Skip to main content
Log in

Brain-Based Etiology of Weight Regulation

  • Obesity (J McCaffery, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Caloric intake and energy balance are highly regulated to maintain metabolic homeostasis and weight. However, hedonic-motivated food intake, in particular consumption of highly rewarding foods, may act to override hemostatic signaling and contribute to overconsumption, weight gain, and obesity. Here, we review human neuroimaging literature that has delivered valuable insight into the neural correlates of hedonic-motivated ingestive behavior, weight gain, weight loss, and metabolic status. Our primary focus is the brain regions that are thought to encode aspects of food hedonics, gustatory and somatosensory processing, and executive functioning. Further, we discuss the variability of regional brain response as a function of obesity, weight gain, behavioral and surgical weight loss, as well as in type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature [Internet]. 2006;443:289–95. Available from: http://www.nature.com/nature/journal/v443/n7109/pdf/nature05026.pdf.

  2. Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr [Internet]. 2009;139:629–32. Available from: <Go to ISI>://WOS:000263666600034.

  3. Small DM. Flavor is in the brain. Physiol Behav. Elsevier; 2012;107:540–52.

  4. Veldhuizen MG, Bender G, Constable RT, Small DM. Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. Chem Senses [Internet]. 2007;32:569–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17495173.

  5. Batterham RL, ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, Williams SCR. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature [Internet]. 2007 [cited 2015 Jun 20];450:106–9. Available from: http://www.nature.com/nature/journal/v450/n7166/pdf/nature06212.pdf.

  6. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature [Internet]. 2000;404:661–71. Available from: http://www.nature.com/nature/journal/v404/n6778/pdf/404661a0.pdf.

  7. Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron [Internet]. Elsevier Inc.; 2011;69:664–79. Available from: <Go to ISI>://WOS:000288413200010. This review provides a thorough examination of hedonically motivated food intake and obesity, incorporating data from basic animal models, and functional neuroimaging of humans, as well as psychological theories of obesity.

  8. Berridge KCC, Kringelbach MLL. Pleasure systems in the brain. Neuron [Internet]. Elsevier; 2015;86:646–64. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0896627315001336. This work provides excellent detail of neural underpinnings of hedonically motivated behavior.

  9. Rothemund Y, Preuschhof C, Bohner G, Bauknecht H-C, Klingebiel R, Flor H, Klapp BF. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage [Internet]. 2007;37:410–21. Available from: <Go to ISI>://WOS:000248585400005.

  10. Stoeckel LE, Weller RE, Cook III EW, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage [Internet]. 2008;41:636–47. Available from: <Go to ISI>://WOS:000256271100045.

  11. Martin LE, Holsen LM, Chambers RJ, Bruce AS, Brooks WM, Zarcone JR, Butler MG, Savage CR. Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity [Internet]. 2009;18:254–60. Available from: http://onlinelibrary.wiley.com/store/10.1038/oby.2009.220/asset/oby.2009.220.pdf?v=1&t=hvie1us5&s=9e7326e9ee6e5317496a95a030883ab36244d626.

  12. Bruce AS, Holsen LM, Chambers RJ, Martin LE, Brooks WM, Zarcone JR, Butler MG, Savage CR. Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int J Obes [Internet]. 2010;34:1494–500. Available from: http://www.nature.com/ijo/journal/v34/n10/pdf/ijo201084a.pdf.

  13. Ng J, Stice E, Yokum S, Bohon C. An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing? Appetite [Internet]. 2011;57:65–72. Available from: <Go to ISI>://WOS:000293677900010.

  14. Dimitropoulos A, Tkach J, Ho A, Kennedy J. Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite [Internet]. 2012;58:303–12. Available from: <Go to ISI>://WOS:000300862300042.

  15. Frankort A, Roefs A, Siep N, Roebroeck A, Havermans R, Jansen A. Reward activity in satiated overweight women is decreased during unbiased viewing but increased when imagining taste: an event-related fMRI study. Int J Obes [Internet]. 2012;36:627–37. Available from: <Go to ISI>://WOS:000303771000002.

  16. Nummenmaa L, Hirvonen J, Hannukainen JC, Immonen H, Lindroos MM, Salminen P, Nuutila P. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One [Internet]. 2012;7. Available from: <Go to ISI>://WOS:000302178400027.

  17. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol [Internet]. 2008;117:924–35. Available from: <Go to ISI>://WOS:000260974500017.

  18. Geha PY, Aschenbrenner K, Felsted J, O’Malley SS, Small DM. Altered hypothalamic response to food in smokers. Am J Clin Nutr [Internet]. 2013;97:15–22. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522134/pdf/ajcn97115.pdf.

  19. Stice E, Spoor S, Bohon C, Small DM. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science (80-) [Internet]. 2008;322:449–52. Available from: <Go to ISI>://WOS:000260094500049.

  20. Green E, Jacobson A, Haase L, Murphy C. Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Res [Internet]. 2011;1386:109–17. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086067/pdf/nihms284828.pdf.

  21. Frank GKW, Reynolds JR, Shott ME, Jappe L, Yang TT, Tregellas JR, O’Reilly RC. Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology [Internet]. 2012;37:2031–46. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398719/pdf/npp201251a.pdf.

  22. Babbs RK, Sun X, Felsted J, Chouinard-Decorte F, Veldhuizen MG, Small D. Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiol Behav. 2013.

  23. Berkman ET, Falk EB. Beyond brain mapping using neural measures to predict real-world outcomes. Curr Dir Psychol Sci [Internet]. 2013;22:45–50. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903296/pdf/nihms492448.pdf.

  24. Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci [Internet]. 2012 [cited 2015 Apr 29];32:5549–52. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3377379&tool=pmcentrez&rendertype=abstract.

  25. Yokum S, Ng J, Stice E. Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity [Internet]. 2011;19:1775–83. Available from: <Go to ISI>://WOS:000294410100010.

  26. Sun X, Kroemer NB, Veldhuizen MG, Babbs AE, de Araujo IE, Gitelman DR, et al. Basolateral amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. J Neurosci Soc Neurosci. 2015;35:7964–76.

    Article  CAS  Google Scholar 

  27. Stice E, Burger KS, Yokum S. Reward region responsivity predicts future weight gain and further evidence that the TaqIA allele moderates these predictive effects. J Neurosci. in press.

  28. Cornier M-A, Melanson EL, Salzberg AK, Bechtell JL, Tregellas JR. The effects of exercise on the neuronal response to food cues. Physiol Behav [Internet]. 2012;105:1028–34. Available from: <Go to ISI>://WOS:000300747500017.

  29. Stice E, Yokum S, Blum K, Bohon C. Weight gain is associated with reduced striatal response to palatable food. J Neurosci [Internet]. 2010;30:13105–9. Available from: <Go to ISI>://WOS:000282571800021.

  30. Tschritter O, Preissl H, Hennige AM, Stumvoll M, Porubska K, Frost R, Marx H, Klösel B, Lutzenberger W, et al. The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci U S A [Internet]. 2006 [cited 2015 Jun 23];103:12103–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1567704&tool=pmcentrez&rendertype=abstract.

  31. Kullmann S, Frank S, Heni M, Ketterer C, Veit R, Häring H-U, Fritsche A, Preissl H. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women. Neuroendocrinology [Internet]. 2013 [cited 2015 Jun 23];97:176–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22922661.

  32. Heni M, Kullmann S, Ketterer C, Guthoff M, Linder K, Wagner R, Stingl KT, Veit R, Staiger H, et al. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions. Diabetologia [Internet]. 2012 [cited 2015 Jun 17];55:1773–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22434537.

  33. Guthoff M, Stingl KT, Tschritter O, Rogic M, Heni M, Stingl K, Hallschmid M, Häring H-U, Fritsche A, et al. The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects. PLoS One [Internet]. 2011 [cited 2015 Jun 23];6:e19482. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092755&tool=pmcentrez&rendertype=abstract.

  34. Page KA, Chan O, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, Cline GW, Naik S, Sinha R, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA [Internet]. 2013;309:63–70. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4076145&tool=pmcentrez&rendertype=abstract. The studies presented in this article provide an excellent sample of how human and animal research can be used together to fully probe individual questions.

  35. Heni M, Kullmann S, Ketterer C, Guthoff M, Bayer M, Staiger H, Machicao F, Häring H-U, Preissl H, et al. Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Hum Brain Mapp [Internet]. 2014 [cited 2015 Jun 23];35:918–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23307469.

  36. Schwartz MW, Prigeon RL, Kahn SE, Nicolson M, Moore J, Morawiecki A, Boyko EJ, Porte D. Evidence that plasma leptin and insulin levels are associated with body adiposity via different mechanisms. Diabetes Care [Internet]. 1997 [cited 2015 Aug 3];20:1476–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9283801.

  37. Baskin DG, Figlewicz Lattemann D, Seeley RJ, Woods SC, Porte D, Schwartz MW. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res [Internet]. 1999 [cited 2015 Aug 3];848:114–23. Available from: http://www.sciencedirect.com/science/article/pii/S0006899399019745.

  38. Fischer S, Hanefeld M, Haffner SM, Fusch C, Schwanebeck U, Köhler C, Fücker K, Julius U. Insulin-resistant patients with type 2 diabetes mellitus have higher serum leptin levels independently of body fat mass. Acta Diabetol [Internet]. 2002 [cited 2015 Jun 23];39:105–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12357293.

  39. Jastreboff AM, Lacadie C, Seo D, Kubat J, Van Name MA, Giannini C, Savoye M, Constable RT, Sherwin RS, et al. Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care [Internet]. 2014 [cited 2015 Jun 23];37:3061–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25139883.

  40. Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol Rev [Internet]. 2011 [cited 2015 Jun 29];91:389–411. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3379883&tool=pmcentrez&rendertype=abstract.

  41. Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes [Internet]. 2001 [cited 2015 Jul 9];50:609–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11246881.

  42. Van Bloemendaal L, IJzerman RG, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, Veltman DJ, Diamant M. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes [Internet]. 2014 [cited 2015 Jun 15];63:4186–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25071023.

  43. Xia W, Wang S, Sun Z, Bai F, Zhou Y, Yang Y, Wang P, Huang Y, Yuan Y. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology [Internet]. 2013 [cited 2015 Jun 23];38:2493–501. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23786881.

  44. Xia W, Wang S, Rao H, Spaeth AM, Wang P, Yang Y, Huang R, Cai R, Sun H. Disrupted resting-state attentional networks in T2DM patients. Sci Rep [Internet]. 2015 [cited 2015 Jun 23];5:11148. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4459168&tool=pmcentrez&rendertype=abstract.

  45. Xia W, Wang S, Spaeth AM, Rao H, Wang P, Yang Y, Huang R, Cai R, Sun H. Insulin resistance-associated interhemispheric functional connectivity alterations in T2DM: a resting-state fMRI study. Biomed Res Int [Internet]. 2015 [cited 2015 Jun 16];2015:719076. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4430652&tool=pmcentrez&rendertype=abstract.

  46. Prentice AM, Goldberg GR, Jebb SA, Black AE, Murgatroyd PR, Diaz EO. Physiological responses to slimming. Proc Nutr Soc [Internet]. Cambridge University Press; 1991 [cited 2015 Jun 9];50:441–58. Available from: http://journals.cambridge.org/abstract_S0029665191000575.

  47. Lucan SC, DiNicolantonio JJ. How calorie-focused thinking about obesity and related diseases may mislead and harm public health. An alternative. Public Health Nutr [Internet]. Cambridge University Press; 2015 [cited 2015 Jun 9];18:571–81. Available from: http://journals.cambridge.org/abstract_S1368980014002559.

  48. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M. Changes in brain activity related to eating chocolate from pleasure to aversion. Brain. 2001;124:1720–33.

    Article  CAS  PubMed  Google Scholar 

  49. Meye FJ, Adan RA. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol Sci [Internet]. 2014;35:31–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24332673.

  50. Drobnjak S, Atsiz S, Ditzen B, Tuschen-Caffier B, Ehlert U. Restrained eating and self-esteem in premenopausal and postmenopausal women. J Eat Disord [Internet]. BioMed Central Ltd; 2014 [cited 2015 Jun 9];2:23. Available from: http://www.jeatdisord.com/content/2/1/23.

  51. Dong D, Jackson T, Wang Y, Chen H. Spontaneous regional brain activity links restrained eating to later weight gain among young women. Biol Psychol [Internet]. 2015 [cited 2015 May 26]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/26004091.

  52. Stice E, Fisher M, Lowe MR. Are dietary restraint scales valid measures of acute dietary restriction? Unobtrusive observational data suggest not. Psychol Assess. 2004;16:51.

    Article  PubMed  Google Scholar 

  53. Dong D, Lei X, Jackson T, Wang Y, Su Y, Chen H. Altered regional homogeneity and efficient response inhibition in restrained eaters. Neuroscience [Internet]. 2014 [cited 2015 Jun 8];266:116–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24513387.

  54. Burger KS, Stice E. Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures. Neuroimage [Internet]. 2011;55:233–9. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032532/pdf/nihms-258810.pdf.

  55. Stice E, Burger K, Yokum S. Caloric deprivation increases responsivity of attention and reward brain regions to intake, anticipated intake, and images of palatable foods. Neuroimage. 2012

  56. Murdaugh DL, Cox JE, Cook III EW, Weller RE. fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. Neuroimage [Internet]. 2012;59:2709–21. Available from: <Go to ISI>://WOS:000299494000070.

  57. Crabtree DR, Chambers ES, Hardwick RM, Blannin AK. The effects of high-intensity exercise on neural responses to images of food. Am J Clin Nutr [Internet]. 2014;99:258–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24305681.

  58. Evero N, Hackett LC, Clark RD, Phelan S, Hagobian TA. Aerobic exercise reduces neuronal responses in food reward brain regions. J Appl Physiol Am Physiol Soc. 2012;112:1612–9.

    Article  Google Scholar 

  59. Blackburn GL. Solutions in weight control: lessons from gastric surgery. Am J Clin Nutr [Internet]. 2005 [cited 2015 Jun 9];82:248S – 252. Available from: http://ajcn.nutrition.org/content/82/1/248S.short.

  60. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, Ahlin S, Anveden Å, Bengtsson C, et al. Bariatric surgery and long-term cardiovascular events. JAMA [Internet]. 2012 [cited 2015 Jun 2];307:56–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22215166.

  61. Miras AD, le Roux CW. Bariatric surgery and taste: novel mechanisms of weight loss. Curr Opin Gastroenterol [Internet]. 2010 [cited 2015 Jun 2];26:140–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19901832.

  62. Ochner CN, Laferrère B, Afifi L, Atalayer D, Geliebter A, Teixeira J. Neural responsivity to food cues in fasted and fed states pre and post gastric bypass surgery. Neurosci Res [Internet]. 2012 [cited 2015 Jun 8];74:138–43. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3626459&tool=pmcentrez&rendertype=abstract.

  63. Ochner CN, Stice E, Hutchins E, Afifi L, Geliebter A, Hirsch J, Teixeira J. Relation between changes in neural responsivity and reductions in desire to eat high-calorie foods following gastric bypass surgery. Neuroscience [Internet]. 2012 [cited 2015 May 18];209:128–35. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3601838&tool=pmcentrez&rendertype=abstract.

  64. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, Ismail NA, Durighel G, Ahmed AR, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut [Internet]. 2014 [cited 2015 Jun 2];63:891–902. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4033279&tool=pmcentrez&rendertype=abstract.

  65. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, Ghatei MA, Bloom SR, Matthews PM, et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab [Internet]. 2011 [cited 2015 May 18];14:700–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22000927.

  66. Inoue K, Maeda N, Kashine S, Fujishima Y, Kozawa J, Hiuge-Shimizu A, Okita K, Imagawa A, Funahashi T, Shimomura I. Short-term effects of liraglutide on visceral fat adiposity, appetite, and food preference: a pilot study of obese Japanese patients with type 2 diabetes. Cardiovasc Diabetol [Internet]. 2011 [cited 2015 Jun 9];10:109. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3260096&tool=pmcentrez&rendertype=abstract.

  67. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology [Internet]. 2012 [cited 2015 Jun 9];153:647–58. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3275387&tool=pmcentrez&rendertype=abstract.

  68. Dunn JP, Cowan RL, Volkow ND, Feurer ID, Li R, Williams DB, Kessler RM, Abumrad NN. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res [Internet]. 2010 [cited 2015 May 16];1350:123–30. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2926260&tool=pmcentrez&rendertype=abstract.

  69. De Weijer BA, van de Giessen E, Janssen I, Berends FJ, van de Laar A, Ackermans MT, Fliers E, la Fleur SE, Booij J, Serlie MJ. Striatal dopamine receptor binding in morbidly obese women before and after gastric bypass surgery and its relationship with insulin sensitivity. Diabetologia [Internet]. 2014 [cited 2015 Jun 2];57:1078–80. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3980032&tool=pmcentrez&rendertype=abstract.

  70. Dunn JP, Kessler RM, Feurer ID, Volkow ND, Patterson BW, Ansari MS, Li R, Marks-Shulman P, Abumrad NN. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care [Internet]. 2012 [cited 2015 Apr 14];35:1105–11. Available from: http://care.diabetesjournals.org/content/35/5/1105.long.

  71. Caravaggio F, Borlido C, Hahn M, Feng Z, Fervaha G, Gerretsen P, Nakajima S, Plitman E, Chung JK, et al. Reduced insulin sensitivity is related to less endogenous dopamine at d2/3 receptors in the ventral striatum of healthy nonobese humans. Int J Neuropsychopharmacol [Internet]. The Oxford University Press; 2015 [cited 2015 Jun 9];18:pyv014. Available from: http://ijnp.oxfordjournals.org/content/18/7/pyv014.abstract.

  72. Wickremesekera K, Miller G, Naotunne TD, Knowles G, Stubbs RS. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg [Internet]. 2005 [cited 2015 Jun 9];15:474–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15946424.

  73. Bruce AS, Bruce JM, Ness AR, Lepping RJ, Malley S, Hancock L, Powell J, Patrician TM, Breslin FJ, et al. A comparison of functional brain changes associated with surgical versus behavioral weight loss. Obesity (Silver Spring) [Internet]. 2014 [cited 2015 Jun 8];22:337–43. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3946492&tool=pmcentrez&rendertype=abstract.

  74. Hankir MK, Ashrafian H, Hesse S, Horstmann A, Fenske WK. Distinctive striatal dopamine signaling after dieting and gastric bypass. Trends Endocrinol Metab [Internet]. 2015 [cited 2015 Apr 23];26:223–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25887491.

Download references

Acknowledgments

Preparation of this paper was supported, in part, by T32DK007686.

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle S. Burger.

Additional information

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burger, K.S., Shearrer, G.E. & Sanders, A.J. Brain-Based Etiology of Weight Regulation. Curr Diab Rep 15, 100 (2015). https://doi.org/10.1007/s11892-015-0667-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0667-5

Keywords

Navigation