Skip to main content

Advertisement

Log in

Metabolomics of Diabetic Retinopathy

  • Microvascular Complications—Retinopathy (JK Sun and PS Silva, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metabolomics is the study of dysregulated metabolites in biological materials. We reviewed the use of the technique to elucidate the genetic and environmental factors that contribute to the development of diabetic retinopathy.

Recent Findings

With regard to metabolomic studies of diabetic retinopathy, the field remains in its infancy with few studies published to date and little replication of results. Vitreous and serum samples are the main tissues examined, and dysregulation in pathways such as the pentose phosphate pathway, arginine to proline pathway, polyol pathway, and ascorbic acidic pathways have been reported.

Summary

Few studies have examined the metabolomic underpinnings of diabetic retinopathy. Further research is required to replicate findings to date and determine longitudinal associations with disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. Diabetes: facts and figures. 2017. (www.idf.org).

  2. Kuo JZ, Wong TY, Rotter JI. Challenges in elucidating the genetics of diabetic retinopathy. JAMA Ophthalmol. 2014;132:96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35:D521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Filla LA, Edwards JL. Metabolomics in diabetic complications. Mol BioSyst. 2016;12:1090–105. This review provides a comprehensive survey of new results in metabolomic experiments and diabetic complications

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53. This study provides a good description of metabolomic techniques and relationship to diabetes

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123:4309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLoS Med. 2016;13:e1002179.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  Google Scholar 

  9. Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121:1402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, et al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 2002;51:599–605.

    Article  CAS  PubMed  Google Scholar 

  12. Anderson SG, Dunn WB, Banerjee M, Brown M, Broadhurst DI, Goodacre R, et al. Evidence that multiple defects in lipid regulation occur before hyperglycemia during the prodrome of type-2 diabetes. PLoS One. 2014;9:e103217.

    Article  PubMed  PubMed Central  Google Scholar 

  13. • Chen L, Cheng CY, Choi H, Ikram MK, Sabanayagam C, Tan GS, et al. Plasma Metabonomic profiling of diabetic retinopathy. Diabetes. 2016;65:1099–108. One of the first studies using robust metabolomics techniques to study diabetic retinopathy

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Luo X, Lu X, Duan J, Xu G. Metabolomics study of diabetic retinopathy using gas chromatography-mass spectrometry: a comparison of stages and subtypes diagnosed by Western and Chinese medicine. Mol BioSyst. 2011;7:2228–37.

    Article  CAS  PubMed  Google Scholar 

  15. Paris LP, Johnson CH, Aguilar E, Usui Y, Cho K, Hoang LT, et al. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics. 2016;12:15.

    Article  PubMed  Google Scholar 

  16. Barba I, Garcia-Ramirez M, Hernandez C, Alonso MA, Masmiquel L, Garcia-Dorado D, et al. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci. 2010;51:4416–21.

    Article  PubMed  Google Scholar 

  17. Young SP, Nessim M, Falciani F, Trevino V, Banerjee SP, Scott RA, et al. Metabolomic analysis of human vitreous humor differentiates ocular inflammatory disease. Mol Vis. 2009;15:1210–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006;91:439–46.

    Article  CAS  PubMed  Google Scholar 

  19. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424.

    Article  CAS  PubMed  Google Scholar 

  20. Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006;26:2862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Narayanan SP, Xu Z, Putluri N, Sreekumar A, Lemtalsi T, Caldwell RW, et al. Arginase 2 deficiency reduces hyperoxia-mediated retinal neurodegeneration through the regulation of polyamine metabolism. Cell Death Dis. 2014;5:e1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Narayanan SP, Rojas M, Suwanpradid J, Toque HA, Caldwell RW, Caldwell RB. Arginase in retinopathy. Prog Retin Eye Res. 2013;36:260–80.

    Article  CAS  PubMed  Google Scholar 

  23. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973;288:831–6.

    Article  CAS  PubMed  Google Scholar 

  25. Kador PF. The role of aldose reductase in the development of diabetic complications. Med Res Rev. 1988;8:325–52.

    Article  CAS  PubMed  Google Scholar 

  26. Tokuda K, Zorumski CF, Izumi Y. Effects of ascorbic acid on UV light-mediated photoreceptor damage in isolated rat retina. Exp Eye Res. 2007;84:537–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hosoya K, Minamizono A, Katayama K, Terasaki T, Tomi M. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Invest Ophthalmol Vis Sci. 2004;45:1232–9.

    Article  PubMed  Google Scholar 

  28. Minamizono A, Tomi M, Hosoya K. Inhibition of dehydroascorbic acid transport across the rat blood-retinal and -brain barriers in experimental diabetes. Biol Pharm Bull. 2006;29:2148–50.

    Article  CAS  PubMed  Google Scholar 

  29. Komeima K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2006;103:11300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ashino H, Shimamura M, Nakajima H, Dombou M, Kawanaka S, Oikawa T, et al. Novel function of ascorbic acid as an angiostatic factor. Angiogenesis. 2003;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  31. Sinclair AJ, Girling AJ, Gray L, Le GC, Lunec J, Barnett AH. Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. Diabetologia. 1991;34:171–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NHMRC Early Career Fellowship Grant APP1073530 to Gerald Liew

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Liew.

Ethics declarations

Conflict of Interest

Gerald Liew, Zhou Lei, Nichole Joachim, I-Van Ho, Tien Y. Wong, Paul Mitchell, Bamini Gopinath, and Ben Crossett declare that they have no conflict of interest.

Gavin Tan reports being on the Advisory board for Novartis, travel support from Bayer, research support from Santen, speaker for Abbott Medical, and speaker and travel support from Allergan.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liew, G., Lei, Z., Tan, G. et al. Metabolomics of Diabetic Retinopathy. Curr Diab Rep 17, 102 (2017). https://doi.org/10.1007/s11892-017-0939-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0939-3

Keywords

Navigation