Skip to main content

Advertisement

Log in

Acute Management of Hyperkalemia

  • Emergency Medicine (F Peacock, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Hyperkalemia is a common electrolyte abnormality that can lead to life-threatening cardiac arrhythmia. Medical management of acute hyperkalemia revolves around three strategies—stabilizing the myocardium, intracellular shifting of serum potassium, and enhancing elimination of total body potassium via urinary or fecal excretion. In this review, we outline the current evidence behind the acute medical management of hyperkalemia.

Recent Findings

Two new oral potassium-binding agents, patiromer and sodium zirconium cyclosilicate, show promise in the management of hyperkalemia. Their role in the acute setting needs further investigation. Recent investigations also suggest that the optimal dosing of intravenous insulin may be lower than previously described.

Summary

Despite its prevalence, there is wide variability in the medical management of hyperkalemia in the acute setting. High-quality evidence demonstrating efficacy is lacking for many medications, though novel oral potassium-binding agents show promise. Overall, more research is necessary to establish optimal dosing strategies to manage hyperkalemia in the acute setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mahoney BA, Smith WAD, Lo D, Tsoi K, Tonelli M, Clase C. Emergency interventions for hyperkalemia. Cochrane Database Syst Rev 2009;1–54.

  2. Singer AJ, Thode HC, Peacock WF. A retrospective study of emergency department potassium disturbances: severity, treatment, and outcomes. Clin Exp Emerg. 2017;4(2):73–9.

    Article  Google Scholar 

  3. Collins AJ, Pitt B, Reaven N, Funk S, McGaughey K, Wilson D, et al. Association of serum potassium with all-cause mortality in patients with and without heart failure, chronic kidney disease, and/or diabetes. Am J Nephrol. 2017;46:213–21.

    Article  CAS  Google Scholar 

  4. Bandak G, Sang YY, Gaspirini A, Chang AR, Ballew SH, Evans M, et al. Hyperkalemia after initiating renin-angiotensin system blockade: the Stockholm creatinine measurements (SCREAM) project. J Am Heart Assoc. 2017;6:1–13.

    Article  Google Scholar 

  5. Chang A, Sang YY, Leddy J, Yahya T, Kirchner HL, Inker LA, et al. Antihypertensive medications and the prevalence of hyperkalemia in a large health system. Hypertension. 2017;67:1181–8.

    Article  Google Scholar 

  6. Betts KA, Woolley JM, Mu F, McDonald E, Tang W, Wu EQ. The prevalence of hyperkalemia in the United States. Curr Med Res Op. 2018;34(6):971–8.

    Article  Google Scholar 

  7. Truhlar A, Deakin C, Soar J, Khalifa GEA, Alfonzo A, Bierenes JJLM, et al. European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:148–201.

    Article  Google Scholar 

  8. Medford-Davis L, Zubaid R. Derangements of potassium. Emerg Med Clin N Am. 2014;32:329–47.

    Article  Google Scholar 

  9. Pfennig CL, Slovis CM. Electrolyte disorders. Rosen's emergency medicine: concepts and clinical practice: Elsevier; 2018. p. 1516–32.

  10. Khanagavi J, Gupta T, Aronow WS, Shah T, Garg J, Ahn C, et al. Hyperkalemia among hospitalized patients and association between duration of hyperkalemia and outcomes. Arch Med Sci. 2014;10(2):251–7.

    Article  Google Scholar 

  11. An JN, Lee JP, Jeon HJ, Kim DH, Oh YK, et al. Severe hyperkalemia requiring hospitalization: predictors of mortality. Crit Care. 2012;16(6):225.

    Article  Google Scholar 

  12. Einhorn LM, Zhan M, Hsu VD, Walker LD, Moen MF, Seliger SL, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med. 2009;169(12):1156–62.

    Article  Google Scholar 

  13. Goyal A, Spertus J, Gosch K, Venkitachalam L, Jones PG, et al. Serum potassium levels and mortality in acute myocardial infarction. JAMA. 2012;307(2):157–64.

    Article  CAS  Google Scholar 

  14. Merril JP, Levin HD, Somerville W, Smith S. Clinical recognition and treatment of acute potassium intoxication. Ann Intern Med. 1950;33:797–830.

    Article  Google Scholar 

  15. Chamberlain MJ. Emergency treatment of hyperkalemia. Lancet Lond Engl. 1964;33:464–7.

    Article  Google Scholar 

  16. Meroney W, Herndon R. The management of acute renal insufficiency. JAMA. 1954;155:877–83.

    Article  CAS  Google Scholar 

  17. Vanden Hoek TL, Morrison LJ, Shuster M, Donnino M, Sinz E, Lavonas EJ, et al. 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care, part 12. Cardiac arrest in special situations. Circulation. 2010;122:829–61.

    Article  Google Scholar 

  18. Rossignol P, Legrand M, Kosiborod M, Hollenberg SM, Peacock WF, Emmett M, et al. Emergency management of severe hyperkalemia: guideline for best practice and opportunities for the future. Pharmacol Res. 2016;113:585–91.

    Article  CAS  Google Scholar 

  19. Alfonso AVM, Isles C, Geddes C, Deighan C. Potassium disorders - clinical spectrum and emergency management. Resuscitation. 2006;70:10–25.

    Article  Google Scholar 

  20. Moss J, Syrengelas A, Antaya R, Lazova R. Calcinosis cutis: a complication of intravenous administration of calcium gluconate. J Cutan Pathol. 2006;33:60–2.

    Article  Google Scholar 

  21. Erickson CP, Olson KR. Case files of the medical toxicology fellowship of California poison control system - San Francisco: calcium plus digoxin - more taboo than toxic? J Med Toxicol. 2008;4(1):33–9.

    Article  CAS  Google Scholar 

  22. Manini AF, Nelson LS, Hoffman RS. Prognostic utility of serum potassium in chronic digoxin toxicity. Am J Cardiovasc Drugs. 2016;11(3):173–8.

    Article  Google Scholar 

  23. Nola GT, Pope S, Harrison DC. Assessment of the synergistic relationship between serum calcium and digitalis. Am Heart J. 1970;79:499–507.

    Article  CAS  Google Scholar 

  24. Fenton F, Smally AJ, Laut J. Hyperkalemia and digoxin toxicity in a patient with kidney failure. Ann Emerg Med. 1996;28:440–1.

    Article  CAS  Google Scholar 

  25. Levine M, Nikkanen H, Pallin D. The effects of intravenous calcium in patients with digoxin toxicity. J Emerg Med. 2011;40(1):21–46.

    Article  Google Scholar 

  26. Ho K. A critically swift response: insulin-stimulated potassium and glucose transport in skeletal muscle. Clin J Am Soc Nephrol. 2011;6:1513–6.

    Article  CAS  Google Scholar 

  27. Allon M, Copkney C. Albuterol and insulin for treatment of hyperkalemia in hemodialysis patients. Kidney Int. 1990;38:869–72.

    Article  CAS  Google Scholar 

  28. Harel Z, Kamel K. Optimial dose and method of administration of intravenous insulin in the management of emergency hyperkalemia: a systematic review. PLoS One. 2016:1–12;11(5):e0154963.

    Article  Google Scholar 

  29. Brown K, Setji TL, Hale SL, Cooper A, Hong B, Herbst R, et al. Assessing the impact of an order panel utilizing weight-based insulin and standardized monitoring of blood glucose for patients with hyperkalemia. Am J Med Qual. 2018;33(6):598–603.

    Article  Google Scholar 

  30. Wheeler DT, Scafers SJ, Horwedel TA, Deal EN, Tobin GS. Weight-based insulin dosing for acute hyperkalemia results in less hypoglycemia: hyperkalemia treatment and hypoglycemia. J Hosp Med. 2016;11:355–7.

    Article  Google Scholar 

  31. McNicholas BA, Pham MH, Carli K, Chen CH, Colobong-Smith N, Anderson AE, et al. Treatment of hyperkalemia with a low-dose insulin protocol is effective and results in reduced hypoglycemia. Int Soc Nephrol. 2018;3(2):328–36.

    Google Scholar 

  32. Garcia J, Pintens M, Morris A, Takamoto P, Baumgartner L, Tasaka CL. Reduced versus conventional dose insulin for hyperkalemia treatment. J Pharm Pract. 2018;6:089719001879922.

    Article  Google Scholar 

  33. LaRue HA, Peksa GD, Shah SC. A comparison of insulin doses for the treatment of hyperkalemia in patients with renal insufficiency. Pharmcotherapy. 2017;37:1516–22.

    Article  CAS  Google Scholar 

  34. Putcha N, Allon M. Management of hyperkalemia in dialysis patients. Semin Dial. 2007;20:431–9.

    Article  Google Scholar 

  35. Ngugi NN, McLigeyo SO, Kayima JK. Treatment of hyperkalemia by altering the transcellular gradient in patients with renal failure: effect of vrious therapeutic approaches. East Afr Med J. 1997;74:503–9.

    CAS  PubMed  Google Scholar 

  36. Montoliu J, Lens S, Revert L. Potassium-lowering effect of albuterol for hyperkalemia in renal failure. Arch Intern Med. 1987;147:713–7.

    Article  CAS  Google Scholar 

  37. Blumberg A, Wiedman P, Shaw S, Gnadinger M. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med. 1988;85:507–12.

    Article  CAS  Google Scholar 

  38. Liou HH, Chiang SS, Wu SC, Huang TP, Campese VM, Smorgorzewski M, et al. Hypokalemic effects of intravenous infusion or nebulization of salbutamol in patients with chronic renal failure: comparative study. Am J Kidney Dis. 1994;23(2):266–71.

    Article  CAS  Google Scholar 

  39. Lens XM, Montoliu J, Cases A, Campistol JM, Revert L. Treatment of hyperkalemia in renal failure: salbutamol v. insulin. Nephrol Dial Transplant. 1989;4:228–32.

    Article  CAS  Google Scholar 

  40. Mandelberg A, Krupnik Z, Houri S, Smetana S, Gilad E, Matas Z, et al. Salbutamol mtered-dose inhaler with spacer for hyperkalaemia. How fast? How safe? Chest. 1999;115:617–22.

    Article  CAS  Google Scholar 

  41. Pancu D, LaFlamme M, Evans E, Reed J. Levalbuterol is as effective as racemic albuterol in lowering serum potassium. J Emerg Med. 2003;25:13–6.

    Article  Google Scholar 

  42. Schwarz KC, Cohen BD, Lubash GD, Rubin AL. Severe acidosis and hyperpotassemia treated with sodium bicarbonate infusion. Circulation. 1959;19:215–20.

    Article  CAS  Google Scholar 

  43. Gutierrez R, Schlessinger F, Oster JR, Rietberg B, Perez GO. Effect of hypertonic versus isotonic sodium bicarbonate on plasma potassium concentration in patients with end-stage renal disease. Miner Electrolyte Metab. 1991;17:297–302.

    CAS  PubMed  Google Scholar 

  44. Allon M, Shanklin N. Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am J Kidney Dis. 1996;28:508–13.

    Article  CAS  Google Scholar 

  45. Alfonzo A, Soar J, MacTier R, Fox J, Shillday I, et al. Treatment of acute hyperkalaemia in adults. 2014.

  46. Wang CH, Huang CH, Chang WT, Tsai MS, Yu PH, Wu YW, et al. The effects of calcium and sodium bicarbonate on severe hyperkalemia during cardiopulmonary resuscitation: a retrospective cohort study of adult in-hospital cardiac arrest. Resuscitation. 2016;98:105–11.

    Article  Google Scholar 

  47. Jaber S, Paugam C, Futier E, Lefrant JY, Sigismond L, et al. Sodium bicarbonate therapy for patients with severe metabolic acodisis in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet. 2018;392:31–40.

    Article  CAS  Google Scholar 

  48. Reyes A. Effects of diuretics on renal excretory function. Eur Heart J. 1992;13:15–21.

    Article  Google Scholar 

  49. Reyes A. Renal excretory profiles of loop diuretics: consequences for therapeutic application. J Cardiovasc Pharmacol. 1993;22:S11–23.

    Article  CAS  Google Scholar 

  50. Channer KS, McLean KA, Lawson-Matthew P, Richardson M. Combination diuretic treatment in severe heart failure: a randomised controlled trial. Br Heart J. 1994;71:146–50.

    Article  CAS  Google Scholar 

  51. Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17(5):R207.

    Article  Google Scholar 

  52. Carlisle EJ, Donnelly SM, Ethier JH, et al. Modulation of the secretion of potassium accompanying anions in humans. Kidney Int. 1991;39:1206–12.

    Article  CAS  Google Scholar 

  53. Kamel KS, Ethier JH, Quaggin S, Levin A, Albert S, Carlisle EJ, et al. Studies to determine the basis for hyperkalemia in recipients of a renal transplant who are treated with cyclosporine. J Am Soc Nephrol. 1992;2:1279–84.

    CAS  PubMed  Google Scholar 

  54. Weisberg L. Management of severe hyperkalemia. Crit Care Med. 2008;36:3246–51.

    Article  Google Scholar 

  55. Kessler C, Ng J, Valdez K, Xie H, Geiger B. The use of sodium polystyrene sulfonate in the inpatient management of hyperkalemia. J Hosp Med. 2011;6:136–40.

    Article  Google Scholar 

  56. McGowan CE, Saha S, Chu G, Resnick MB, Moss SF. Intestinal necrosis due to sodium polystyrene sulfonate (Kayexalate) in sorbitol. South Med J. 2009;102(5):493–7.

    Article  CAS  Google Scholar 

  57. Flinn RB, Merrill JP, Welzant WR. Treatment of the oliguric patient with a new sodium-exchange resin and sorbitol. N Engl J Med. 1961;264:111–5.

    Article  CAS  Google Scholar 

  58. Scherr L, Ogden DA, Mead AW, Spritz N, Rubin AL. Management of hyperkalemia with a cation-exchange resin. N Engl J Med. 1961;264:115–9.

    Article  CAS  Google Scholar 

  59. • Lepage L, Dufour AA, Doiron J, Handfield K, Desforges K, Bell R, et al. Randomized clinical trial of sodium polystyrene sulfonate for the treatment of mild hyperkalemia in CKD. Clin J Am Soc Nephrol. 2015;10:2136–42 One of two randomized control trials demonstrating the efficacy of sodium polystyrene sulfonate in the management of hyperkalemia with a significant reduction in serum potassium by seven days.

    Article  CAS  Google Scholar 

  60. • Nasir K, Ahmad A. Treatment of hyperkalemia in patients with chronic kidney disease: a comparison of calcium polystyrene sulphonate and sodium polystyrene sulphonate. J Ayub Med Coll Abbottabad. 2014;26(4):455–8 One of two randomized control trials demonstrating the efficacy of sodium polystyrene sulfonate in the management of hyperkalemia with a significant reduction in serum potassium by three days.

    PubMed  Google Scholar 

  61. Hunt TV DeMott JM, Ackerbauer KA, Whittier WL, Peksa GD. Single-dose sodium polystyrene sulfonate for hyperkalemia in chronic kidney disease or end-stage renal disease. Clin Kidney J 2018;1–6.

  62. Mistry M, Shea A, Giguere P, Nguyen ML. Evaluation of sodium polystyrene sulfonate dosing strategies in the inpatient management of hyperkalemia. Ann Pharmacother. 2016;50(6):455–62.

    Article  CAS  Google Scholar 

  63. Hagan AE, Farrington CA, Wall GC, Belz MM. Sodium polystyrene sulfonate for the treatment of acute hyperkalemia: a retrospective study. Clin Nephrol. 2016;85(1):38–43.

    Article  Google Scholar 

  64. Yu MY, Yeo J, Park JS, Lee CH, Kim GH. Long-term efficacy of oral calcium polystyrene sulfonate for hyperkalemia in CKD patients. PLoS One. 2017;12(3):e0173542.

    Article  Google Scholar 

  65. Nakamura T, Fujisaki T, Miyazono M, Yoshihara M, Jinnouchi H, Fukunari K, et al. Risks and benefits of sodium polystyrene sulfonate for hyperkalemia in patients on maintenance hemodialysis. Drugs RD. 2018;18:231–5.

    Article  CAS  Google Scholar 

  66. Gerstman BB, Kirkman R, Platt R. Intestinal necrosis associated with post-operative orally administered sodium polystyrene sulfonate in sorbitol. Am J Kidney Dis. 1992;20(2):159–61.

    Article  CAS  Google Scholar 

  67. United States Food and Drug Administration. Kayexalate (sodium polystyrene sulfonate) powder label - FDA. 2010.

  68. Harel Z, Harel S, Shah PS, Wald R, Perl J, Bell CM. Gastrointestinal adverse events with sodium polystyrene sulfonate (Kayexalate) use: a systematic review. Am J Med. 2013;126:264.e9–24.

    Article  CAS  Google Scholar 

  69. Li L, Harrison SD, Cope MJ, Park C, Lee L, Salaymeh F, et al. Mechanism of action and pharmacology of patiromer, a nonabsorbed cross-linked polymer that lowers serum potassium concentration in patients with hyperkalemia. J Cardiovasc Pharmacol Ther. 2016;21(5):456–65.

    Article  CAS  Google Scholar 

  70. Patiromer. Package insert. Redwood City, CA, USA: Relypsa, LLC; 2015.

    Google Scholar 

  71. • Pitt B, Anker SD, Bushinsky DA, Kitzman DW, Zannad F, Huang IZ. Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patiehts with chronic heart failure (the PEARL-HF) trial. Eur Heart J. 2011;32:820–8 First randomized control trial demonstrating efficacy and safety of patiromer in the management of chronic hyperkalemia. Demonstrated that 15g oral patiromer twice daily significantly lower mean serum potassium by day 3.

    Article  CAS  Google Scholar 

  72. • Bakris GL, Pitt B, Weir MR, Freeman MW, Mayo MR, Garza D, et al. Effect of Patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the AMETHYST-DN randomized clinical trial. JAMA. 2015;314(2):151–61 Phase II trial demonstrating efficacy and safety of patiromer in the management of chronic hyperkalemia. A major contribution of this study is that AMETHYST-DN was a dose ranging study that established efficacy of multiple doses ranging from 4.2g to 16.8g oral patiromer twice daily led to a dose dependent response in the reduction of serum potassium.

    Article  CAS  Google Scholar 

  73. • Weir MR, Bakris GL, Bushinsky DA, Mayo MR, Garza D, Stasiv Y, et al. Patriomer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. NEJM. 2015;372(3):211–21 Phase III trial demonstrating efficacy and safety of patiromer in the management of chronic hyperkalemia. It also demonstrated that cessation of patiromer would to larger increases in serum potassium and higher rates of recurrent hyperkalemia when compared with placebo.

    Article  Google Scholar 

  74. Weir MR, Bushinsky DA, Benton WW, Woods SD, Mayo MR, Arthur SP, et al. Effect of patiromer on hyperkalemia recurrence in older chronic kidney disease patients taking RAAS inhibitors. Am J Med. 2018;131:555–64.

    Article  CAS  Google Scholar 

  75. Bushinsky DA, Williams GH, Pitt B, Weir MR, Freeman MW, Garza D, et al. Patiromer induces rapid and sustained potassium lowering in patients with chronic kidney disease and hyperkalemia. Kidney Int. 2015;88:1427–33.

    Article  CAS  Google Scholar 

  76. Novel Drug Approvals for 2018. 2018.

  77. Stavros F, Yang A, Leon A, Nuttal M, Rasmussen HS. Characterization of structure and function of ZS-9, a K+ selective ion trap. PLoS One. 2014;9(12):e114686.

    Article  Google Scholar 

  78. • Ash SR, Singh B, Lavin PT, Stavros F, Rasmussen HS. A phase 2 study on the treatment of hyperkalemia in patients with chronic kidney disease suggests that the selective potassium trap, ZS-9, is safe and efficient. Kidney Int. 2015;88:404–11 Phase II trial demonstrating the efficacy and safety of ZS-9 in the management of chronic hyperkalemia in a dose dependent manner. Significant reduction were also seen within one hour, suggesting a role for ZS-9 in the acute management of hyperkalemia.

    Article  CAS  Google Scholar 

  79. • Kosiborod M, Rasmussen HS, Lavin P, Qunibi WY, Spinowitz B, Packham D, et al. Effect of sodium zirconium cyclosilicate on potassium lowering for 38 days among outpatients with hyperkalemia. JAMA. 2015;312(21):2223–33 Phase III trial demonstrating the efficacy and safety of ZS-9 in the management of chronic hyperkalemia in a dose dependent manner. This trial also suggests a role for ZS-9 in the acute management of hyperkalemia with a median time of 2.2 hours for the normalization of serum potassium.

    Article  Google Scholar 

  80. Packham DK, Rasmussen HS, Lavin PT, El-Shahawy MA, Roger SD, Block G, et al. Sodium zirconium cyclosilicate in hyperkalemia. NEJM. 2015;372(3):222–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyang Liu.

Ethics declarations

Conflict of Interest

Mengyang Liu declares no potential conflicts of interest.

Zubaid Rafique is a principal investigator and consultant for AstraZeneca and Vifor Pharma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Emergency Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Rafique, Z. Acute Management of Hyperkalemia. Curr Heart Fail Rep 16, 67–74 (2019). https://doi.org/10.1007/s11897-019-00425-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-019-00425-2

Keywords

Navigation