Skip to main content

Advertisement

Log in

Cardiovascular Risk Management in Type 1 Diabetes

  • Macrovascular Complications in Diabetes (VS Aroda and L-S Chang, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Type 1 diabetes mellitus (T1DM) is associated with increased mortality, with premature cardiovascular disease (CVD) a major factor. To date, research has identified multiple risk factors for this excess CVD liability. However, gaps remain in our understanding of the underlying mechanisms.

Recent findings

T1DM is generally diagnosed at a young age. Since cardiovascular complications often only manifest at a later stage of life, there is generally less focus in earlier years on reducing CVD risk for affected individuals. This is an area that requires improvement as risk factors might be managed from earlier age to reduce later development of CVD.

Summary

In this review, we discuss the evidence for cardiovascular risk factors, risk prediction models, candidate surrogate measurements and CVD risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK. Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study. Diabetes Care. 2015;38(2):316–22.

    Article  PubMed  Google Scholar 

  2. Vergès B. Cardiovascular disease in type 1 diabetes: a review of epidemiological data and underlying mechanisms. Diabetes Metab. 2020;46(6):442–9.

    Article  PubMed  CAS  Google Scholar 

  3. Jørgensen ME, Almdal TP, Carstensen B. Time trends in mortality rates in type 1 diabetes from 2002 to 2011. Diabetologia. 2013 Nov;56(11):2401–4.

    Article  PubMed  CAS  Google Scholar 

  4. Livingstone SJ, Looker HC, Hothersall EJ, Wild SH, Lindsay RS, Chalmers J, et al. Risk of cardiovascular disease and total mortality in adults with type 1 diabetes: Scottish registry linkage study. PLoS Med. 2012;9(10):e1001321.

  5. Htay T, Soe K, Lopez-Perez A, Doan AH, Romagosa MA, Aung K. Mortality and cardiovascular disease in type 1 and type 2 diabetes. Curr Cardiol Rep. 2019;21(6):45.

    Article  PubMed  Google Scholar 

  6. Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376(15):1407–18.

  7. Schofield J, Ho J, Soran H. Cardiovascular risk in type 1 diabetes mellitus. Diabetes Therapy. 2019;10(3):773–89.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Secrest AM, Becker DJ, Kelsey SF, LaPorte RE, Orchard TJ. Cause-specific mortality trends in a large population-based cohort with long-standing childhood-onset type 1 diabetes. Diabetes. 2010;59(12):3216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson A, Miftaraj M, et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2017;135(16):1522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lind M, Svensson A, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972–82.

    Article  PubMed  CAS  Google Scholar 

  11. Orchard TJ, Costacou T, Kretowski A, Nesto RW. Type 1 diabetes and coronary artery disease. Diabetes Care. 2006;29(11):2528–38.

    Article  PubMed  Google Scholar 

  12. Conway B, Costacou T, Orchard T. Is glycaemia or insulin dose the stronger risk factor for coronary artery disease in type 1 diabetes? Diabetes and Vascular Disease Research. 2009;6(4):223–30.

    Article  PubMed  Google Scholar 

  13. Vistisen D, Andersen GS, Hansen CS, Hulman A, Henriksen JE, Bech-Nielsen H, et al. Prediction of first cardiovascular disease event in type 1 diabetes mellitus: the steno type 1 risk engine. Circulation. 2016;133(11):1058–66.

  14. Rawshani A, Sattar N, Franzén S, Rawshani A, Hattersley AT, Svensson A, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018;392(10146):477–86 Nationwide, register-based cohort study showing age at onset of T1DM is an important determinant of CVD, with highest excess risk in women.

  15. Miller RG, Costacou T, Orchard TJ. Risk factor modeling for cardiovascular disease in type 1 diabetes in the Pittsburgh Epidemiology of Diabetes Complications (EDC) study: a comparison with the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC). Diabetes. 2019;68(2):409–19.

    Article  CAS  PubMed  Google Scholar 

  16. Dabelea D, Kinney G, Snell-Bergeon JK, Hokanson JE, Eckel RH, Ehrlich J, Garg S, Hamman RF, Rewers M, Coronary Artery Calcification in Type 1 Diabetes Study Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance?: The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes 2003;52(11):2833-2839.

  17. Harjutsalo V, Thomas MC, Forsblom C, Groop P, FinnDiane Study Group. Risk of coronary artery disease and stroke according to sex and presence of diabetic nephropathy in type 1 diabetes. Diabetes, Obesity and Metabolism. 2018;20(12):2759–67.

    Article  CAS  PubMed  Google Scholar 

  18. Colhoun HM, Rubens MB, Underwood SR, Fuller JH. The effect of type 1 diabetes mellitus on the gender difference in coronary artery calcification. J Am Coll Cardiol. 2000;36(7):2160–7.

    Article  CAS  PubMed  Google Scholar 

  19. Larkin ME, Backlund J-, Cleary P, Bayless M, Schaefer B, Canady J, et al. Disparity in management of diabetes and coronary heart disease risk factors by sex in DCCT/EDIC. Diabet Med 2010 ;27(4):451-458.

    Article  CAS  PubMed  Google Scholar 

  20. Miller RG, Costacou T. Glucose management and the sex difference in excess cardiovascular disease risk in long-duration type 1 diabetes. Curr Diab Rep. 2019;19(12):139.

    Article  PubMed  Google Scholar 

  21. Orchard TJ, Costacou T. Cardiovascular complications of type 1 diabetes: update on the renal link. Acta Diabetol. 2017;54(4):325–34.

    Article  CAS  PubMed  Google Scholar 

  22. Pedrinelli R, Dell'omo G, Catapano G, Giampietro O, Carmassi F, Matteucci E, et al. Microalbuminuria and endothelial dysfunction in essential hypertension. The Lancet. 1994;344(8914):14–8.

    Article  CAS  Google Scholar 

  23. Maahs DM, Jalal D, Chonchol M, Johnson RJ, Rewers M, Snell-Bergeon JK. Impaired renal function further increases odds of 6-year coronary artery calcification progression in adults with type 1 diabetes: the CACTI study. Diabetes Care. 2013;36(9):2607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soedamah-Muthu SS, Chaturvedi N, Toeller M, Ferriss B, Reboldi P, Michel G, Manes C, Fuller JH, EURODIAB Prospective Complications Study Group Risk factors for coronary heart disease in type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study. Diabetes Care 2004;27(2):530-537.

  25. Jenkins AJ, Best JD, Klein RL, Lyons TJ. Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab Res. 2004;20(5):349–68.

    Article  CAS  Google Scholar 

  26. Dean JD, Durrington PN. Treatment of dyslipoproteinaemia in diabetes mellitus. Diabetic Med. 1996;13(4):297–312.

    Article  CAS  PubMed  Google Scholar 

  27. Costacou T, Evans RW, Orchard TJ. High-density lipoprotein cholesterol in diabetes: is higher always better? Journal of clinical lipidology. 2011;5(5):387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hero C, Svensson A, Gidlund P, Gudbjörnsdottir S, Eliasson B, Eeg-Olofsson K. LDL cholesterol is not a good marker of cardiovascular risk in Type 1 diabetes. Diabetic Med. 2016;33(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  29. Hero C, Rawshani A, Svensson AM, Franzén S, Eliasson B, Eeg-Olofsson K, et al. Association between use of lipid-lowering therapy and cardiovascular diseases and death in individuals with type 1 diabetes. Diabetes Care. 2016 Jun;39(6):996–1003.

  30. Maahs DM, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D, Hokanson J, et al. Hypertension prevalence, awareness, treatment, and control in an adult type 1 diabetes population and a comparable general population. Diabetes Care. 2005;28(2):301–6.

  31. Lithovius R, Gordin D, Forsblom C, Saraheimo M, Harjutsalo V, Groop PH, et al. Ambulatory blood pressure and arterial stiffness in individuals with type 1 diabetes. Diabetologia. 2018 Sep;61(9):1935–45.

    Article  PubMed  Google Scholar 

  32. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group. Risk factors for cardiovascular disease in type 1 diabetes. Diabetes. 2016;65(5):1370–9.

    Article  CAS  Google Scholar 

  33. Miller RG, Orchard TJ, Costacou T. Risk factors differ by first manifestation of cardiovascular disease in type 1 diabetes. Diabetes Res Clin Pract. 2020;163:108141.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Braffett BH, Rice MM, Young HA, Lachin JM. Mediation of the association of smoking and microvascular complications by glycemic control in type 1 diabetes. PloS one. 2019;14(1):e0210367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kapellen TM, Gausche R, Dost A, Wiegand S, Flechtner-Mors M, Keller E, et al. Children and adolescents with type 1 diabetes in Germany are more overweight than healthy controls: results comparing DPV database and CrescNet database. Journal of Pediatric Endocrinology and Metabolism. 2014;27(3-4):209–14.

  36. Purnell JQ, Braffett BH, Zinman B, Gubitosi-Klug RA, Sivitz W, Bantle JP, et al. Impact of excessive weight gain on cardiovascular outcomes in type 1 diabetes: results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes Care. 2017;40(12):1756–62.

  37. Braffett BH, Dagogo-Jack S, Bebu I, Sivitz WI, Larkin M, Kolterman O, et al. Association of insulin dose, cardiometabolic risk factors, and cardiovascular disease in type 1 diabetes during 30 years of follow-up in the DCCT/EDIC study. Diabetes Care. 2019;42(4):657–64.

  38. Nahmias A, Stahel P, Xiao C, Lewis GF. Glycemia and atherosclerotic cardiovascular disease: exploring the gap between risk marker and risk factor. Frontiers in Cardiovascular Medicine. 2020;7.

  39. Giménez M, Gilabert R, Monteagudo J, Alonso A, Casamitjana R, Paré C, et al. Repeated episodes of hypoglycemia as a potential aggravating factor for preclinical atherosclerosis in subjects with type 1 diabetes. Diabetes Care. 2011;34(1):198–203.

    Article  PubMed  CAS  Google Scholar 

  40. Joy NG, Hedrington MS, Briscoe VJ, Tate DB, Ertl AC, Davis SN. Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care. 2010;33(7):1529–35.

    Article  CAS  Google Scholar 

  41. Joy NG, Tate DB, Younk LM, Davis SN. Effects of acute and antecedent hypoglycemia on endothelial function and markers of atherothrombotic balance in healthy humans. Diabetes. 2015;64(7):2571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gruden G, Barutta F, Chaturvedi N, Schalkwijk C, Stehouwer CD, Witte DR, et al. Severe hypoglycemia and cardiovascular disease incidence in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care. 2012;35(7):1598–604.

  43. Giménez M, López JJ, Castell C, Conget I. Hypoglycaemia and cardiovascular disease in Type 1 Diabetes. Results from the Catalan National Public Health registry on insulin pump therapy. Diabetes Res Clin Pract. 2012;96(2):e23–5.

    Article  PubMed  Google Scholar 

  44. Fährmann ER, Adkins L, Loader CJ, Han H, Rice KM, Denvir J, et al. Severe hypoglycemia and coronary artery calcification during the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Res Clin Pract. 2015;107(2):280–9.

  45. Yu JH, Han K, Park S, Lee DY, Nam GE, Seo JA, et al. Effects of long-term glycemic variability on incident cardiovascular disease and mortality in subjects without diabetes: a nationwide population-based study. Medicine. 2019:98(29).

  46. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–54.

  47. Snell-Bergeon JK, Roman R, Rodbard D, Garg S, Maahs DM, Schauer IE, et al. Glycaemic variability is associated with coronary artery calcium in men with type 1 diabetes: the Coronary Artery Calcification in Type 1 Diabetes study. Diabetic Med. 2010;27(12):1436–42.

  48. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol J, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7.

    Article  CAS  PubMed  Google Scholar 

  49. Hoffman RP, Dye AS, Huang H, Bauer JA. Glycemic variability predicts inflammation in adolescents with type 1 diabetes. Journal of Pediatric Endocrinology and Metabolism. 2016;29(10):1129–33.

    Article  CAS  PubMed  Google Scholar 

  50. Jun JE, Lee S, Lee Y, Ahn JY, Kim G, Hur KY, et al. Continuous glucose monitoring defined glucose variability is associated with cardiovascular autonomic neuropathy in type 1 diabetes. Diabetes Metab Res. 2019;35(2):e3092.

    Article  CAS  Google Scholar 

  51. Helleputte S, De Backer T, Lapauw B, Shadid S, Celie B, Van Eetvelde B, et al. The relationship between glycaemic variability and cardiovascular autonomic dysfunction in patients with type 1 diabetes: a systematic review. Diabetes Metab Res. 2020;36(5):e3301.

    Article  Google Scholar 

  52. Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab J. 2019;43(1):3–30.

    Article  PubMed  Google Scholar 

  53. Orchard TJ, Lloyd CE, Maser RE, Kuller LH. Why does diabetic autonomic neuropathy predict IDDM mortality? An analysis from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Res Clin Pract. 1996;34:S165–71.

    Article  PubMed  Google Scholar 

  54. Hjortkjær HØ, Jensen T, Hilsted J, Mogensen UM, Rossing P, Køber L, et al. Generalised arterial calcification in normoalbuminuric patients with type 1 diabetes with and without cardiovascular autonomic neuropathy. Diab Vasc Dis Res 2019 -01;16(1):98-102.

  55. Sousa GR, Pober D, Galderisi A, Lv H, Yu L, Pereira AC, et al. Glycemic control, cardiac autoimmunity, and long-term risk of cardiovascular disease in type 1 diabetes mellitus. Circulation. 2019;139(6):730–43 Measurement of cardiac autoantibodies in longitudinal samples from the DCCT and assessment of subsequent coronary artery calcification, hsCRP and CVD events showing that poor glycaemic control is associated with cardiac autoimmunity in T1DM and cardiac autoantibody positivity is associated with increased CVD risk.

  56. Gottumukkala, Raju V. S. R. K., Lv H, Cornivelli L, Wagers AJ, Kwong RY, Bronson R, et al. Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes. Sci Transl Med 2012;4(138):138ra80.

  57. Zgibor JC, Piatt GA, Ruppert K, Orchard TJ, Roberts MS. Deficiencies of cardiovascular risk prediction models for type 1 diabetes. Diabetes Care. 2006;29(8):1860–5.

    Article  PubMed  Google Scholar 

  58. Cederholm J, Eeg-Olofsson K, Eliasson B, Zethelius B, Gudbjörnsdottir S. Swedish National Diabetes Register. A new model for 5-year risk of cardiovascular disease in Type 1 diabetes; from the Swedish National Diabetes Register (NDR). Diabetic Med. 2011;28(10):1213–20.

    Article  CAS  PubMed  Google Scholar 

  59. Sharma H, Lencioni M, Narendran P. Cardiovascular disease in type 1 diabetes. Cardiovasc Endocrinol Metab 2019;8(1):28-34.

  60. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ: British Medical Journal. 2017;357.

  61. National Institute of Clinical Excellence, (NICE). Cardiovascular disease: risk assessment and reduction, including lipid modification. NICE clinical guideline [CG181]. 2014; Available at: https://www.nice.org.uk/guidance/CG181. Accessed 19 Apr 2021.

  62. National Institute of Health and Care Excellence, (NICE). Surveillance report 2018 – Cardiovascular disease: risk assessment and reduction, including lipid modification (2014) NICE guideline CG181. 2018; Available at: https://www.nice.org.uk/guidance/cg181/resources/surveillance-report-2018-cardiovascular-disease-risk-assessment-and-reduction-including-lipid-modification-2014-nice-guideline-cg181-pdf-6123288665797. Accessed 19 Apr 2021.

  63. Jenkins A, Januszewski A, O’Neal D. The early detection of atherosclerosis in type 1 diabetes: why, how and what to do about it. Cardiovasc Endocrinol Metab. 2019;8(1):14–27.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wiromrat P, Bjornstad P, Roncal C, Cree-Green M, Baumgartner A, Coe G, et al. Serum uromodulin inversely associates with aortic stiffness in youth with type 1 diabetes: a brief report from EMERALD study. J Diabetes Complications. 2019;33(6):434–6.

  65. Kramer CK, Rodrigues TC, Canani LH, Gross JL, Azevedo MJ. Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care. 2011;34(5):1238–44.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Almeida FK, Esteves JF, Gross JL, Biavatti K, Rodrigues TC. Severe forms of retinopathy predict the presence of subclinical atherosclerosis in type 1 diabetes subjects. Arq Bras Cardiol. 2011;97(4):346–9.

    Article  PubMed  Google Scholar 

  67. O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  68. Nathan DM, Lachin J, Cleary P, Orchard T, Brillon DJ, Backlund JY, et al. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med. 2003;348(23):2294–303.

  69. Rathsman B, Rosfors S, Sjöholm Å, Nyström T. Early signs of atherosclerosis are associated with insulin resistance in non-obese adolescent and young adults with type 1 diabetes. Cardiovasc Diabetol. 2012;11(1):145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shoji T, Hatsuda S, Tsuchikura S, Shinohara K, Kimoto E, Koyama H, et al. Small dense low-density lipoprotein cholesterol concentration and carotid atherosclerosis. Atherosclerosis. 2009;202(2):582–8.

  71. Starkman HS, Cable G, Hala V, Hecht H, Donnelly CM. Delineation of prevalence and risk factors for early coronary artery disease by electron beam computed tomography in young adults with type 1 diabetes. Diabetes Care. 2003;26(2):433–6.

    Article  PubMed  Google Scholar 

  72. Snell-Bergeon JK, Hokanson JE, Jensen L, MacKenzie T, Kinney G, Dabelea D, et al. Progression of coronary artery calcification in type 1 diabetes: the importance of glycemic control. Diabetes Care. 2003;26(10):2923–8.

  73. Olson JC, Edmundowicz D, Becker DJ, Kuller LH, Orchard TJ. Coronary calcium in adults with type 1 diabetes: a stronger correlate of clinical coronary artery disease in men than in women. Diabetes 2000;49(9):1571-1578.

  74. Budoff M, Backlund JC, Bluemke DA, Polak J, Bebu I, Schade D, et al. The association of coronary artery calcification with subsequent incidence of cardiovascular disease in type 1 diabetes. JACC. Cardiovascular imaging 2019;12(7):1341-1349. Study demonstrating that CAC scores greater than 100 Agatston units were significantly associated with an increased risk of subsequent CVD in DCCT/EDIC.

  75. Ray KK, Seshasai SRK, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet (London, England) 2009;373(9677):1765-1772.

  76. Bebu I, Braffett BH, Pop-Busui R, Orchard TJ, Nathan DM, Lachin JM, et al. The relationship of blood glucose with cardiovascular disease is mediated over time by traditional risk factors in type 1 diabetes: the DCCT/EDIC study. Diabetologia. 2017;60(10):2084–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019;42(Supplement 1):S90-S102.

  78. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. Guidelines: Editor's choice: 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016;37(29):2315.

  79. Giugliano RP, Cannon CP, Blazing MA, Nicolau JC, Corbalán R, Špinar J, et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation. 2018;137(15):1571–82.

  80. Ciriacks K, Coly G, Krishnaswami S, Patel SB, Kidambi S. Effects of simvastatin and ezetimibe in lowering low-density lipoprotein cholesterol in subjects with type 1 and type 2 diabetes mellitus. Metab Syndr Relat Disord. 2015;13(2):84–90.

    Article  CAS  PubMed  Google Scholar 

  81. Tell S, Nadeau KJ, Eckel RH. Lipid management for cardiovascular risk reduction in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2020;27(4):207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leiter LA, Cariou B, Müller-Wieland D, Colhoun HM, Del Prato S, Tinahones FJ, et al. Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: the ODYSSEY DM-INSULIN randomized trial. Diabetes Obes Metab. 2017;19(12):1781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):941–50.

    Article  CAS  PubMed  Google Scholar 

  84. Effects of n−3 Fatty acid supplements in diabetes mellitus. N Engl J Med 2018;379(16):1540-1550.

  85. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22.

  86. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020;43(Supplement 1):S111-S134.

  87. Orringer CE, Jacobson TA, Maki KC. National Lipid Association Scientific Statement on the use of icosapent ethyl in statin-treated patients with elevated triglycerides and high or very-high ASCVD risk. J Clin Lipidol. 2019;13(6):860–72.

    Article  PubMed  Google Scholar 

  88. Steineck I, Cederholm J, Eliasson B, Rawshani A, Eeg-Olofsson K, Svensson A, et al. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18 168 people with type 1 diabetes: observational study. BMJ 2015;350:h3234. Observational study from the Swedish National Diabetes Register showing that insulin pump therapy is associated with lower cardiovascular mortality than treatment with multiple daily insulin injections.

  89. Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 2010;53(5):809–20.

    Article  CAS  PubMed  Google Scholar 

  90. Petrie JR, Chaturvedi N, Ford I, Brouwers, M. C. G. J., Greenlaw N, Tillin T, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2017;5(8):597-609.

  91. Mathieu C, Zinman B, Hemmingsson JU, Woo V, Colman P, Christiansen E, et al. Efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: the ADJUNCT ONE Treat-To-Target Randomized Trial. Diabetes Care. 2016;39(10):1702–10.

  92. Frandsen CS, Dejgaard TF, Holst JJ, Andersen HU, Thorsteinsson B, Madsbad S. Twelve-week treatment with liraglutide as add-on to insulin in normal-weight patients with poorly controlled type 1 diabetes: a randomized, placebo-controlled, double-blind parallel study. Diabetes Care. 2015;38(12):2250–7.

    Article  CAS  PubMed  Google Scholar 

  93. Galderisi A, Sherr J, VanName M, Carria L, Zgorski M, Tichy E, et al. Pramlintide but not liraglutide suppresses meal-stimulated glucagon responses in type 1 diabetes. J Clin Endocrinol Metab. 2018;103(3):1088–94.

  94. Sherr JL, Patel NS, Michaud CI, Palau-Collazo MM, Van Name MA, Tamborlane WV, et al. Mitigating meal-related glycemic excursions in an insulin-sparing manner during closed-loop insulin delivery: the beneficial effects of adjunctive pramlintide and liraglutide. Diabetes Care. 2016;39(7):1127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ratner RE, Dickey R, Fineman M, Maggs DG, Shen L, Strobel SA, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in Type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabet Med. 2004;21(11):1204–12.

  96. Ceriello A, Piconi L, Quagliaro L, Wang Y, Schnabel CA, Ruggles JA, et al. Effects of pramlintide on postprandial glucose excursions and measures of oxidative stress in patients with type 1 diabetes. Diabetes Care. 2005;28(3):632–7.

  97. Riddle MC, Nahra R, Han J, Castle J, Hanavan K, Hompesch M, et al. Control of postprandial hyperglycemia in type 1 diabetes by 24-hour fixed-dose coadministration of pramlintide and regular human insulin: a randomized, two-way crossover study. Diabetes Care. 2018;41(11):2346–52.

  98. Fattah H, Vallon V. The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes mellitus. Drugs 2018;78(7):717-726.

  99. Yamada T, Shojima N, Noma H, Yamauchi T, Kadowaki T. Sodium-glucose co-transporter-2 inhibitors as add-on therapy to insulin for type 1 diabetes mellitus: systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(7):1755–61.

    Article  CAS  PubMed  Google Scholar 

  100. McCrimmon RJ, Henry RR. SGLT inhibitor adjunct therapy in type 1 diabetes. Diabetologia. 2018;61(10):2126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schnell O, Valensi P, Standl E, Ceriello A. Comparison of mechanisms and transferability of outcomes of SGLT2 inhibition between type 1 and type 2 diabetes. Endocrinol Diabetes Metab 2020;3(3):e00129.

  102. Taylor SI, Blau JE, Rother KI, Beitelshees AL. SGLT2 inhibitors as adjunctive therapy for type 1 diabetes: balancing benefits and risks. Lancet Diabetes Endocrinol. 2019;7(12):949–58.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Musso G, Sircana A, Saba F, Cassader M, Gambino R. Assessing the risk of ketoacidosis due to sodium-glucose cotransporter (SGLT)-2 inhibitors in patients with type 1 diabetes: a meta-analysis and meta-regression. PLOS Medicine. 2021;17(12):e1003461.

    Article  CAS  Google Scholar 

  104. National Institute of Clinical Excellence. Recommendations | Type 1 diabetes in adults: diagnosis and management | Guidance | NICE. Available at: https://www.nice.org.uk/guidance/ng17/chapter/Recommendations#managing-complications. Accessed 20 Apr 2021.

  105. Professional Practice Committee: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018;41(Supplement 1):S3.

  106. Guo J, Brooks MM, Muldoon MF, Naimi AI, Orchard TJ, Costacou T. Optimal blood pressure thresholds for minimal coronary artery disease risk in type 1 diabetes. Diabetes Care 2019;42(9):1692-1699.Risk stratification analysis of Pittsburgh EDC suggesting an optimal BP threshold of 120/80 mmHg in young adults with childhood-onset type 1 diabetes.

  107. de Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, et al. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(9):1273–84.

  108. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375(9731):2073-2081.

  109. Wu N, Bredin SSD, Guan Y, Dickinson K, Kim DD, Chua Z, et al. Cardiovascular health benefits of exercise training in persons living with type 1 diabetes: a systematic review and meta-analysis. J Clin Med. 2019;8(2):253. https://doi.org/10.3390/jcm8020253.

  110. Ahola AJ, Saraheimo M, Freese R, Forsblom C, Mäkimattila S, Groop PH, et al. Association between adherence to dietary recommendations and high-sensitivity C-reactive protein level in type 1 diabetes. Diabetes Res Clin Pract. 2017;126:122–8.

  111. Petersen KS, Clifton PM, Blanch N, Keogh JB. Effect of improving dietary quality on carotid intima media thickness in subjects with type 1 and type 2 diabetes: a 12-mo randomized controlled trial. Am J Clin Nutr. 2015;102(4):771–9.

    Article  CAS  PubMed  Google Scholar 

  112. Ranjan A, Schmidt S, Damm-Frydenberg C, Holst JJ, Madsbad S, Nørgaard K. Short-term effects of a low carbohydrate diet on glycaemic variables and cardiovascular risk markers in patients with type 1 diabetes: a randomized open-label crossover trial. Diabetes Obes Metab. 2017;19(10):1479–84.

    Article  CAS  PubMed  Google Scholar 

  113. Schmidt S, Christensen MB, Serifovski N, Damm-Frydenberg C, Jensen JB, Fløyel T, et al. Low versus high carbohydrate diet in type 1 diabetes: a 12-week randomized open-label crossover study. Diabetes Obes Metab. 2019;21(7):1680–8.

    Article  CAS  PubMed  Google Scholar 

  114. Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: systematic review and meta-analyses. PLoS Med. 2020;17(3):e1003053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. ASCEND Study Collaborative Group, Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, et al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med 2018;379(16):1529-1539.

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.D.S. is the corresponding author for the manuscript. All authors contributed to the design and drafting the paper and reviewed and approved the manuscript for scholarly content.

Corresponding author

Correspondence to J. D. Schofield.

Ethics declarations

Conflict of Interest

I.T. and P.E. declare that they have no conflict of interest. J.D.S. has received unrestricted educational grants, consulting fees and/or speaking honoraria from AstraZeneca, Boehringer Ingelheim, MSD, Napp Pharmaceuticals, Novo Nordisk and Sanofi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teoh, I.H., Elisaus, P. & Schofield, J.D. Cardiovascular Risk Management in Type 1 Diabetes. Curr Diab Rep 21, 29 (2021). https://doi.org/10.1007/s11892-021-01400-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-021-01400-9

Keywords

Navigation