Skip to main content

Advertisement

Log in

The Role of Hexokinase Domain Containing Protein-1 in Glucose Regulation During Pregnancy

  • Diabetes and Pregnancy (M-F Hivert and CE Powe, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Gestational diabetes mellitus (GDM) is a common pregnancy complication conferring an increased risk to the individual of developing type 2 diabetes. As such, a thorough understanding of the pathophysiology of GDM is warranted. Hexokinase domain containing protein-1 (HKDC1) is a recently discovered protein containing hexokinase activity which has been shown to be associated with glucose metabolism during pregnancy. Here, we discuss recent evidence suggesting roles for the novel HKDC1 in gestational glucose homeostasis and the development of GDM and overt diabetes.

Recent Findings

Genome-wide association studies identified variants of the HKDC1 gene associated with maternal glucose metabolism. Studies modulating HKDC1 protein expression in pregnant mice demonstrate that HKDC1 has roles in whole-body glucose utilization and nutrient balance, with liver-specific HKDC1 influencing insulin sensitivity, glucose tolerance, gluconeogenesis, and ketone production.

Summary

HKDC1 has important roles in maintaining maternal glucose homeostasis extending beyond traditional hexokinase functions and may serve as a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrin Met. 2018;29(11):743–54.

    Article  CAS  Google Scholar 

  2. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018. Diabetes Care. 2018;41:S13–27.

    Article  Google Scholar 

  3. Sacks DA, Hadden DR, Maresh M, Deerochanawong C, Dyer AR, Metzger BE, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel—recommended criteria: the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Diabetes Care. 2012;35:526–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. International Diabetes Federation. IDF Diabetes Atlas 2017. 8th edition.

  5. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EAH. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol. 1991;165:1667–72.

    Article  CAS  PubMed  Google Scholar 

  6. Catalano PM, Tyzbir ED, Wolfe RR, Roman NM, Amini SB, Sims EAH. Longitudinal changes in basal hepatic glucose production and suppression during insulin infusion in normal pregnant women. Am J Obstet Gynecol. 1992;167:913–9.

    Article  CAS  PubMed  Google Scholar 

  7. Okosun IS, Chandra KMD, Boev A, Boltri JM, Choi ST, Parish DC, et al. Abdominal adiposity in U.S. adults: prevalence and trends, 1960-2000. Prev Med. 2004;39:197–206.

    Article  PubMed  Google Scholar 

  8. Durnwald C. Gestational diabetes: linking epidemiology, excessive gestational weight gain, adverse pregnancy outcomes, and future metabolic syndrome. Semin Perinatol. 2015;39:254–8.

    Article  PubMed  Google Scholar 

  9. Jenum AK, Morkrid K, Sletner L, Vange S, Torper JL, Nakstad B, et al. Impact of ethnicity on gestational diabetes identified with the WHO and the modified International Association of Diabetes and Pregnancy Study Groups criteria: a population-based cohort study. Eur J Endocrinol. 2012;166:317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lao TT, Ho L-F, Chan BCP, Leung W-C. Maternal age and prevalence of gestational diabetes mellitus. Diabetes Care. 2006;29:948–9.

    Article  PubMed  Google Scholar 

  11. Zhang C, Tobias DK, Chavarro JE, Bao W, Wang D, Ley SH, et al. Adherence to healthy lifestyle and risk of gestational diabetes mellitus: prospective cohort study. BMJ. 2014;349:g5450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Levy A, Wiznitzer A, Holcberg G, Mazor M, Sheiner E. Family history of diabetes mellitus as an independent risk factor for macrosomia and cesarean delivery. J Matern Fetal Neonatal Med. 2010;23:148–52.

    Article  PubMed  Google Scholar 

  13. Anghebem-Oliveira MI, Martins BR, Alberton D, de Ramos EAS, Picheth G, de Rego FGM. Type 2 diabetes-associated genetic variants of FTO, LEPR, PPARg, and TCF7L2 in gestational diabetes in a Brazilian population. Arch Endocrinol MeTable. 2017;61:238–48.

    Article  Google Scholar 

  14. Lauenborg J, Grarup N, Damm P, Borch-Johnsen K, Jorgensen T, Pederson O, et al. Common type 2 diabetes risk gene variants associate with gestational diabetes. 2009;94(1):145-150.

  15. Huopio H, Cederberg H, Vangipurapu J, Hakkarainen H, Paakkonen M, Kuulasmaa T, et al. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. Eur J Endocrinol. 2013;169(3):291–7.

    Article  CAS  PubMed  Google Scholar 

  16. Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19:3342. https://doi.org/10.3390/ijms19113342.

    Article  CAS  PubMed Central  Google Scholar 

  17. Schwartz R, Gruppuso PA, Petzold K, Brambilla D, Hiilesmaa V, Teramo KA. Hyperinsulinemia and macrosomia in the fetus of the diabetic mother. Diabetes Care. 1994;17:640–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fetita L-S, Sobngwi E, Serradas P, Calvo F, Gautier J-F. Consequences of fetal exposure to maternal diabetes in offspring. J Clin Endocrinol MeTable. 2006;91:3718–24.

    Article  CAS  Google Scholar 

  19. Tan PC, Ling LP, Omar SZ. The 50-g glucose challenge test and pregnancy outcome in a multiethnic Asian population at high risk for gestational diabetes. Int J Gynecol Obstet. 2009;105:50–5.

    Article  Google Scholar 

  20. Peters RK, Kjos SL, Xiang A, Buchanan TA. Long-term diabetogenic effect of single pregnancy in women with previous gestational diabetes mellitus. Lancet Lond Engl. 1996;347:227–30.

    Article  CAS  Google Scholar 

  21. Shostrom DCV, Sun Y, Oleson JJ, Snetselaar LG, Bao W. History of gestational diabetes mellitus in relation to cardiovascular disease and cardiovascular risk factors in US women. Front Endocrinol. 2017;8:144.

    Article  Google Scholar 

  22. Omori S, Tanaka Y, Takahashi A, Hirose H, Kashiwagi A, Kaku K, et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes. 2008;57:791–5.

    Article  CAS  PubMed  Google Scholar 

  23. Gudmundsson J, Sulem P, Stefansson K. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39:977–83.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Qiao H, Zhao Y, Wang X, Sun H, Liu A, et al. Association of single nucleotide polymorphisms in TCF2 with type 2 diabetes susceptibility in a Han Chinese population. PLoS One. 2012;7:e52938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Freathy RM, Hayes MG, Urbanek M, Lowe LP, Lee H, Ackerman C, et al. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: common genetic variants in GCK and TCF7L2 are associated with fasting and postchallenge glucose levels in pregnancy and with the new consensus definition of gestational diabetes mellitus from the International Association of Diabetes and Pregnancy study groups. Diabetes. 2010;59:2682–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwak SH, Kim S-H, Cho YM, Go MJ, Cho YS, Choi SH, et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes. 2012;61:531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hayes MG, Urbanek M, Hivert M-F, Armstrong LL, Morrison J, Guo C. Identification of HKDC1 and BACE2 as genes influencing glycemic traits during pregnancy through genome-wide association studies. Diabetes. 2013;62(9):3282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206:2049–57.

    Article  CAS  PubMed  Google Scholar 

  29. Matschinsky FM. Glucokinase, glucose homeostasis, and diabetes mellitus. Curr. Diab. Rep. 2005;5:171–6.

    Article  CAS  PubMed  Google Scholar 

  30. Irwin DM, Tan H. Molecular evolution of the vertebrate hexokinase gene family: Identification of a conserved fifth vertebrate hexokinase gene. Comp. Biochem. Physiol. Part D Genomics Proteomics. 2007;3(1):96–107.

    Google Scholar 

  31. Ludvik AE, Pusec CM, Priyadarshini M, Angueira AR, Guo C, Lo A, et al. HKDC1 is a novel hexokinase involved in whole-body glucose use. Endocrinology. 2016;157(9):3452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khan MW, Priyadarshini M, Cordoba-Chacon J, Becker TC, Layden BT. Hepatic hexokinase domain containing 1 (HKDC1) improves whole body glucose tolerance and insulin sensitivity in pregnant mice. Biochim Biophys Acta Mol Basis Dis. 2018;1865(3):678–87 This article was the first to detail the significance of hepatic HKDC1 on glucose homeostasis during pregnancy, demonstrating that hepatic HKDC1 has roles in whole-body glucose disposal, insulin sensitivity, and gestational nutrient balance.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pusec CM, De Jesus A, Khan MW, Terry AR, Ludvik AE, Xu K, et al. Hepatic HKDC1 expression contributes to liver metabolism. Endocrinology. 2019;160(2):313–30 This article provides evidence of a possible method by which HKDC1 functions during pregnancy, demonstrating that HKDC1 is associated with the mitochondrial outer membrane and its expression level can alter mitochondrial glycolytic capacity and maximum respiration.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Wang J, Chen Y, Yang L, Chen S. A prognostic 4-gene expression signature for squamous cell lung carcinoma. J Cell Physiol. 2017;232:3702–13.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu Y, Xing P, Li J. Treatment of advanced squamous cell lung cancer. Chinese Journal of Lung Cancer. 2016;19(10):687–91.

    PubMed  Google Scholar 

  36. Bong IPN, Ng CC, Baharuddin P, Zakaria Z. MicroRNA expression patterns and target prediction in multiple myeloma development and malignancy. Genes Genom. 2017;39:533–40.

    Article  CAS  Google Scholar 

  37. Bi C, Chng WJ. MicroRNA: important player in the pathobiology of multiple myeloma. Biomed Res Int. 2014;2014:521–86.

    Article  Google Scholar 

  38. Lian H, Wang A, Shen Y, Wang Q, Zhou Z, Zhang R, et al. Identification of novel alternative splicing isoform biomarkers and their association with overall survival in colorectal cancer. BMC Gastroenterology. 2020;20:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. Ca A Cancer Journal for Clinicians. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  40. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22(10):2008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fuhr L, El-Athman R, Scrima R, Cela O, Carbone A, Knoop H, et al. The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer. EBioMedicine. 2018;22:105–21.

    Article  Google Scholar 

  42. Zhang Z, Huang S, Wang H, Wu J, Chen D, Peng B, et al. High expression of hexokinase domain containing 1 is associated with poor prognosis and aggressive phenotype in hepatocarcinoma. Biochem Bioph Res Co. 2016;474:673–9.

    Article  CAS  Google Scholar 

  43. Wang X, Shi B, Zhao Y, Lu Q, Fei X, Lu C, et al. HKDC1 promotes the tumorigenesis and glycolysis in lung adenocarcinoma via regulating AMPK/mTOR signaling pathway. Cancer Cell Int. 2020;20:450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen X, Lv Y, Sun Y, Zhang H, Xie W, Zhong L, et al. PGC1β regulates breast tumor growth and metastasis by SREBP1-mediated HKDC1 expression. Front Oncol. 2019;9:290.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen Q, Feng J, Wu J, Yu Z, Zhang W, Chen Y, et al. HKDC1 C-terminal based peptides inhibit extranodal natural killer/T-cell lymphoma by modulation of mitochondrial function and EBV suppression. Leukemia. 2020;34:2736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li G-H, Huang J-F. Inferring therapeutic targets from heterogeneous data: HKDC1 is a novel potential therapeutic target for cancer. Bioinformatics. 2014;30(6):748–52.

    Article  CAS  PubMed  Google Scholar 

  47. Guo C, Ludvik AE, Arlotto ME, Hayes MG, Armstrong LL, Scholtens DM, et al. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat Commun. 2015;6:6069.

    Article  CAS  PubMed  Google Scholar 

  48. Khan MW, Ding X, Cotler SJ, Clarke M, Layden BT. Studies on the tissue localization of HKDC1, a putative novel fifth hexokinase, in humans. J Histochem Cytochem. 2018;66(5):385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. The HAPO Study Cooperative Research Group. Hyperglycemia and Adverse Pregnancy Outcomes. N Engl J Med. 2008;358:1991–2002.

    Article  Google Scholar 

  50. Kanthimathi S, Liju S, Laasya D, Anjana RM, Mohan V, Radha V. Hexokinase domain containing 1 gene variants and their association with gestational diabetes mellitus in a South Indian population. Ann Hum Genet. 2016;80(4):241–5.

    Article  CAS  PubMed  Google Scholar 

  51. Tan YX, Hu S-M, You Y-P, Yang G-L, Wang W. Replication of previous genome-wide association studies of HKDC1, BACE2, SLC16A11 and TMEM163 SNPs in a gestational diabetes mellitus case-control sample from Han Chinese population. Diabetes Metab Syndr Obes. 2019;12:983–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, et al. Architecture of the human regulatory network derived from ENCODE data. Nature. 2012;489(7414):91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PloS One. 2012;7(10):e46688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome research. 2001;11:863–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DeSousa RAL. Animal models of gestational diabetes: characteristics and consequences to the brain and behavior of the offspring. Metab Brain Dis. 2021;36(2):199–204.

    Article  CAS  Google Scholar 

  57. Fuller M, Priyadarshini M, Gibbons SM, Angueira AR, Brodsky M, Hayes MG, et al. The short chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis. Am J Physiol Endocrinol Metab. 2015;309(10):E840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Q, Wurtz P, Auro K, Makinen V-P, Kangas AJ, Soininen P, et al. Metabolic profiling of pregnancy: cross-sectional and longitudinal evidence. BMC Medicine. 2016;14:205.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang M, Xia W, Li H, Liu F, Li Y, Sun X, et al. Normal pregnancy induced glucose metabolic stress in a longitudinal cohort of healthy women: novel insights generated from a urine metabolomics study. Medicine. 2018;97:40.

    Google Scholar 

  60. Evstafieva AG, Kovaleva IE, Shoshinova MS, Budanov AV, Chumakov PM. Implication of KRT16, FAM129A and HKDC1 genes as ATF4 regulated components of the integrated stress response. PLoS One. 2018;13(2):e0191107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Harding MS, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.

    Article  CAS  PubMed  Google Scholar 

  62. Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab. 2009;20(9):436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Han J, Back SH, Hur J, Lin Y-H, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15(5):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Layden.

Ethics declarations

Conflict of Interest

Joseph L. Zapater, Kristen R. Lednovich, and Brian T. Layden declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors. All reported studies/experiments with animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Diabetes and Pregnancy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapater, J.L., Lednovich, K.R. & Layden, B.T. The Role of Hexokinase Domain Containing Protein-1 in Glucose Regulation During Pregnancy. Curr Diab Rep 21, 27 (2021). https://doi.org/10.1007/s11892-021-01394-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-021-01394-4

Keywords

Navigation