Skip to main content

Advertisement

Log in

Drug-Induced Small Bowel Injury: a Challenging and Often Forgotten Clinical Condition

  • Small Intestine (D Sachar, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Most drugs are given by the oral route. Oral intake allows direct contact between the drug and the entire GI tract mucosa, exposing it to potential topical damage until absorption. Medication-induced GI symptoms and lesions are therefore commonly encountered in clinical practice. This review will examine the most common drugs or classes of drugs affecting small bowel function and/or structure.

Recent Findings

Since non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medicines, NSAID enteropathy is highly prevalent and brings about considerable morbidity. Antimicrobials and proton-pump inhibitors profoundly modify intestinal microbiota, affecting gut sensory and motor functions, while other drugs (like iron and gold derivatives) impair intestinal permeability. Olmesartan (and likely ACE inhibitors) induce villous atrophy and consequent malabsorption. Mycophenolate mofetil, cancer chemotherapeutic agents, and immune checkpoint inhibitors cause intestinal inflammation, abdominal pain, and diarrhea. Potassium chloride supplements may induce small bowel ulceration, stenosis, and perforation while the cotraceptive pill and anticoagulants are associated with intestinal ischemia and spontaneous intramural hematoma, respectively.

Summary

In clinical practice, a deep knowledge of clinical pharmacology and toxicology and a high degree of suspicion of drug-related adverse events are mandatory. Only then, the practicing physician will be able to diagnose medication-induced small bowel lesions correctly and will implement the best strategies to treat them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. An adverse drug event is defined by the World Health Organization as “a response to a drug which is noxious and unintended, and which occurs at doses normally used” (https://apps. who.int/medicinedocs/en/d/Jh2992e/2.html).

  2. NLRP3 = nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain–containing protein 3

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gruchalla RS. Clinical assessment of drug-induced disease. Lancet. 2000;356:1505–11.

    CAS  PubMed  Google Scholar 

  2. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356:1255–9.

    CAS  PubMed  Google Scholar 

  3. Permpongkosol S. Iatrogenic disease in the elderly: risk factors, consequences, and prevention. Clin Interv Aging. 2011;6:77–82.

    PubMed  PubMed Central  Google Scholar 

  4. Hillery AM, Park E. Drug delivery: fundamentals and applications. 2nd ed. Boca Raton: CRC Press; 2016. p. 1–614.

    Google Scholar 

  5. Preston CL. Stockley’s drug interactions (12th Edition). London: Pharmaceutical Press; 2019. p. 1–2048.

    Google Scholar 

  6. Treinen-Moslen M, Kanz MF. Intestinal tract injury by drugs: importance of metabolite delivery by yellow bile road. Pharmacol Ther. 2006;112:649–67.

    CAS  PubMed  Google Scholar 

  7. Jain V, Pitchumoni CS. Gastrointestinal side effects of prescription medications in the older adult. J Clin Gastroenterol. 2009;43:103–10.

    PubMed  Google Scholar 

  8. Zentler-Munro PL, Northfield TC. Drug-induced gastrointestinal disease. Br Med J. 1979;1:1263–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pusztaszeri MP, Genta RM, Cryer BL. Drug-induced injury in the gastrointestinal tract: clinical and pathologic considerations. Nat Clin Pract Gastroenterol Hepatol. 2007;4:442–53.

    CAS  PubMed  Google Scholar 

  10. Shih AR, Misdraji J. Drug-induced pathology of the upper gastrointestinal tract. Diagnostic Histopathology. 2017;23:84–95.

    Google Scholar 

  11. Parfitt JR, Driman DK. Pathological effects of drugs on the gastrointestinal tract: a review. Hum Pathol. 2007;38:527–36.

    CAS  PubMed  Google Scholar 

  12. Philpott HL, Nandurkar S, Lubel J, et al. Drug-induced gastrointestinal disorders. Postgrad Med J. 2014;90:411–9.

    CAS  PubMed  Google Scholar 

  13. Tutuian R. Adverse effects of drugs on the esophagus. Best Pract Res Clin Gastroenterol. 2010;24:91–7.

    CAS  PubMed  Google Scholar 

  14. Niv Y, Banic M. Gastric barrier function and toxic damage. Dig Dis. 2014;32:235–42.

    PubMed  Google Scholar 

  15. Marietta EV, Cartee A, Rishi A, et al. Drug-induced enteropathy. Dig Dis. 2015;33:215–20.

    PubMed  Google Scholar 

  16. Zeino Z, Sisson G, Bjarnason I. Adverse effects of drugs on small intestine and colon. Best Pract Res Clin Gastroenterol. 2010;24:133–41.

    CAS  PubMed  Google Scholar 

  17. •• Bjarnason I, Scarpignato C, Holmgren E, et al. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology. 2018;154:500–14 Comprehensive and up-to-date review on the meachanisms of NSAID GI damage.

    CAS  PubMed  Google Scholar 

  18. Guerciolini R. Mode of action of orlistat. Int J Obes Relat Metab Disord. 1997;21(Suppl 3):S12–23.

    CAS  PubMed  Google Scholar 

  19. Filippatos TD, Derdemezis CS, Gazi IF, et al. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf. 2008;31:53–65.

    CAS  PubMed  Google Scholar 

  20. Scarpignato C. Cholecystokinin antagonists and motilides: pharmacology and potential in the treatment of gastroesophageal reflux disease and other digestive motor disorders. Front Gastrointest Res. 1992;20:90–128.

    Google Scholar 

  21. Principi N, Esposito S. Comparative tolerability of erythromycin and newer macrolide antibacterials in paediatric patients. Drug Saf. 1999;20:25–41.

    CAS  PubMed  Google Scholar 

  22. Caron F, Ducrotte P, Lerebours E, et al. Effects of amoxicillin-clavulanate combination on the motility of the small intestine in human beings. Antimicrob Agents Chemother. 1991;35:1085–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Salvo F, De Sarro A, Caputi AP, et al. Amoxicillin and amoxicillin plus clavulanate: a safety review. Expert Opin Drug Saf. 2009;8:111–8.

    CAS  PubMed  Google Scholar 

  24. •• Blaser MJ. The microbiome revolution. J Clin Invest. 2014;124:4162–5 Thoughtful paper summarizing the clinical relevance of the current knowledge on microbiome.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. • Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–8 Detailed paper evaluating the effect on non-antimicrobial drugs on human microbiota as well as the potential risks of promoting antibiotic resistance.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. • Zhang J, Zhang J, Wang R. Gut microbiota modulates drug pharmacokinetics. Drug Metab Rev. 2018;50:357–68 Extensive review on the effects of gut microbiota on drug pharmacokinetics and its consequences on therapeutic effects and adverse effects of drugs.

    CAS  PubMed  Google Scholar 

  27. Barbara G, Stanghellini V, Brandi G, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol. 2005;100:2560–8.

    CAS  PubMed  Google Scholar 

  28. Bhalodi AA, van Engelen TSR, Virk HS, et al. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother. 2019;74(Suppl 1):i6–i15.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Scarpignato C, Gatta L, Zullo A, et al. Effective and safe proton pump inhibitor therapy in acid-related diseases - a position paper addressing benefits and potential harms of acid suppression. BMC Med. 2016;14:179.

    PubMed  PubMed Central  Google Scholar 

  30. • Imhann F, Vich Vila A, Bonder MJ, et al. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes. 2017;8:351–8 Summary of the PPI effects on gut microbiota.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Scarpignato C, Bertelé A. The effect of proton pump inhibitors on gut microbiota. BiotaScope. 2016;2:7-18.

  32. Arriola V, Tischendorf J, Musuuza J, et al. Assessing the risk of hospital-acquired Clostridium difficile infection with proton pump inhibitor use: a meta-analysis. Infect Control Hosp Epidemiol. 2016;37:1408–17.

    PubMed  PubMed Central  Google Scholar 

  33. Tleyjeh IM, Bin Abdulhak AA, Riaz M, et al. Association between proton pump inhibitor therapy and Clostridium difficile infection: a contemporary systematic review and meta-analysis. PLoS One. 2012;7:e50836.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao F, Chen CX, Wang M, et al. Updated meta-analysis of controlled observational studies: proton-pump inhibitors and risk of Clostridium difficile infection. J Hosp Infect. 2018;98:4–13.

    CAS  PubMed  Google Scholar 

  35. Deshpande A, Pasupuleti V, Thota P, et al. Risk factors for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2015;36:452–60.

    PubMed  Google Scholar 

  36. Tariq R, Singh S, Gupta A, et al. Association of gastric acid suppression with recurrent Clostridium difficile infection: a systematic review and meta-analysis. JAMA Intern Med. 2017;177:784–91.

    PubMed  PubMed Central  Google Scholar 

  37. Su T, Lai S, L’ee A, et al. Meta-analysis: proton pump inhibitors moderately increase the risk of small intestinal bacterial overgrowth. J Gastroenterol. 2018;53:27–36.

    CAS  PubMed  Google Scholar 

  38. Lo W-K, Chan WW. Proton pump inhibitor use and the risk of small intestinal bacterial overgrowth: a meta-analysis. Clin Gastroenterol Hepatol. 2013;11.

    CAS  PubMed  Google Scholar 

  39. Muraki M, Fujiwara Y, Machida H, et al. Role of small intestinal bacterial overgrowth in severe small intestinal damage in chronic non-steroidal anti-inflammatory drug users. Scand J Gastroenterol. 2014;49:267–73.

    CAS  PubMed  Google Scholar 

  40. • Washio E, Esaki M, Maehata Y, et al. Proton pump inhibitors increase incidence of nonsteroidal anti-inflammatory drug-induced small bowel injury: a randomized, placebo-controlled trial. Clin Gastroenterol Hepatol. 2016;14:809-15.e1 Seminal paper, showing that PPIs almost nullify the improved intestinal tolerability of the selective COX-2 inhibitor, celecoxib.

    Google Scholar 

  41. Girelli D, Ugolini S, Busti F, et al. Modern iron replacement therapy: clinical and pathophysiological insights. Int J Hematol. 2018;107:16–30.

    CAS  PubMed  Google Scholar 

  42. Tolkien Z, Stecher L, Mander AP, et al. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015;10:e0117383.

    PubMed  PubMed Central  Google Scholar 

  43. Nchito M, Friis H, Michaelsen KF, et al. Iron supplementation increases small intestine permeability in primary schoolchildren in Lusaka, Zambia. Trans R Soc Trop Med Hyg. 2006;100:791–4.

    CAS  PubMed  Google Scholar 

  44. Tozman EC, Gottlieb NL. Adverse reactions with oral and parenteral gold preparations. Med Toxicol. 1987;2:177–89.

    CAS  PubMed  Google Scholar 

  45. van Riel PL, Gribnau FW, van de Putte LB, et al. Loose stools during auranofin treatment: clinical study and some pathogenetic possibilities. J Rheumatol. 1983;10:222–6.

    PubMed  Google Scholar 

  46. Behrens R, Devereaux M, Hazleman B, et al. Investigation of auranofin-induced diarrhoea. Gut. 1986;27:59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cook NJ, Owen ET, Donlon JB. A further possible cause of diarrhoea caused by oral gold. Br J Rheumatol. 1995;34:395–6.

    CAS  PubMed  Google Scholar 

  48. Backon J. Gold-induced diarrhea and the role of prostaglandins. Am J Gastroenterol. 1983;78:769.

    CAS  PubMed  Google Scholar 

  49. Ratnaike RN, Jones TE. Mechanisms of drug-induced diarrhoea in the elderly. Drugs Aging. 1998;13:245–53.

    CAS  PubMed  Google Scholar 

  50. • McQuade RM, Stojanovska V, Abalo R, et al. Chemotherapy-induced constipation and diarrhea: pathophysiology, current and emerging treatments. Front Pharmacol. 2016;7:414 Recent review on chemotherapy-induced constipation and diarrhea.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chassany O, Michaux A, Bergmann JF. Drug-induced diarrhoea. Drug Saf. 2000;22:53–72.

    CAS  PubMed  Google Scholar 

  52. •• Camilleri M, Ford AC, Mawe GM, et al. Chronic constipation. Nat Rev Dis Primers. 2017;3:17095 State-of-the-art review on chronic constipation.

    PubMed  Google Scholar 

  53. Fosnes GS, Lydersen S, Farup PG. Constipation and diarrhoea - common adverse drug reactions? A cross sectional study in the general population. BMC Clin Pharmacol. 2011;11:2.

    PubMed  PubMed Central  Google Scholar 

  54. Deepak P, Ehrenpreis ED. Constipation. Dis Mon. 2011;57:511–7.

    PubMed  Google Scholar 

  55. • Burbure N, Lebwohl B, Arguelles-Grande C, et al. Olmesartan-associated sprue-like enteropathy: a systematic review with emphasis on histopathology. Hum Pathol. 2016;50:127–34 Comprehensive review on olmesartan-induced celiac-like enteropathy.

    CAS  PubMed  Google Scholar 

  56. Malfertheiner P, Ripellino C, Cataldo N. Severe intestinal malabsorption associated with ACE inhibitor or angiotensin receptor blocker treatment. An observational cohort study in Germany and Italy. Pharmacoepidemiol Drug Saf. 2018;27:581–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bunnapradist S, Ambuhl PM. Impact of gastrointestinal-related side effects on mycophenolate mofetil dosing and potential therapeutic strategies. Clin Transplant. 2008;22:815–21.

    PubMed  Google Scholar 

  58. Weclawiak H, Ould-Mohamed A, Bournet B, et al. Duodenal villous atrophy: a cause of chronic diarrhea after solid-organ transplantation. Am J Transplant. 2011;11:575–82.

    CAS  PubMed  Google Scholar 

  59. Jehangir A, Shaikh B, Hunt J, et al. Severe enteropathy from mycophenolate mofetil. ACG Case Rep J. 2016;3:101–3.

    PubMed  PubMed Central  Google Scholar 

  60. Curtin BF, Rachakonda VP, Von Rosenvinge EC. Unusually late-onset mycophenolate mofetil-related colitis. Am J Health Syst Pharm. 2014;71:1858–61.

    PubMed  Google Scholar 

  61. Goyal A, Salahuddin M, Govil Y. A unique case of mycophenolate induced colitis after 10 years of use. Case Rep Gastrointest Med. 2016;2016:3058407.

    PubMed  PubMed Central  Google Scholar 

  62. de Andrade LG, Rodrigues MA, Romeiro FG, et al. Clinicopathologic features and outcome of mycophenolate-induced colitis in renal transplant recipients. Clin Transplant. 2014;28:1244–8.

    PubMed  Google Scholar 

  63. Lee S, de Boer WB, Subramaniam K, et al. Pointers and pitfalls of mycophenolate-associated colitis. J Clin Pathol. 2013;66:8–11.

    PubMed  Google Scholar 

  64. Liapis G, Boletis J, Skalioti C, et al. Histological spectrum of mycophenolate mofetil-related colitis: association with apoptosis. Histopathology. 2013;63:649–58.

    PubMed  Google Scholar 

  65. Davies NM, Grinyo J, Heading R, et al. Gastrointestinal side effects of mycophenolic acid in renal transplant patients: a reappraisal. Nephrol Dial Transplant. 2007;22:2440–8.

    CAS  PubMed  Google Scholar 

  66. Kaltenborn A, Schrem H. Mycophenolate mofetil in liver transplantation: a review. Ann Transplant. 2013;18:685–96.

    CAS  PubMed  Google Scholar 

  67. Al-Absi AI, Cooke CR, Wall BM, et al. Patterns of injury in mycophenolate mofetil-related colitis. Transplant Proc. 2010;42:3591–3.

    CAS  PubMed  Google Scholar 

  68. Keefe DM. Intestinal mucositis: mechanisms and management. Curr Opin Oncol. 2007;19:323–7.

    PubMed  Google Scholar 

  69. Ribeiro RA, Wanderley CW, Wong DV, et al. Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol. 2016;78:881–93.

    CAS  PubMed  Google Scholar 

  70. Touchefeu Y, Montassier E, Nieman K, et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment Pharmacol Ther. 2014;40:409–21.

    CAS  PubMed  Google Scholar 

  71. Lee SF, Chiang CL, Lee AS, et al. Severe ileitis associated with capecitabine: two case reports and review of the literature. Mol Clin Oncol. 2015;3:1398–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. van Hellemond IEG, Thijs AM, Creemers GJ. Capecitabine-associated terminal ileitis. Case Rep Oncol. 2018;11:654–9.

    PubMed  PubMed Central  Google Scholar 

  73. •• Samaan MA, Pavlidis P, Papa S, et al. Gastrointestinal toxicity of immune checkpoint inhibitors: from mechanisms to management. Nat Rev Gastroenterol Hepatol. 2018;15:222–34 Comprehensive review on the clinical use and GI toxicity of immune checkpoint inhibitors.

    CAS  PubMed  Google Scholar 

  74. •• Soularue E, Lepage P, Colombel JF, et al. Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut. 2018;67:2056–67 Complete review on the pathogenesis, clinical picture, and diagnosis of enterocolitis associated to immune checkpoint inhibitor therapy.

    CAS  PubMed  Google Scholar 

  75. Bhatia S, Huber BR, Upton MP, et al. Inflammatory enteric neuropathy with severe constipation after ipilimumab treatment for melanoma: a case report. J Immunother. 2009;32:203–5.

    PubMed  Google Scholar 

  76. Gaudy-Marqueste C, Monestier S, Franques J, et al. A severe case of ipilimumab-induced Guillain-Barre syndrome revealed by an occlusive enteric neuropathy: a differential diagnosis for ipilimumab-induced colitis. J Immunother. 2013;36:77–8.

    PubMed  Google Scholar 

  77. Gennari FJ. Hypokalemia. N Engl J Med. 1998;339:451–8.

    CAS  PubMed  Google Scholar 

  78. Allen AC, Boley SJ, Schultz L, et al. Potassium-induced lesions of the small bowel. II. Pathology and pathogenesis. Jama. 1965;193:1001–6.

    CAS  PubMed  Google Scholar 

  79. Birnbaum D, Levy M. Diuretics and adverse gastrointestinal reaction. Digestion. 1971;4:362–6.

    CAS  PubMed  Google Scholar 

  80. Lawrason FD, Alpert E, Mohr FL, et al. Ulcerative-obstructive lesions of the small intestine. J A M A. 1965;191:641–4.

    CAS  PubMed  Google Scholar 

  81. Heffernan SJ, Murphy JJ. Letter: Ulceration of small intestine and slow-release potassium tablets. Br Med J. 1975;2:746.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Scarpignato C, Hunt RH. Nonsteroidal antiinflammatory drug-related injury to the gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol Clin North Am. 2010;39:433–64.

    PubMed  Google Scholar 

  83. Silverstein FE, Graham DY, Senior JR, et al. Misoprostol reduces serious gastrointestinal complications in patients with rheumatoid arthritis receiving nonsteroidal anti-inflammatory drugs. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1995;123:241–9.

    CAS  PubMed  Google Scholar 

  84. Laine L, Connors LG, Reicin A, et al. Serious lower gastrointestinal clinical events with nonselective NSAID or coxib use. Gastroenterology. 2003;124:288–92.

    CAS  PubMed  Google Scholar 

  85. Lanas A, Garcia-Rodriguez LA, Polo-Tomas M, et al. Time trends and impact of upper and lower gastrointestinal bleeding and perforation in clinical practice. Am J Gastroenterol. 2009;104:1633–41.

    PubMed  Google Scholar 

  86. Xiong L, Huang X, Li L, et al. Geranylgeranylacetone protects against small-intestinal injuries induced by diclofenac in patients with rheumatic diseases: a prospective randomized study. Dig Liver Dis. 2015;47:280–4.

    CAS  PubMed  Google Scholar 

  87. Ponziani FR, Scaldaferri F, Petito V, et al. The role of antibiotics in gut microbiota modulation: the eubiotic effects of rifaximin. Dig Dis. 2016;34:269–78.

    PubMed  Google Scholar 

  88. Kurokawa S, Katsuki S, Fujita T, et al. A randomized, double-blinded, placebo-controlled, multicenter trial, healing effect of rebamipide in patients with low-dose aspirin and/or non-steroidal anti-inflammatory drug induced small bowel injury. J Gastroenterol. 2014;49:239–44.

    CAS  PubMed  Google Scholar 

  89. Watanabe T, Takeuchi T, Handa O, et al. A multicenter, randomized, double-blind, placebo-controlled trial of high-dose rebamipide treatment for low-dose aspirin-induced moderate-to-severe small intestinal damage. PLoS One. 2015;10:e0122330.

    PubMed  PubMed Central  Google Scholar 

  90. Kuramoto T, Umegaki E, Nouda S, et al. Preventive effect of irsogladine or omeprazole on non-steroidal anti-inflammatory drug-induced esophagitis, peptic ulcers, and small intestinal lesions in humans, a prospective randomized controlled study. BMC Gastroenterol. 2013;13:85.

    PubMed  PubMed Central  Google Scholar 

  91. Tibble JA, Sigthorsson G, Foster R, et al. High prevalence of NSAID enteropathy as shown by a simple faecal test. Gut. 1999;45:362–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Montalto M, Gallo A, Gasbarrini A, et al. NSAID enteropathy: could probiotics prevent it? J Gastroenterol. 2013;48:689–97.

    PubMed  Google Scholar 

  93. Scarpignato C, Lanas A, Blandizzi C, et al. Safe prescribing of non-steroidal anti-inflammatory drugs in patients with osteoarthritis--an expert consensus addressing benefits as well as gastrointestinal and cardiovascular risks. BMC Med. 2015;13:55.

    PubMed  PubMed Central  Google Scholar 

  94. Higuchi K, Umegaki E, Watanabe T, et al. Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol. 2009;44:879–88.

    PubMed  Google Scholar 

  95. Takeuchi K, Satoh H. NSAID-induced small intestinal damage--roles of various pathogenic factors. Digestion. 2015;91:218–32.

    CAS  PubMed  Google Scholar 

  96. Fujimori S, Seo T, Gudis K, et al. Prevention of nonsteroidal anti-inflammatory drug-induced small-intestinal injury by prostaglandin: a pilot randomized controlled trial evaluated by capsule endoscopy. Gastrointest Endosc. 2009;69:1339–46.

    PubMed  Google Scholar 

  97. Niwa Y, Nakamura M, Ohmiya N, et al. Efficacy of rebamipide for diclofenac-induced small-intestinal mucosal injuries in healthy subjects: a prospective, randomized, double-blinded, placebo-controlled, cross-over study. J Gastroenterol. 2008;43:270–6.

    CAS  PubMed  Google Scholar 

  98. Fujimori S, Takahashi Y, Gudis K, et al. Rebamipide has the potential to reduce the intensity of NSAID-induced small intestinal injury: a double-blind, randomized, controlled trial evaluated by capsule endoscopy. J Gastroenterol. 2011;46:57–64.

    CAS  PubMed  Google Scholar 

  99. Mizukami K, Murakami K, Abe T, et al. Aspirin-induced small bowel injuries and the preventive effect of rebamipide. World J Gastroenterol. 2011;17:5117–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lanas A, Scarpignato C. Microbial flora in NSAID-induced intestinal damage: a role for antibiotics? Digestion. 2006;73(Suppl 1):136–50.

    CAS  PubMed  Google Scholar 

  101. Pellegrini C, Antonioli L, Lopez-Castejon G, et al. Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front Immunol. 2017;8:36.

    PubMed  PubMed Central  Google Scholar 

  102. Freeman CD, Klutman NE, Lamp KC. Metronidazole. A therapeutic review and update. Drugs. 1997;54:679–708.

    CAS  PubMed  Google Scholar 

  103. Bjarnason I, Williams P, So A, et al. Intestinal permeability and inflammation in rheumatoid arthritis: effects of non-steroidal anti-inflammatory drugs. Lancet. 1984;2:1171–4.

    CAS  PubMed  Google Scholar 

  104. Bjarnason I, Zanelli G, Prouse P, et al. Blood and protein loss via small-intestinal inflammation induced by non-steroidal anti-inflammatory drugs. Lancet. 1987;2:711–4.

    CAS  PubMed  Google Scholar 

  105. Graham DY, Opekun AR, Willingham FF, et al. Visible small-intestinal mucosal injury in chronic NSAID users. Clin Gastroenterol Hepatol. 2005;3:55–9.

    PubMed  Google Scholar 

  106. Maiden L, Thjodleifsson B, Theodors A, et al. A quantitative analysis of NSAID-induced small bowel pathology by capsule enteroscopy. Gastroenterology. 2005;128:1172–8.

    PubMed  Google Scholar 

  107. Fujimori S, Gudis K, Sakamoto C. A review of anti-inflammatory drug-induced gastrointestinal injury: focus on prevention of small intestinal injury. Pharmaceuticals. 2010;3:1187–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Laine L, Smith R, Min K, et al. Systematic review: the lower gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs. Aliment Pharmacol Ther. 2006;24:751–67.

    CAS  PubMed  Google Scholar 

  109. Goldstein JL, Eisen GM, Lewis B, et al. Video capsule endoscopy to prospectively assess small bowel injury with celecoxib, naproxen plus omeprazole, and placebo. Clin Gastroenterol Hepatol. 2005;3:133–41.

    PubMed  Google Scholar 

  110. Goldstein JL, Eisen GM, Lewis B, et al. Small bowel mucosal injury is reduced in healthy subjects treated with celecoxib compared with ibuprofen plus omeprazole, as assessed by video capsule endoscopy. Aliment Pharmacol Ther. 2007;25:1211–22.

    CAS  Google Scholar 

  111. Blackler RW, Gemici B, Manko A, et al. NSAID-gastroenteropathy: new aspects of pathogenesis and prevention. Curr Opin Pharmacol. 2014;19:11–6.

    CAS  PubMed  Google Scholar 

  112. Scarpignato C. NSAID-induced intestinal damage: are luminal bacteria the therapeutic target? Gut. 2008;57:145–8.

    CAS  PubMed  Google Scholar 

  113. Petruzzelli M, Vacca M, Moschetta A, et al. Intestinal mucosal damage caused by non-steroidal anti-inflammatory drugs: role of bile salts. Clin Biochem. 2007;40:503–10.

    CAS  PubMed  Google Scholar 

  114. Takeuchi K, Tanaka A, Kato S, et al. Roles of COX inhibition in pathogenesis of NSAID-induced small intestinal damage. Clin Chim Acta. 2010;411:459–66.

    CAS  PubMed  Google Scholar 

  115. Higashimori A, Watanabe T, Nadatani Y, et al. Mechanisms of NLRP3 inflammasome activation and its role in NSAID-induced enteropathy. Mucosal Immunol. 2016;9:659–68.

    CAS  PubMed  Google Scholar 

  116. Bjarnason I, Hayllar J, Smethurst P, et al. Metronidazole reduces intestinal inflammation and blood loss in non-steroidal anti-inflammatory drug induced enteropathy. Gut. 1992;33:1204–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fornai M, Antonioli L, Pellegrini C, et al. Small bowel protection against NSAID-injury in rats: effect of rifaximin, a poorly absorbed, GI targeted, antibiotic. Pharmacol Res. 2015;104:186–96.

    PubMed  Google Scholar 

  118. • Colucci R, Pellegrini C, Fornai M, et al. Pathophysiology of NSAID-associated intestinal lesions in the rat: luminal bacteria and mucosal inflammation as targets for prevention. Front Pharmacol. 2018;9:1340 Experimental paper detailing the mechanisms underlying the enteroprotective effects of rifaximin.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. •• Scarpignato C, Dolak W, Lanas A, et al. Rifaximin reduces the number and severity of intestinal lesions associated with use of nonsteroidal anti-inflammatory drugs in humans. Gastroenterology. 2017;152:980-82 e3 First demonstration of the involvement of enteric bacteria in the pathogenesis of NSAID enteropathy in humans.

    Google Scholar 

  120. Isomura Y, Yamaji Y, Yamada A, et al. Irsogladine improves small-intestinal injuries in regular users of nonsteroidal anti-inflammatory drugs. Gastrointest Endosc. 2014;80:118–25.

    PubMed  Google Scholar 

  121. Umegaki E, Kuramoto T, Kojima Y, et al. Geranylgeranylacetone, a gastromucoprotective drug, protects against NSAID-induced esophageal, gastroduodenal and small intestinal mucosal injury in healthy subjects: a prospective randomized study involving a comparison with famotidine. Intern Med. 2014;53:283–90.

    PubMed  Google Scholar 

  122. Watanabe T, Sugimori S, Kameda N, et al. Small bowel injury by low-dose enteric-coated aspirin and treatment with misoprostol: a pilot study. Clin Gastroenterol Hepatol. 2008;6:1279–82.

    PubMed  Google Scholar 

  123. Kyaw MH, Otani K, Ching JYL, et al. Misoprostol heals small bowel ulcers in aspirin users with small bowel bleeding. Gastroenterology. 2018;155:1090-97.e1.

    Google Scholar 

  124. Taha AS, McCloskey C, McSkimming P, et al. Misoprostol for small bowel ulcers in patients with obscure bleeding taking aspirin and non-steroidal anti-inflammatory drugs (MASTERS): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol. 2018;3:469–76.

    PubMed  Google Scholar 

  125. Walt RP. Misoprostol for the treatment of peptic ulcer and antiinflammatory-drug-induced gastroduodenal ulceration. N Engl J Med. 1992;327:1575–80.

    CAS  PubMed  Google Scholar 

  126. Silverstein FE. Improving the gastrointestinal safety of NSAIDs: the development of misoprostol--from hypothesis to clinical practice. Dig Dis Sci. 1998;43:447–58.

    CAS  PubMed  Google Scholar 

  127. Inoue T, Iijima H, Arimitsu J, et al. Amelioration of small bowel injury by switching from nonselective nonsteroidal anti-inflammatory drugs to celecoxib in rheumatoid arthritis patients: a pilot study. Digestion. 2014;89:124–32.

    CAS  PubMed  Google Scholar 

  128. Sukpanichnant S, Hargrove NS, Kachintorn U, et al. Clofazimine-induced crystal-storing histiocytosis producing chronic abdominal pain in a leprosy patient. Am J Surg Pathol. 2000;24:129–35.

    CAS  PubMed  Google Scholar 

  129. Singh H, Azad K, Kaur K. Clofazimine-induced enteropathy in a patient of leprosy. Indian J Pharmacol. 2013;45:197–8.

    PubMed  PubMed Central  Google Scholar 

  130. Jadhav MV, Sathe AG, Deore SS, et al. Tissue concentration, systemic distribution and toxicity of clofazimine--an autopsy study. Indian J Pathol Microbiol. 2004;47:281–3.

    CAS  PubMed  Google Scholar 

  131. Hameed A, Beach FX, Kennedy RH, et al. A case of clofazimine enteropathy. Int J Clin Pract. 1998;52:439–40.

    CAS  PubMed  Google Scholar 

  132. Bhasin DK, Kumar B, Broor SL, et al. Effect of clofazimine: detailed studies of small intestine functions. Indian J Lepr. 1985;57:364–72.

    CAS  PubMed  Google Scholar 

  133. Israili ZH, Hall WD. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med. 1992;117:234–42.

    CAS  PubMed  Google Scholar 

  134. Korniyenko A, Alviar CL, Cordova JP, et al. Visceral angioedema due to angiotensin-converting enzyme inhibitor therapy. Cleve Clin J Med. 2011;78:297–304.

    PubMed  Google Scholar 

  135. Hoyle M, Kennedy A, Prior AL, et al. Small bowel ischaemia and infarction in young women taking oral contraceptives and progestational agents. Br J Surg. 1977;64:533–7.

    CAS  PubMed  Google Scholar 

  136. Schneiderman DJ, Cello JP. Intestinal ischemia and infarction associated with oral contraceptives. West J Med. 1986;145:350–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ortizo R, Lee SY, Nguyen ET, et al. Exposure to oral contraceptives increases the risk for development of inflammatory bowel disease: a meta-analysis of case-controlled and cohort studies. Eur J Gastroenterol Hepatol. 2017;29:1064–70.

    CAS  PubMed  Google Scholar 

  138. Altintoprak F, Dikicier E, Akyuz M, et al. A retrospective review of patients with non-traumatic spontaneous intramural hematoma. Turk J Gastroenterol. 2013;24:392–9.

    PubMed  Google Scholar 

  139. Sorbello MP, Utiyama EM, Parreira JG, et al. Spontaneous intramural small bowel hematoma induced by anticoagulant therapy: review and case report. Clinics (Sao Paulo). 2007;62:785–90.

    Google Scholar 

  140. Abbas MA, Collins J, Olden K. Spontaneous intramural small-bowel hematoma: imaging findings and outcome. Am J Roentgenol. 2002;179:1389–98.

    Google Scholar 

  141. Choi BH, Koeckert M, Tomita S. Intramural bowel hematoma presenting as small bowel obstruction in a patient on low-molecular-weight heparin. Case Rep Pediatr. 2018;2018:8780121.

    PubMed  PubMed Central  Google Scholar 

  142. Flower R. The Osler Lecture 2012: ‘pharmacology 2.0, medicines, drugs and human enhancement’. QJM. 2012;105:823–30.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Scarpignato.

Ethics declarations

Conflict of Interest

Ingvar Bjarnason declares no conflict of interest.

Carmelo Scarpignato has served as a speaker, consultant, and/or advisory board member for Alfasigma, Pfizer, Takeda, Reckitt Benckiser, and Shionogi and has in the past received funding from Giuliani Pharmaceuticals and Pfizer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Small Intestine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarpignato, C., Bjarnason, I. Drug-Induced Small Bowel Injury: a Challenging and Often Forgotten Clinical Condition. Curr Gastroenterol Rep 21, 55 (2019). https://doi.org/10.1007/s11894-019-0726-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-019-0726-1

Keywords

Navigation