Skip to main content

Advertisement

Log in

Pathophysiology of Gastric NETs: Role of Gastrin and Menin

  • Stomach and Duodenum (J Pisegna and J Benhammou, Section Editors)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Neuroendocrine tumors (NETs) were initially identified as a separate entity in the early 1900s as a unique malignancy that secretes bioactive amines. GI-NETs are the most frequent type and represent a unique subset of NETs, because at least 75% of these tumors represent gastrin stimulation of the enterochromaffin-like cell located in the body of the stomach.

The purpose of this review is to understand the specific role of gastrin in the generation of Gastric NETs (G-NETs).

Recent findings

We review here the origin of enterochromaffin cells gut and the role of hypergastrinemia in gastric enteroendocrine tumorigenesis. We describe generation of the first genetically engineered mouse model of gastrin-driven G-NETs that mimics the human phenotype. The common mechanism observed in both the hypergastrinemic mouse model and human carcinoids is translocation of the cyclin-dependent inhibitor p27kip to the cytoplasm and its subsequent degradation by the proteasome.

Summary

Therapies that block degradation of p27kip, the CCKBR2 gastrin receptor, or gastrin peptide are likely to facilitate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Oberndorfer S. Karzinoïde Tumoren des Dunndarms. Frankf Z für Pathol. 1907;1:426–9.

    Google Scholar 

  2. Modlin IM, Shapiro MD, Kidd M, Eick G. Siegfried oberndorfer and the evolution of carcinoid disease. Arch Surg. 2007;142(2):187–97.

    Article  PubMed  Google Scholar 

  3. •• de Herder WW, Rehfeld JF, Kidd M, Modlin IM. A short history of neuroendocrine tumours and their peptide hormones. Best Pract Res Clin Endocrinol Metab. 2016;30(1):3–17. Review of the origin of carcinoids in the GI tract with an emphasis on the historic evolution from the clinical description to WHO designation.

    Article  PubMed  Google Scholar 

  4. Pearse AG, Polak JM. Neural crest origin of the endocrine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut. 1971;12(10):783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pearse AG. The APUD cell concept and its implications in pathology. Pathol Annu. 1974;9(0):27–41.

    CAS  PubMed  Google Scholar 

  6. Capella C, Heitz PU, Hofler H, Solcia E, Kloppel G. Revised classification of neuroendocrine tumours of the lung, pancreas and gut. Virchows Arch. 1995;425(6):547–60.

    Article  CAS  PubMed  Google Scholar 

  7. Moreira RK, Washington K. Pathology of gastrointestinal neuroendocrine tumors: an update. Surg Pathol Clin. 2010;3(2):327–47.

    Article  PubMed  Google Scholar 

  8. • Ito T, Lee L, Jensen RT. Treatment of symptomatic neuroendocrine tumor syndromes: recent advances and controversies. Expert Opin Pharmacother. 2016;17(16):2191–205. Review of novel medical, radiologic and surgical treatments.

    Article  CAS  PubMed  Google Scholar 

  9. Scherubl H, Cadiot G, Jensen RT, Rosch T, Stolzel U, Kloppel G. Neuroendocrine tumors of the stomach (gastric carcinoids) are on the rise: small tumors, small problems? Endoscopy. 2010;42(8):664–71.

    Article  CAS  PubMed  Google Scholar 

  10. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  11. Sato Y, Hashimoto S, Mizuno K, Takeuchi M, Terai S. Management of gastric and duodenal neuroendocrine tumors. World J Gastroenterol. 2016;22(30):6817–28.

    Article  PubMed  PubMed Central  Google Scholar 

  12. •• Anlauf M, Perren A, Meyer CL, Schmid S, Saremaslani P, Kruse ML, et al. Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology. 2005;128(5):1187–98. Showed that MEN1 gastrinomas arise from precursor lesions within the submucosal of the duodenum. Patients with duodenal gastrinomas are more likely to have the MEN1 mutations and therefore are at a greater risk for developing gastric carcinoids due to the tumor origin of gastrin.

    Article  CAS  PubMed  Google Scholar 

  13. Ooi A, Ota M, Katsuda S, Nakanishi I, Sugawara H, Takahashi I. An unusual case of multiple gastric carcinoids associated with diffuse endocrine cell hyperplasia and parietal cell hypertrophy. Endocr Pathol. 1995;6(3):229–37.

    Article  PubMed  Google Scholar 

  14. •• Abraham SC, Carney JA, Ooi A, Choti MA, Argani P. Achlorhydria, parietal cell hyperplasia, and multiple gastric carcinoids: a new disorder. Am J Surg Pathol. 2005;29(7):969–75. Overview of a new carcinoid phenotype in which the G-NETs develop in the setting hypergastrinemia and achlorhydria due to non-functional parietal cells.

    Article  PubMed  Google Scholar 

  15. Walsh JH. Gastrointestinal hormones. In: Johnson LR, Alpers DH, Christensen J, Jacobson ED, Walsh JH, editors. Physiology of the gastrointestinal tract. New York: Raven Press; 1994. p. 1–128.

    Google Scholar 

  16. Ryberg B, Tielemans Y, Axelson J, Carlsson E, Håkanson R, Mattsson H, et al. Gastrin stimulates the self-replication rate of enterochromaffinlike cells in the rat stomach. Gastroenterology. 1990;99:935–42.

    Article  CAS  PubMed  Google Scholar 

  17. Samuelson LC, Isakoff MS, Lacourse KA. Localization of the murine cholecystokinin A and B receptor genes. Mamm Genome. 1995;6(4):242–6.

    Article  CAS  PubMed  Google Scholar 

  18. Walsh JH. Role of gastrin as a trophic hormone. Digestion. 1990;47:11–6.

    Article  CAS  PubMed  Google Scholar 

  19. Minalyan A, Benhammou JN, Artashesyan A, Lewis MS, Pisegna JR. Autoimmune atrophic gastritis: current perspectives. Clin Exp Gastroenterol. 2017;10:19–27.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Antonodimitrakis P, Tsolakis A, Welin S, Kozlovacki G, Oberg K, Granberg D. Gastric carcinoid in a patient infected with Helicobacter pylori: a new entity? World J Gastroenterol. 2011;17(25):3066–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vannella L, Lahner E, Annibale B. Risk for gastric neoplasias in patients with chronic atrophic gastritis: a critical reappraisal. World J Gastroenterol. 2012;18(12):1279–85.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lahner E, Esposito G, Pilozzi E, Purchiaroni F, Corleto VD, Di Giulio E, et al. Occurrence of gastric cancer and carcinoids in atrophic gastritis during prospective long-term follow up. Scand J Gastroenterol. 2015;50(7):856–65.

    Article  CAS  PubMed  Google Scholar 

  23. D'Adda T, Keller G, Bordi C, Hofler H. Loss of heterozygosity in 11q13-14 regions in gastric neuroendocrine tumors not associated with multiple endocrine neoplasia type 1 syndrome. Lab Investig. 1999;79(6):671–7.

    PubMed  Google Scholar 

  24. Sano M. Electron microscope study on endocrine cells and tumor cells in the glandular stomach of Praomys (mastomys) natalensis. Arch Histol Jpn. 1975;38(3):237–58.

    Article  CAS  PubMed  Google Scholar 

  25. Tang LH, Modlin IM, Lawton GP, Kidd M, Chinery R. The role of transforming growth factor alpha in the enterochromaffin-like cell tumor autonomy in an African rodent mastomys. Gastroenterology. 1996;111(5):1212–23.

    Article  CAS  PubMed  Google Scholar 

  26. Asahara M, Kinoshita Y, Nakata H, Matsushima Y, Naribayashi Y, Nakamura A, et al. Gastrin receptor genes are expressed in gastric parietal and enterochromaffin-like cells of Mastomys natalensis. Digest Diseases Sci. 1994;39:2149–56.

    Article  CAS  Google Scholar 

  27. Bilchik AJ, Nilsson O, Modlin IM, Sussman J, Zucker KA, Adrian TE. H2-receptor blockade induces peptide YY and enteroglucagon-secreting gastric carcinoids in mastomys. Surgery. 1989;106(6):1119–26.

  28. Modlin IM, Tang LH, Lawton GP, Darr UM, Zhu ZH, Soroka CJ. Enterochromaffin-like cell pathobiology of mastomys. Ann N Y Acad Sci. 1994;733:365–79.

    Article  CAS  PubMed  Google Scholar 

  29. Shen HC, Ylaya K, Pechhold K, Wilson A, Adem A, Hewitt SM, et al. Multiple endocrine neoplasia type 1 deletion in pancreatic alpha-cells leads to development of insulinomas in mice. Endocrinology. 2010;151(8):4024–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci U S A. 2001;98(3):1118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C, et al. Of mice and MEN1: insulinomas in a conditional mouse knockout. Mol Cell Biol. 2003;23(17):6075–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biondi CA, Gartside MG, Waring P, Loffler KA, Stark MS, Magnuson MA, et al. Conditional inactivation of the MEN1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol Cell Biol. 2004;24(8):3125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veniaminova NA, Hayes MM, Varney JM, Merchant JL. Conditional deletion of menin results in antral G cell hyperplasia and hypergastrinemia. Am J Physiol Gastrointest Liver Physiol. 2012. Deletion of Men1 alone in mice is not sufficient for GI-NET development.

  34. •• Sundaresan S, Kang AJ, Hayes MM, Choi EK, Merchant JL. Deletion of Men1 and somatostatin induces hypergastrinemia and gastric carcinoids. Gut. 2016. First genetically engineered mouse model of G-NETs (carcinoids). The mechanism involved a graded increase in plasma gastrin from menin deletion (transcriptional inhibitor), somatostatin (inhibitor of gastrin gene expression and secretion) and acid suppression with omeprazole (parietal cell atrophy, hypochlorhydria). An essential target identified in both the mouse model and in human tissue was the loss of p27 Kip1 .

  35. Kidd M, Siddique ZL, Drozdov I, Gustafsson BI, Camp RL, Black JW, et al. The CCK(2) receptor antagonist, YF476, inhibits Mastomys ECL cell hyperplasia and gastric carcinoid tumor development. Regul Pept. 2010;162(1–3):52–60.

    Article  CAS  PubMed  Google Scholar 

  36. Eissele R, Anlauf M, Schafer MK, Eiden LE, Arnold R, Weihe E. Expression of vesicular monoamine transporters in endocrine hyperplasia and endocrine tumors of the oxyntic stomach. Digestion. 1999;60(5):428–39.

    Article  CAS  PubMed  Google Scholar 

  37. Kidd M, Modlin IM, Bodei L, Drozdov I. Decoding the molecular and mutational ambiguities of gastroenteropancreatic neuroendocrine neoplasm pathobiology. Cell Mol Gastroenterol Hepatol. 2015;1(2):131–53.

    Article  PubMed  PubMed Central  Google Scholar 

  38. • Vigen RA, Kidd M, Modlin IM, Chen D, Zhao CM. Ultrastructure of ECL cells in Mastomys after long-term treatment with H2 receptor antagonist loxtidine. Med Mol Morphol. 2012;45(2):80–5. Evidence that acid suppression in an outbred rodent model results in G-NETs.

    Article  CAS  PubMed  Google Scholar 

  39. Betton GR, Dormer CS, Wells T, Pert P, Price CA, Buckley P. Gastric ECL-cell hyperplasia and carcinoids in rodents following chronic administration of H2-antagonists SK&F 93479 and oxmetidine and omeprazole. Toxicol Pathol. 1988;16(2):288–98.

    Article  CAS  PubMed  Google Scholar 

  40. Cavalcoli F, Zilli A, Conte D, Ciafardini C, Massironi S. Gastric neuroendocrine neoplasms and proton pump inhibitors: fact or coincidence? Scand J Gastroenterol. 2015;50(11):1397–403.

    Article  CAS  PubMed  Google Scholar 

  41. Ko Y, Tang J, Sanagapalli S, Kim BS, Leong RW. Safety of proton pump inhibitors and risk of gastric cancers: review of literature and pathophysiological mechanisms. Expert Opin Drug Saf. 2016;15(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  42. Song H, Zhu J, Lu D. Long-term proton pump inhibitor (PPI) use and the development of gastric pre-malignant lesions. Cochrane Database Syst Rev. 2014;12:CD010623.

    Google Scholar 

  43. Tsukamoto H, Mizoshita T, Sasaki M, Mizushima T, Tanida S, Ozeki K, et al. Long-term high-dose proton pump inhibitor administration to Helicobacter pylori-infected Mongolian gerbils enhances neuroendocrine tumor development in the glandular stomach. Asian Pac J Cancer Prev. 2011;12(4):1049–54.

    PubMed  Google Scholar 

  44. Cao L, Mizoshita T, Tsukamoto T, Takenaka Y, Toyoda T, Cao X, et al. Development of carcinoid tumors of the glandular stomach and effects of eradication in Helicobacter pylori-infected Mongolian gerbils. Asian Pac J Cancer Prev. 2008;9(1):25–30.

    PubMed  Google Scholar 

  45. La Rosa S, Chiaravalli AM, Capella C, Uccella S, Sessa F. Immunohistochemical localization of acidic fibroblast growth factor in normal human enterochromaffin cells and related gastrointestinal tumours. Virchows Arch. 1997;430(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  46. Mahr S, Neumayer N, Kolb HJ, Schepp W, Classen M, Prinz C. Growth factor effects on apoptosis of rat gastric enterochromaffin-like cells. Endocrinology. 1998;139(10):4380–90.

    Article  CAS  PubMed  Google Scholar 

  47. Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC, et al. Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet. 1997;6(7):1169–75.

    Article  CAS  PubMed  Google Scholar 

  48. Giusti F, Marini F, Brandi ML. Multiple endocrine neoplasia type 1. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews(R). Seattle (WA)1993.

  49. Dreijerink KM, Hoppener JW, Timmers HM, Lips CJ. Mechanisms of disease: multiple endocrine neoplasia type 1-relation to chromatin modifications and transcription regulation. Nat Clin Pract Endocrinol Metab. 2006;2(10):562–70.

    Article  CAS  PubMed  Google Scholar 

  50. Ito T, Igarashi H, Uehara H, Berna MJ, Jensen RT. Causes of death and prognostic factors in multiple endocrine neoplasia type 1: a prospective study: comparison of 106 MEN1/Zollinger-Ellison syndrome patients with 1613 literature MEN1 patients with or without pancreatic endocrine tumors. Medicine (Baltimore). 2013;92(3):135–81.

    Article  CAS  Google Scholar 

  51. • Bonnavion R, Teinturier R, Jaafar R, Ripoche D, Leteurtre E, Chen YJ, et al. Islet cells serve as cells of origin of pancreatic gastrin-positive endocrine tumors. Mol Cell Biol. 2015;35(19):3274–83. Men1 deletion is sufficent for pancreatic gastrinomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suissa Y, Magenheim J, Stolovich-Rain M, Hija A, Collombat P, Mansouri A, et al. Gastrin: a distinct fate of neurogenin3 positive progenitor cells in the embryonic pancreas. PLoS One. 2013;8(8):e70397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anlauf M, Perren A, Henopp T, Rudolf T, Garbrecht N, Schmitt A, et al. Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut. 2007;56(5):637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang EH, Ebrahimi SA, Wu AY, Kashefi C, Passaro E Jr, Sawicki MP. Mutation of the MENIN gene in sporadic pancreatic endocrine tumors. Cancer Res. 1998;58(19):4417–20.

    CAS  PubMed  Google Scholar 

  56. Krause WJ. Brunner’s glands: a structural, histochemical and pathological profile. Prog Histochem Cytochem. 2000;35(4):259–367.

    Article  CAS  PubMed  Google Scholar 

  57. Krause WJ, Leeson CR. The origin, development and differentiation of Brunner’s glands in the rat. J Anat. 1967;101(Pt 2):309–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahnen DJ, Poulsom R, Stamp GW, Elia G, Pike C, Jeffery R, et al. The ulceration-associated cell lineage (UACL) reiterates the Brunner's gland differentiation programme but acquires the proliferative organization of the gastric gland. J Pathol. 1994;173(4):317–26.

    Article  CAS  PubMed  Google Scholar 

  59. Montaner B, Asbert M, Perez-Tomas R. Immunolocalization of transforming growth factor-alpha and epidermal growth factor receptor in the rat gastroduodenal area. Dig Dis Sci. 1999;44(7):1408–16.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Shi C, Lu Y, Poulin EJ, Franklin JL, Coffey RJ. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. Am J Pathol. 2015;185(4):1123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Evers BM, Rady PL, Sandoval K, Arany I, Tyring SK, Sanchez RL, et al. Gastrinomas demonstrate amplification of the HER-2/neu proto-oncogene. Ann Surg. 1994;219(6):596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goebel SU, Iwamoto M, Raffeld M, Gibril F, Hou W, Serrano J, et al. Her-2/neu expression and gene amplification in gastrinomas: correlations with tumor biology, growth, and aggressiveness. Cancer Res. 2002;62(13):3702–10.

    CAS  PubMed  Google Scholar 

  63. MacConaill LE, Hughes CM, Rozenblatt-Rosen O, Nannepaga S, Meyerson M. Phosphorylation of the menin tumor suppressor protein on serine 543 and serine 583. Mol Cancer Res. 2006;4(10):793–801.

    Article  CAS  PubMed  Google Scholar 

  64. Yaguchi H, Ohkura N, Takahashi M, Nagamura Y, Kitabayashi I, Tsukada T. Menin missense mutants associated with multiple endocrine neoplasia type 1 are rapidly degraded via the ubiquitin-proteasome pathway. Mol Cell Biol. 2004;24(15):6569–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. La P, Desmond A, Hou Z, Silva AC, Schnepp RW, Hua X. Tumor suppressor menin: the essential role of nuclear localization signal domains in coordinating gene expression. Oncogene. 2006;25(25):3537–46.

    Article  CAS  PubMed  Google Scholar 

  66. Canaff L, Vanbellinghen JF, Kanazawa I, Kwak H, Garfield N, Vautour L, et al. Menin missense mutants encoded by the MEN1 gene that are targeted to the proteasome: restoration of expression and activity by CHIP siRNA. J Clin Endocrinol Metab. 2012;97(2):E282–91.

    Article  CAS  PubMed  Google Scholar 

  67. Nagamura Y, Yamazaki M, Shimazu S, Tsukada T, Sakurai A. Application of an intracellular stability test of a novel missense menin mutant to the diagnosis of multiple endocrine neoplasia type 1. Endocr J. 2012;59(12):1093–8.

    Article  CAS  PubMed  Google Scholar 

  68. Shimazu S, Nagamura Y, Yaguchi H, Ohkura N, Tsukada T. Correlation of mutant menin stability with clinical expression of multiple endocrine neoplasia type 1 and its incomplete forms. Cancer Sci. 2011;102(11):2097–102.

    Article  CAS  PubMed  Google Scholar 

  69. Matkar S, Thiel A, Hua X. Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci. 2013;38(8):394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schmid HA. Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol. 2008;286(1–2):69–74.

    Article  CAS  PubMed  Google Scholar 

  71. Cives M, Strosberg J. Treatment strategies for metastatic neuroendocrine tumors of the gastrointestinal tract. Curr Treat Options in Oncol. 2017;18(3):14.

    Article  Google Scholar 

  72. Phan AT, Kunz PL, Reidy-Lagunes DL. New and emerging treatment options for gastroenteropancreatic neuroendocrine tumors. Clin Adv Hematol Oncol. 2015;13(5 Suppl 5):1–18.

  73. Moore AR, Boyce M, Steele IA, Campbell F, Varro A, Pritchard DM. Netazepide, a gastrin receptor antagonist, normalises tumour biomarkers and causes regression of type 1 gastric neuroendocrine tumours in a nonrandomised trial of patients with chronic atrophic gastritis. PLoS One. 2013;8(10):e76462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boyce M, Moore AR, Sagatun L, Parsons BN, Varro A, Campbell F, et al. Netazepide, a gastrin/cholecystokinin-2 receptor antagonist, can eradicate gastric neuroendocrine tumours in patients with autoimmune chronic atrophic gastritis. Br J Clin Pharmacol. 2017;83(3):466–75.

    Article  CAS  PubMed  Google Scholar 

  75. Molina-Cerrillo J, Alonso-Gordoa T, Martinez-Saez O, Grande E. Inhibition of peripheral synthesis of serotonin as a new target in neuroendocrine tumors. Oncologist. 2016;21(6):701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Chung C. Management of neuroendocrine tumors. Am J Health Syst Pharm. 2016;73(21):1729–44. Review of new clinical treatments for NETs.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanita L. Merchant.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors. All animal protocols were approved by the University of Michigan Animal Care and Use Committee, which maintains an American Association of Assessment and Accreditation of Laboratory Animal Care facility.

Additional information

This article is part of the Topical Collection on Stomach and Duodenum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaresan, S., Kang, A.J. & Merchant, J.L. Pathophysiology of Gastric NETs: Role of Gastrin and Menin. Curr Gastroenterol Rep 19, 32 (2017). https://doi.org/10.1007/s11894-017-0572-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-017-0572-y

Keywords

Navigation