Skip to main content
Log in

Epidemiology of Sleep-Disordered Breathing and Heart Failure: What Drives What

  • Epidemiology of Heart Failure (J Ho, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The bidirectional relationships that have been demonstrated between heart failure (HF) and central sleep apnea (CSA) demand further exploration with respect to the implications that each condition has for the other. This review discusses the body of literature that has accumulated on these relationships and how CSA and its potential treatment may affect outcomes in patients with CSA.

Recent Findings

Obstructive sleep apnea (OSA) can exacerbate hypertension, type 2 diabetes, obesity, and atherosclerosis, which are known predicates of HF. Conversely, patients with HF more frequently exhibit OSA partly due to respiratory control system instability. These same mechanisms are responsible for the frequent association of HF with CSA with or without a Hunter-Cheyne-Stokes breathing (HCSB) pattern. Just as is the case with OSA, patients with HF complicated by CSA exhibit more severe cardiac dysfunction leading to increased mortality; the increase in severity of HF can in turn worsen the degree of sleep disordered breathing (SDB). Thus, a bidirectional relationship exists between HF and both phenotypes of SDB; moreover, an individual patient may exhibit a combination of these phenotypes.

Summary

Both types of SDB remain significantly underdiagnosed in patients with HF and hence undertreated. Appropriate screening for, and treatment of, OSA is clearly a significant factor in the comprehensive management of HF, while the relevance of CSA remains controversial. Given the unexpected results of the Treatment of Sleep-Disordered Breathing with Predominant Central Sleep Apnea by Adaptive Servo Ventilation in Patients with Heart Failure trial, it is now of paramount importance that additional analysis of these data be expeditiously reported. It is also critical that ongoing and proposed prospective studies of this issue proceed without delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADHF:

Acutely decompensated HF

AFib:

Atrial fibrillation

AHI:

Apnea-hypopnea index

ASV:

Adaptive servo-ventilation

BNP:

Brain natriuretic peptide

BP:

Blood pressure

CAI:

Central apnea index

CSA:

Central sleep apnea

CVD:

Cardiovascular disease

EDS:

Excessive daytime sleepiness

EPAP:

Expiratory positive airway pressure

HCM:

Hypertrophic cardiomyopathy

HCSB:

Hunter-Cheyne-Stokes breathing

HF:

Heart failure

HRQOL:

Health-related quality of life

HSAT:

Home sleep apnea testing

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

HTN:

Hypertension

IPAP:

Inspiratory positive airway pressure

IPS:

Inspiratory pressure support

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

MLHFQ:

Minnesota living with HF questionnaire

MSNA:

Muscle sympathetic nerve activity

NREM:

Non-rapid eye movement sleep

NYHA:

New York Heart Association

OSA:

Obstructive sleep apnea

PAP:

Positive airway pressure

PND:

Paroxysmal nocturnal dyspnea

RCT:

Randomized controlled trial

REI:

Respiratory event index

SA:

Sleep apnea

SDB:

Sleep disordered breathing

S/T:

Spontaneous/timed

T2DM:

Type 2 diabetes mellitus

UA:

Upper airway

VT:

Ventricular tachyarrhythmia

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177:1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roger VL. Epidemiology of heart failure. Circ Res. 2013;113:646–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell NS, Catenacci VA, Wyatt HR, Hill JO. Obesity: overview of an epidemic. Psychiatr Clin North Am. 2011;34:717–32.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Somers VK, White DP, Amin R, et al. American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology; American Heart Association Stroke Council; American Heart Association Council on Cardiovascular Nursing; American College of Cardiology Foundation: sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008;118:1080–111.

    Article  PubMed  Google Scholar 

  5. Poirier P, Giles TD, Bray GA, Hong Y, et al. American Heart Association, and obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism: obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.

    Article  PubMed  Google Scholar 

  6. Khayat R, Small R, Rathman L, et al. Sleep-disordered breathing in heart failure: identifying and treating an important but often unrecognized comorbidity in heart failure patients. J Card Fail. 2013;19:431–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Javaheri S, Javaheri S, Javaheri A. Sleep apnea, heart failure, and pulmonary hypertension. Curr Heart Fail Rep. 2013;10:315–20.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Javaheri S, Caref EB, Chen E, Tong KB, Abraham WT. Sleep apnea testing and outcomes in a large cohort of Medicare beneficiaries with newly diagnosed heart failure. Am J Respir Crit Care Med. 2011;183:539–46.

    Article  PubMed  Google Scholar 

  9. Yumino D, Redolfi S, Ruttanaumpawan P, et al. Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Circulation. 2010;121:1598–605.

    Article  PubMed  Google Scholar 

  10. Young T, Finn L, Peppard PE, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31:1071–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marshall NS, Wong KK, Liu PY, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep. 2008;31:1079–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hudgel DW, Chapman KR, Faulks C, Hendricks C. Changes in inspiratory muscle electrical activity and upper airway resistance during periodic breathing induced by hypoxia during sleep. Am Rev Respir Dis. 1987;135:899–906.

    Article  CAS  PubMed  Google Scholar 

  13. Berry RB, Brooks R, Gamaldo CE et al; for the American Academy of Sleep Medicine: The AASM manual for the scoring sleep and associated events: rules, terminology and technical specifications, version 2.4. www.aasmnet.org Darien, Illinois: American Academy of. Sleep Medicine, 2017.

  14. Sahlin C, Svanborg E, Stenlund H, Franklin KA. Cheyne-Stokes respiration and supine dependency. Eur Respir J. 2005;25:829–33.

    Article  CAS  PubMed  Google Scholar 

  15. Longobardo GS, Gothe B, Goldman MD, Cherniack NS. Sleep apnea considered as a control system instability. Respir Physiol. 1982;50:311–33.

    Article  CAS  PubMed  Google Scholar 

  16. Badr MS, Grossman JE, Weber SA. Treatment of refractory sleep apnea with supplemental carbon dioxide. Am J Respir Crit Care Med. 1994;150:561–4.

    Article  CAS  PubMed  Google Scholar 

  17. White DP. Central sleep apnea. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of. sleep medicine. 3rd ed. Philadelphia: PA: W. B. Saunders; 2000. p. 827–39.

    Google Scholar 

  18. Tkacova R, Niroumand M, Lorenzi-Filho G, Bradley TD. Overnight shift from obstructive to central apneas in patients with heart failure: role of PCO2 and circulatory delay. Circulation. 2001;103:238–43.

    Article  CAS  PubMed  Google Scholar 

  19. Aurora RN, Chowdhuri S, Ramar K, et al. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep. 2012;35:17–40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. • Donovan LM, Kapur VK. Prevalence and characteristics of central compared to obstructive sleep apnea: analyses from the Sleep Heart Health Study cohort. Sleep. 2016;39:1353–9. One of many important results of the long-running Sleep Heart Health Study, in this case contrasting attributes of the two major phenotypes of sleep disordered breathing.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Solin P, Bergin P, Richardson M, Kaye DM, Walters EH, Naughton MT. Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation. 1999;99:1574–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation. 2010;122:352–60.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Taranto L, Montemurro JS, Floras PJ, et al. Inverse relationship of subjective daytime sleepiness to sympathetic activity in patients with heart failure and obstructive sleep apnea. Chest. 2012;142:1222–8.

    Article  Google Scholar 

  24. Yancy CW, Jessup M, Bozkurt B, et al. American College of Cardiology Foundation, and American Heart Association Task Force on Practice Guidelines: 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–239.

    Article  PubMed  Google Scholar 

  25. McKelvie RS, Moe GW, Cheung A, Costigan J, et al. The 2011 Canadian Cardiovascular Society heart failure management guidelines update: focus on sleep apnea, renal dysfunction, mechanical circulatory support, and palliative care. Can J Cardiol. 2011;27:319–38.

    Article  PubMed  Google Scholar 

  26. Chahal CAA, Somers VK. Risk factors. Sleep apnoea, atrial fibrillation, and heart failure—quo vadis? Nat Rev Cardiol. 2015;12:263–4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bitter T, Westerheide N, Hossain SM, Prinz C, Horstkotte D, Oldenburg O. Symptoms of sleep apnoea in chronic heart failure—results from a prospective cohort study in 1,500 patients. Sleep Breath Schlaf Atm. 2012;16:781–91.

    Article  Google Scholar 

  28. Sin SS, Fitzgerald F, Parker JD, Newton G, Floras JS, Bradley TD. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med. 1999;160:1101–6.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma B, Owens R, Malhotra A. Sleep in congestive heart failure. Med Clin North Am. 2010;94:447–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan J, Sanderson J, Chan W, et al. Prevalence of sleep-disordered breathing in diastolic heart failure. Chest. 1997;111:1488–93.

    Article  CAS  PubMed  Google Scholar 

  31. • Arzt M, Woehrle H, Oldenburg O, Schla HF Investigators, et al. Prevalence and predictors of sleep-disordered breathing in patients with stable chronic heart failure: the Schla HF registry. JACC Heart Fail. 2016;4:116–25. Identification of sleep disordered breathing is known to be difficult in many patients with heart failure. This recent study points out some important factors to consider in screening patient with heart failure for possible diagnostic sleep testing. These factors were male gender, age, obesity, and the severity of left ventricular dysfunction and symptoms.

    Article  PubMed  Google Scholar 

  32. Javaheri S, Parker TJ, Liming JD, et al. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation. 1998;97:2154–9.

    Article  CAS  PubMed  Google Scholar 

  33. Herrscher TE, Akre H, Øverland B, Sandvik L, Westheim AS. High prevalence of sleep apnea in heart failure outpatients: even in patients with preserved systolic function. J Card Fail. 2011;17:420–5.

    Article  PubMed  Google Scholar 

  34. Noda A, Miyata S, Yasuda Y. Therapeutic strategies for sleep apnea in hypertension and heart failure. Pulm Med. 2013;2013:814169.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sekizuka H, Osada N, Miyake F. Sleep disordered breathing in heart failure patients with reduced versus preserved ejection fraction. Heart Lung Circ. 2013;22:104–9.

    Article  PubMed  Google Scholar 

  36. Findley LJ, Zwillich CW, Ancoli-Israel S, Kripke D, Tisi G, Moser KM. Cheyne-Stokes breathing during sleep in patients with left ventricular heart failure. South Med J. 1985;78:11–5.

    Article  CAS  PubMed  Google Scholar 

  37. Lanfranchi PA, Braghiroli A, Bosimini E, et al. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation. 1999;99:1435–40.

    Article  CAS  PubMed  Google Scholar 

  38. Hanly PJ, Zuberi-Khokhar NS. Increased mortality associated with Cheyne-Stokes respiration in patients with congestive heart failure. Am J Respir Crit Care Med. 1996;153:272–6.

    Article  CAS  PubMed  Google Scholar 

  39. Javaheri S, Parker TJ, Liming JD, et al. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation. 1998;97:2154–9.

    Article  CAS  PubMed  Google Scholar 

  40. Johansson P, Alehagen U, Svanborg E, Dahlstrom U, Brostrom A. Clinical characteristics and mortality risk in relation to obstructive and central sleep apnoea in community-dwelling elderly individuals: a 7-year follow-up. Age Ageing. 2012;41:468–74.

    Article  PubMed  Google Scholar 

  41. Naughton MT, Benard DC, Liu PP, Rutherford R, Rankin F, Bradley TD. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am J Respir Crit Care Med. 1995;152:473–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mansfield D, Kaye DM, Brunner La Rocca H, Solin P, Esler MD, Naughton MT. Raised sympathetic nerve activity in heart failure and central sleep apnea is due to heart failure severity. Circulation. 2003;107:1396–400.

    Article  PubMed  Google Scholar 

  43. Lanfranchi PA, Braghiroli A, Bosimini E, et al. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation. 1999;99:1435–40.

    Article  CAS  PubMed  Google Scholar 

  44. Hanly PJ, Zuberi-Khokhar NS. Increased mortality associated with Cheyne-Stokes respiration in patients with congestive heart failure. Am J Respir Crit Care Med. 1996;153:272–6.

    Article  CAS  PubMed  Google Scholar 

  45. Shahar E, Whitney CW, Redline S, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163:19–25.

    Article  CAS  PubMed  Google Scholar 

  46. Oldenburg O, Wellmann B, Buchholz A, et al. Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur Heart J. 2016;37:1695–703.

    Article  PubMed  Google Scholar 

  47. Mac Donald M, Fang J, Pittman SD S, White DP, Malhotra A. The current prevalence of sleep disordered breathing in congestive heart failure patients treated with beta-blockers. J Clin Sleep Med. 2008;4:38–42.

    Google Scholar 

  48. Ljunggren M, Byberg L, Theorell-Haglöw J, Lindahl B, Michaëlsson K, Lindberg E. Increased risk of heart failure in women with symptoms of sleep-disordered breathing. Sleep Med. 2016;17:32–7.

    Article  PubMed  Google Scholar 

  49. Roca GQ, Redline S, Claggett B, et al. Sex-specific association of sleep apnea severity with subclinical myocardial Injury, ventricular hypertrophy, and heart failure risk in a community-dwelling cohort: the atherosclerosis risk in communities-Sleep Heart Health Study. Circulation. 2015;132:1329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hla KM, Young T, Hagen EW, et al. Coronary heart disease incidence in sleep disordered breathing: the Wisconsin Sleep Cohort Study. Sleep. 2015;38:677–84.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Carmona-Bernal C, Ruiz-García A, Villa-Gil M, et al. Quality of life in patients with congestive heart failure and central sleep apnea. Sleep Med. 2008;9:646–51.

    Article  PubMed  Google Scholar 

  52. Won C, Guilleminault C. Gender differences in sleep disordered breathing: implications for therapy. Expert Rev Respir Med. 2015;9:221–31.

    Article  CAS  PubMed  Google Scholar 

  53. Olafiranye O, Akinboboye O, Mitchell JE, Ogedegbe G, Jean-Louis G. Obstructive sleep apnea and cardiovascular disease in blacks: a call to action from the Association of Black Cardiologists. Am Heart J. 2013;165:468–76.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khayat R, Abraham W, Patt B, Brinkman V, Wannemacher J, Porter K, et al. Central sleep apnea is a predictor of cardiac readmission in hospitalized patients with systolic heart failure. J Card Fail. 2012;18:534–40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pedrosa RP, Drager LF, Genta PR, et al. Obstructive sleep apnea is common and independently associated with atrial fibrillation in patients with hypertrophic cardiomyopathy. Chest. 2010;137:1078–84.

    Article  PubMed  Google Scholar 

  56. Jordan AS, Wellman W, Edwards JK, et al. Respiratory control stability and upper airway collapsibility in men and women with obstructive sleep apnea. J Appl Physiol. 2005;99:2020–7.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shiota S, Ryan CM, Chiu K-L, et al. Alterations in upper airway cross-sectional area in response to lower body positive pressure in healthy subjects. Thorax. 2007;62:868–72.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chiu K-L, Ryan CM, Shiota S, et al. Fluid shift by lower body positive pressure increases pharyngeal resistance in healthy subjects. Am J Respir Crit Care Med. 2006;174:1378–83.

    Article  PubMed  Google Scholar 

  59. Su M-C, Chiu K-L, Ruttanaumpawan P, et al. Lower body positive pressure increases upper airway collapsibility in healthy subjects. Respir Physiol Neurobiol. 2008;161:306–12.

    Article  PubMed  Google Scholar 

  60. Redolfi S, Yumino D, Ruttanaumpawan P, et al. Relationship between overnight rostral fluid shift and obstructive sleep apnea in nonobese men. Am J Respir Crit Care Med. 2009;179:241–6.

    Article  PubMed  Google Scholar 

  61. • Kasai T, Motwani SS, Yumino D, et al. Contrasting effects of lower body positive pressure on upper airways resistance and partial pressure of carbon dioxide in men with heart failure and obstructive or central sleep apnea. J Am Coll Cardiol. 2013;61:1157–66. Points out the importance of fluid overload and fluid shifts in the pathogenesis of obstructive sleep apnea in heart failure.

    Article  PubMed  Google Scholar 

  62. Floras JS, Bradley TD. Sleep apnoea in acute heart failure: fluid in flux. Eur Heart J. 2015;36:1428–30.

    Article  PubMed  Google Scholar 

  63. Ryan CM, Floras JS, Logan AG, et al. Shift in sleep apnoea type in heart failure patients in the CANPAP trial. Eur Respir J. 2010;35:592–7.

    Article  CAS  PubMed  Google Scholar 

  64. Jilek C, Krenn M, Sebah D, et al. Prognostic impact of sleep disordered breathing and its treatment in heart failure: an observational study. Eur J Heart Fail. 2011;13:68–75.

    Article  PubMed  Google Scholar 

  65. Lavie L. Oxidative stress--a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis. 2009;51:303–12.

    Article  CAS  PubMed  Google Scholar 

  66. Foster GE, Poulin MJ, Hanly PJ. Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp Physiol. 2007;92:51–65.

    Article  PubMed  Google Scholar 

  67. GF DB. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension. 2000;36:1083–8.

    Article  Google Scholar 

  68. Fletcher EC, Orolinova N, Bader M. Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol. 2002;92:627–33.

    Article  CAS  PubMed  Google Scholar 

  69. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.

    Article  CAS  PubMed  Google Scholar 

  70. Doonan RJ, Scheffler P, Lalli M, et al. Increased arterial stiffness in obstructive sleep apnea: a systematic review. Hypertens Res. 2011;34:23–32.

    Article  PubMed  Google Scholar 

  71. Foster GE, Poulin MJ, Hanly PJ. Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp Physiol. 2007;92:51–65.

    Article  PubMed  Google Scholar 

  72. Romero-Corral A, Somers VK, Pellikka PA, et al. Decreased right and left ventricular myocardial performance in obstructive sleep apnea. Chest. 2007;132:1863–70.

    Article  PubMed  Google Scholar 

  73. Buda AJ, Pinsky MR, Ingels NB, Daughters GT, Stinson EB, Alderman EL. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 1979;301:453–9.

    Article  CAS  PubMed  Google Scholar 

  74. Bradley TD, Hall MJ, Ando S, Floras JS. Hemodynamic effects of simulated obstructive apneas in humans with and without heart failure. Chest. 2001;119:1827–35.

    Article  CAS  PubMed  Google Scholar 

  75. Arias MA, García-Río F, Alonso-Fernández A, Mediano O, Martínez I, Villamor J. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men. Circulation. 2005;112:375–83.

    Article  PubMed  Google Scholar 

  76. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002;165:677–82.

    Article  PubMed  Google Scholar 

  77. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction; a randomized, crossover study. Ann Intern Med. 2012;157:549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med. 2005;172:1590–5.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dursunoglu D, Dursunoglu N, Evrengül H, et al. Impact of obstructive sleep apnoea on left ventricular mass and global function. Eur Respir J. 2005;26:283–8.

    Article  CAS  PubMed  Google Scholar 

  80. Carmona-Bernal C, Quintana-Gallego E, Villa-Gil M, Sánchez-Armengol A, Martinez Martinez A, Capote F. Brain natriuretic peptide in patients with congestive heart failure and central sleep apnea. Chest. 2005;127:1667–73.

    Article  CAS  PubMed  Google Scholar 

  81. Javaheri S, Corbett WS. Association of low PaCO2 with central sleep apnea and ventricular arrhythmias in ambulatory patients with stable heart failure. Ann Intern Med. 1998;128:204–7.

    Article  CAS  PubMed  Google Scholar 

  82. Naughton MT, Benard DC, Liu PP, Rutherford R, Rankin F, Bradley TD. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am J Respir Crit Care Med. 1995;152:473–9.

    Article  CAS  PubMed  Google Scholar 

  83. Van de Borne P, Oren R, Abouassaly C, et al. Effect of Cheyne-Stokes respiration on muscle sympathetic nerve activity in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1998;81:432–6.

    Article  PubMed  Google Scholar 

  84. Packer M, Coats AJ, Fowler MB, Carvedilol Prospective Randomized Cumulative Survival Study Group, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–8.

    Article  CAS  PubMed  Google Scholar 

  85. Pepperell JC, Maskell NA, Jones DR, et al. A randomized controlled trial of adaptive ventilation for Cheyne-Stokes breathing in heart failure. Am J Respir Crit Care Med. 2003;168:1109–14.

    Article  PubMed  Google Scholar 

  86. Ushijima R, Joho S, Akabane T, et al. Differing effects of adaptive servo-ventilation and continuous positive airway pressure on muscle sympathetic nerve activity in patients with heart failure. Circ J. 2014;78:1387–95.

    Article  PubMed  Google Scholar 

  87. Kourouklis SP, Vagiakis E, Paraskevaidis IA, et al. Effective sleep apnoea treatment improves cardiac function in patients with chronic heart failure. Int J Cardiol. 2013;168:157–62.

    Article  PubMed  Google Scholar 

  88. Koyama T, Watanabe H, Tamura Y, et al. Adaptive servo-ventilation therapy improves cardiac sympathetic nerve activity in patients with heart failure. Eur J Heart Fail. 2013;15:902–9.

    Article  PubMed  Google Scholar 

  89. Kasai T, Kasagi S, Maeno K, et al. Adaptive servo-ventilation in cardiac function and neurohormonal status in patients with heart failure and central sleep apnea nonresponsive to continuous positive airway pressure. J Am Coll Cardiol HF. 2013;1:58–63.

    Google Scholar 

  90. Hetland A, Haugaa KH, Olseng M, et al. Three-month treatment with adaptive servoventilation improves cardiac function and physical activity in patients with chronic heart failure and Cheyne-Stokes respiration: a prospective randomized controlled trial. Cardiol. 2013;126:81–90.

    Article  Google Scholar 

  91. Corrà U, Pistono M, Mezzani A, et al. Sleep and exertional periodic breathing in chronic heart failure: prognostic importance and interdependence. Circulation. 2006;113:44–50.

    Article  PubMed  Google Scholar 

  92. Luo Q, Zhang H-L, Tao X-C, Yang Y-J, Liu Z-H. Impact of untreated sleep apnea on prognosis of patients with congestive heart failure. Int J Cardiol. 2009;3:420–2.

    Article  Google Scholar 

  93. Javaheri S, Shukla R, Zeigler H, et al. Central sleep apnea, right ventricular dysfunction and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol. 2007;49:2028–34.

    Article  PubMed  Google Scholar 

  94. Bradley TD, Logan AG, Kimoff RJ, CANPAP Investigators, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353:2025–33.

    Article  CAS  PubMed  Google Scholar 

  95. Arzt M, Floras JS, Logan AG, CANPAP Investigators, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007;115:3173–80.

    Article  PubMed  Google Scholar 

  96. Khayat RN, Abraham WT. Current treatment approaches and trials in central sleep apnea. Int J Cardiol. 2016;206(Suppl):S22–7.

    Article  PubMed  Google Scholar 

  97. Naughton MT. Cheyne-Stokes respiration: friend or foe? Thorax. 2012;67:357–60.

    Article  PubMed  Google Scholar 

  98. Costa LE, Uchôa CHG, Harmon RR, Bortolotto LA, Lorenzi-Filho G. aDrager LF: potential underdiagnosis of obstructive sleep apnoea in the cardiology outpatient setting. Heart Br Card Soc. 2015;101:1288–92.

    CAS  Google Scholar 

  99. Fuchs FD, Martinez D. Obstructive sleep apnoea should be deemed a cardiovascular disease. Heart Br Card Soc. 2015;101:1261–2.

    Google Scholar 

  100. Kimoff RJ. When to suspect sleep apnea and what to do about it. Can J Cardiol. 2015;31:945–8.

    Article  PubMed  Google Scholar 

  101. Smith LA, Chong DW, Vennelle M, Denvir MA, Newby DE, Douglas NJ. Diagnosis of sleep-disordered breathing in patients with chronic heart failure: evaluation of a portable limited sleep study system. J Sleep Res. 2007;16:428–35.

    Article  PubMed  Google Scholar 

  102. Skinner MA, Choudhury MS, Homan SD, Cowan JO, Wilkins GT, Taylor DR. Accuracy of monitoring for sleep-related breathing disorders in the coronary care unit. Chest. 2005;127:66–71.

    Article  PubMed  Google Scholar 

  103. Tamura A, Kawano Y, Naono S, Kotoku M, Kadota J. Relationship between beta-blocker treatment and the severity of central sleep apnea in chronic heart failure. Chest. 2007;131:130–5.

    Article  CAS  PubMed  Google Scholar 

  104. Bucca CB, Brussino L, Battisti A, Mutani R, Rolla G, Mangiardi L, et al. Diuretics in obstructive sleep apnea with diastolic heart failure. Chest. 2007;132:440–6.

    Article  PubMed  Google Scholar 

  105. Kahwash R, Kikta D, Khayat R. Recognition and management of sleep-disordered breathing in chronic heart failure. Curr Heart Fail Rep. 2011;8:72–9.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lenique F, Habis M, Lofaso F, Dubois-Randé JL, Harf A, Brochard L. Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med. 1997;155:500–5.

    Article  CAS  PubMed  Google Scholar 

  107. Sun H, Shi J, Li M, Chen X. Impact of continuous positive airway pressure treatment on left ventricular ejection fraction in patients with obstructive sleep apnea: a meta-analysis of randomized controlled trials. PLoS One. 2013;8:e62298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kaneko Y, Floras JS, Usui K, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.

    Article  PubMed  Google Scholar 

  109. Mansfield DR, Gollogly NC, Kaye DM, Richardson M, Bergin P, Naughton MT. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am J Respir Crit Care Med. 2004;169:361–6.

    Article  PubMed  Google Scholar 

  110. Aggarwal S, Nadeem R, Loomba RS, Nida M, Vieira D. The effects of continuous positive airways pressure therapy on cardiovascular end points in patients with sleep-disordered breathing and heart failure: a meta-analysis of randomized controlled trials. Clin Cardiol. 2014;37:57–65.

    Article  PubMed  Google Scholar 

  111. Yoshinaga K, Burwash IG, Leech JA, et al. The effects of continuous positive airway pressure on myocardial energetics in patients with heart failure and obstructive sleep apnea. J Am Coll Cardiol. 2007;49:450–8.

    Article  PubMed  Google Scholar 

  112. Khayat RN, Abraham WT, Patt B, Pu M, Jarjoura D. In-hospital treatment of obstructive sleep apnea during decompensation of heart failure. Chest. 2009;136:991–7.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Peter JV, Moran I, Phillips-Hughes J, Graham P, Bersten AD. Effect of non-invasive positive pressure ventilation (NIPPV) on mortality in patients with acute cardiogenic pulmonary oedema: a meta-analysis. Lancet. 2006;367:1155–63.

    Article  PubMed  Google Scholar 

  114. Plaisance P, Pirracchio R, Berton C, Vicaut E, Payen D. A randomized study of out-of-hospital continuous positive airway pressure for acute cardiogenic pulmonary oedema: physiological and clinical effects. Eur Heart J. 2007;28:2895–901.

    Article  CAS  PubMed  Google Scholar 

  115. Kauta SR, Keenan BT, Goldberg L, Schwab RJ. Diagnosis and treatment of sleep disordered breathing in hospitalized cardiac patients: a reduction in 30-day hospital readmission rates. J Clin Sleep Med. 2014;10:1051–9.

    PubMed  PubMed Central  Google Scholar 

  116. Javaheri S, Shukla R, Wexler L. Association of smoking, sleep apnea, and plasma alkalosis with nocturnal ventricular arrhythmias in men with systolic heart failure. Chest. 2012;141:1449–56.

    Article  PubMed  Google Scholar 

  117. Javaheri S, Sands SA, Edwards BA. Acetazolamide attenuates Hunter-Cheyne-Stokes breathing but augments the hypercapnic ventilatory response in patients with heart failure. Ann Am Thorac Soc. 2014;11:80–6.

    Article  CAS  PubMed  Google Scholar 

  118. Javaheri S, Sands SA, Edwards BA. Acetazolamide attenuates Hunter-Cheyne-Stokes breathing but augments the hypercapnic ventilatory response in patients with heart failure. Ann Am Thorac Soc. 2014;11:80–6.

    Article  CAS  PubMed  Google Scholar 

  119. Heidrun F, Kiwull-Schöne H, Teppema LJ, Kiwull PJ. Low-dose acetazolamide does affect respiratory muscle function in spontaneously breathing anesthetized rabbits. Am J Respir Crit Care Med. 2001;163:478–83.

    Article  Google Scholar 

  120. Sasayama S, Izumi T, Seino Y, Ueshima K, Asanoi H, and the CHF-HOT Study Group: Effects of nocturnal oxygen therapy on outcome measures in patients with chronic heart failure and Cheyne-Stokes respiration, Circ J 2006, 70:1–7.

  121. Sasayama S, Izumi T, Matsuzaki M, CHF-HOT Study Group. Improvement of quality of life with nocturnal oxygen therapy in heart failure patients with central sleep apnea. Circ J. 2009;73:1255–62.

    Article  PubMed  Google Scholar 

  122. • Nakao YM, Ueshima K, Yasuno S, Sasayama S. Effects of nocturnal oxygen therapy in patients with chronic heart failure and central sleep apnea: CHF-HOT study. Heart Vessel. 2016;31:165–72. Evidence that treatment with nocturnal oxygen, when it effectively suppresses central sleep apnea in patients with heart failure, provides a benefit in terms of surrogate endpoints.

    Article  Google Scholar 

  123. Javaheri S, Ahmed M, Parker TJ, Brown CR. Effects of nasal O2 on sleep-related disordered breathing in ambulatory patients with stable heart failure. Sleep. 22(8):1101–6.

  124. Javaheri S. Effects of continuous positive airway pressure on sleep apnea and ventricular irritability in patients with heart failure. Circulation. 2000;101:392–7.

    Article  CAS  PubMed  Google Scholar 

  125. Davies RJ, Harrington KJ, Ormerod OJ, Stradling JR. Nasal continuous positive airway pressure in chronic heart failure with sleep-disordered breathing. Am Rev Respir Dis. 1993;147:630–4.

    Article  CAS  PubMed  Google Scholar 

  126. Sands SA, Edwards BA, Kee K, et al. Loop gain as a means to predict a positive airway pressure suppression of Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med. 2011;184:1067–75.

    Article  PubMed  Google Scholar 

  127. Javaheri S, Dempsey JA. Central sleep apnea. Compr Physiol. 2013;3:141–63.

    CAS  PubMed  Google Scholar 

  128. Lorenzi-Filho G, Rankin F, Bies I, Douglas Bradley T. Effects of inhaled carbon dioxide and oxygen on Cheyne–Stokes respiration in patients with heart failure. Am J Respir Crit Care Med. 1999;159:1490–8.

    Article  CAS  PubMed  Google Scholar 

  129. Steens RD, Millar TW, Xiaoling S, et al. Effect of inhaled 3% CO2 on Cheyne–Stokes respiration in congestive heart failure. Sleep. 1994;17:61–8.

    Article  CAS  PubMed  Google Scholar 

  130. Khayat RN, Xie A, Patel AK, Kaminski A, Skatrud JB. Cardiorespiratory effects of added dead space in patients with heart failure and central sleep apnea. Chest. 2003;123:1551–60.

    Article  PubMed  Google Scholar 

  131. Ponikowski P, Javaheri S, Dariusz Michalkiewicz D, et al. Transvenous phrenic nerve stimulation for the treatment of central sleep apnoea in heart failure. Eur Heart J. 2012;33:889–94.

    Article  PubMed  Google Scholar 

  132. Abraham WT, Jagielski D, Oldenburg O, Remedē Pilot Study Investigators, et al. Phrenic nerve stimulation for the treatment of central sleep apnea. JACC Heart Fail. 2015;3:360–9.

    Article  PubMed  Google Scholar 

  133. Respicardia, Inc: A randomized trial evaluating the safety and effectiveness of the Remedē® system in patients with central sleep apnea. Available at: https://clinicaltrials.gov/ct 2/show/NCT01816776. Accessed 9/26/16.

  134. Respicardia, Inc: Safety and efficacy evaluation of Respicardia therapy for central sleep apnea. Available at: https://clinicaltrials.gov/ct 2/show/NCT01124370 Accessed 9/26/16.

  135. Koyama T, Watanabe H, Terada S, et al. Adaptive servo-ventilation improves renal function in patients with heart failure. Respir Med. 2011;105:1946–53.

    Article  PubMed  Google Scholar 

  136. Sharma BK, Bakker JP, McSharry DG, Desai AS, Javaheri S, Malhotra A. Adaptive servoventilation for treatment of sleep-disordered breathing in heart failure: a systematic review and meta-analysis. Chest. 2012;142:1211–21.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bitter T, Gutleben K-J, Nölker G, et al. Treatment of Cheyne-Stokes respiration reduces arrhythmic events in chronic heart failure. J Cardiovasc Electrophysiol. 2013;24:1132–40.

    PubMed  Google Scholar 

  138. Nakamura S, Asai K, Kubota Y, et al. Impact of sleep-disordered breathing and efficacy of positive airway pressure on mortality in patients with chronic heart failure and sleep-disordered breathing: a meta-analysis. Clin Res Cardiol. 2015;104:208–16.

    Article  PubMed  Google Scholar 

  139. Birner C, Sériès F, Lewis K, et al. Effects of auto-servo ventilation on patients with sleep-disordered breathing, stable systolic heart failure and concomitant diastolic dysfunction: subanalysis of a randomized controlled trial. Respir Int Rev Thorac Dis. 2014;87:54–62.

    Google Scholar 

  140. Kasai T, Usui Y, Yoshioka T, JASV Investigators, et al. Effect of flow-triggered adaptive servo-ventilation compared with continuous positive airway pressure in patients with chronic heart failure with coexisting obstructive sleep apnea and Cheyne-Stokes respiration. Circ Heart Fail. 2010;3:140–8.

    Article  PubMed  Google Scholar 

  141. Kourouklis SP, Vagiakis E, Paraskevaidis IA, et al. Effective sleep apnoea treatment improves cardiac function in patients with chronic heart failure. Int J Cardiol. 2013;168:157–62.

    Article  PubMed  Google Scholar 

  142. Yoshihisa A, Suzuki S, Yamaki T, et al. Impact of adaptive servo-ventilation on cardiovascular function and prognosis in heart failure patients with preserved left ventricular ejection fraction and sleep-disordered breathing. Eur J Heart Fail. 2013;15:543–50.

    Article  CAS  PubMed  Google Scholar 

  143. • Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373:1095–105. Despite a number of methodological flaws, this study changed the paradigm for treatment of patients with systolic heart failure and central sleep apnea virtually overnight, proscribing the use of adaptive servo-ventilation in these individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. • Javaheri S, Brown LK, Randerath W, Khayat R. SERVE-HF: more questions than answers. Chest. 2016;149:900–4. A thorough critique of the SERVE-HF trial and its results, suggesting that the radical change in treatment of central sleep apnea in patients with systolic heart failure (proscription of the use of adaptive servo-ventilation) may not have been justified.

    Article  PubMed  Google Scholar 

  145. Fiuzat M, Oldenberg O, Whellan DJ, et al. Lessons learned from a clinical trial: design, rationale, and insights from The Cardiovascular Improvements with Minute Ventilation-targeted Adaptive Sero-Ventilation (ASV) Therapy in Heart Failure (CAT-HF) Study. Contemp Clin Trials. 2016;47:158–64.

    Article  PubMed  Google Scholar 

  146. West JB: Respiratory physiology. The essentials, 9th ed. Philadelphia: Lippincott Williams & Wilkins, 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee K. Brown.

Ethics declarations

Conflict of Interest

Sushma M. Dharia declares no conflict of interest. Lee K. Brown has participated in advisory panels for Philips Respironics and is an insurance claims reviewer for Considine and Associates, Inc. He coedits the sleep and respiratory neurobiology section of Current Opinion in Pulmonary Medicine and wrote on CPAP treatment for obstructive sleep apnea in UpToDate and on obstructive sleep apnea in Clinical Decision Support: Pulmonary Medicine and Sleep Disorders. He is currently coediting an issue of Sleep Medicine Clinics on positive airway pressure therapy. He serves on the Polysomnography Practice Advisory Committee of the New Mexico Medical Board and chairs the New Mexico Respiratory Care Advisory Board.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epidemiology of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharia, S.M., Brown, L.K. Epidemiology of Sleep-Disordered Breathing and Heart Failure: What Drives What. Curr Heart Fail Rep 14, 351–364 (2017). https://doi.org/10.1007/s11897-017-0348-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0348-6

Keywords

Navigation