT. Lessons from familial myeloproliferative disorders. Semin Hematol. 2005;42(4):266–73.

    Article  CAS  PubMed  Google Scholar 

  50. Higgs JR, Sadek I, Neumann PE, Ing VW, Renault NK, Berman JN, et al. Familial essential thrombocythemia with spontaneous megakaryocyte colony formation and acquired JAK2 mutations. Leukemia. 2008;22(8):1551–6.

    Article  CAS  PubMed  Google Scholar 

  51. Posthuma HL, Skoda RC, Jacob FA, van der Maas AP, Valk PJ, Posthuma EF. Hereditary thrombocytosis not as innocent as thought? Development into acute leukemia and myelofibrosis. Blood. 2010;116(17):3375–6.

    Article  CAS  PubMed  Google Scholar 

  52. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155(1):27–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Evan M. Braunstein is supported by NIH grant #K12HL087169.

Dr. Alison R. Moliterno reports personal fees from Incyte Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison R. Moliterno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braunstein, E.M., Moliterno, A.R. Back to Biology: New Insights on Inheritance in Myeloproliferative Disorders. Curr Hematol Malig Rep 9, 311–318 (2014). https://doi.org/10.1007/s11899-014-0232-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-014-0232-3

Keywords

Navigation