Skip to main content

Advertisement

Log in

Hyperglycemia in Patients with Hematologic Malignancies

  • Hospital Management of Diabetes (GE Umpierrez, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Patients with hematologic malignancies are at high risk for hyperglycemia due to factors such as frequent exposure to glucocorticoids, immunosuppressants, total parenteral nutrition, and medical stress. Hyperglycemia in these patients has been associated with poor outcomes including increased risk of infection, organ dysfunction, durability of remission, graft-versus-host disease, and mortality. However, the appropriate glucose targets are not well established, and there are few prospective data assessing whether glucose control improves outcomes. HbA1c should be interpreted with caution in patients with hematologic malignancies, due to inaccuracies imposed by disordered hematopoiesis and frequent transfusions, and short-term perturbations imposed by acute illness or medications. Management of diabetes or glucocorticoid-induced hyperglycemia in the hospital generally requires insulin therapy, which is tailored based upon nutritional needs, baseline glucose control, and concomitant factors such as type and dose of glucocorticoid administration. Close follow-up and adjustment of therapy, ideally with the assistance of patient self-titration algorithms, is required after discharge. Patients are at increased long-term risk for developing diabetes and therefore should undergo regular screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008.

    Google Scholar 

  2. Sant M et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010;116(19):3724–34.

    Article  CAS  PubMed  Google Scholar 

  3. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26.

    Article  CAS  PubMed  Google Scholar 

  4. Blood cancer facts 2013 Flyer; Available from: http://www.lls.org/#/resourcecenter/freeeducationmaterials/generalcancer/ (2014).

  5. Cancer facts & figures 2014; Available from: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2014/index (2014).

  6. Griffith ML, Jagasia M, Jagasia SM. Diabetes mellitus after hematopoietic stem cell transplantation. Endocr Pract. 2010;16(4):699–706.

    Article  PubMed  Google Scholar 

  7. Inzucchi SE. Clinical practice. Management of hyperglycemia in the hospital setting. N Engl J Med. 2006;355(18):1903–11.

    Article  CAS  PubMed  Google Scholar 

  8. Gebremedhin E et al. Severe hyperglycemia immediately after allogeneic hematopoietic stem-cell transplantation is predictive of acute graft-versus-host disease. Inflammation. 2013;36(1):177–85. This prospective study found a relationship between severe hyperglycemia and GVHD among normal-to-overweight subjects.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Armitage JO. Treatment of non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1023–30.

    Article  CAS  PubMed  Google Scholar 

  10. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78.

    Article  CAS  PubMed  Google Scholar 

  11. Ioannidis JP, Hesketh PJ, Lau J. Contribution of dexamethasone to control of chemotherapy-induced nausea and vomiting: a meta-analysis of randomized evidence. J Clin Oncol. 2000;18(19):3409–22.

    CAS  PubMed  Google Scholar 

  12. Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15(5):469–74.

    Article  PubMed  Google Scholar 

  13. Rizza RA, Mandarino LJ, Gerich JE. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J Clin Endocrinol Metab. 1982;54(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pagano G et al. An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. J Clin Invest. 1983;72(5):1814–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Weinstein SP et al. Glucocorticoid-induced insulin resistance: dexamethasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin- and non-insulin-related stimuli. Diabetes. 1995;44(4):441–5.

    Article  CAS  PubMed  Google Scholar 

  16. Billaudel B, Sutter BC. Direct effect of corticosterone upon insulin secretion studied by three different techniques. Horm Metab Res. 1979;11(10):555–60.

    Article  CAS  PubMed  Google Scholar 

  17. Barseghian G, Levine R. Effect of corticosterone on insulin and glucagon secretion by the isolated perfused rat pancreas. Endocrinology. 1980;106(2):547–52.

    Article  CAS  PubMed  Google Scholar 

  18. Barseghian G, Levine R, Epps P. Direct effect of cortisol and cortisone on insulin and glucagon secretion. Endocrinology. 1982;111(5):1648–51.

    Article  CAS  PubMed  Google Scholar 

  19. Billaudel B et al. Inhibition by corticosterone of calcium inflow and insulin release in rat pancreatic islets. J Endocrinol. 1984;100(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  20. Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest. 1997;99(3):414–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Matsumoto K et al. High-dose but not low-dose dexamethasone impairs glucose tolerance by inducing compensatory failure of pancreatic beta-cells in normal men. J Clin Endocrinol Metab. 1996;81(7):2621–6.

    CAS  PubMed  Google Scholar 

  22. Paczesny S, Choi SW, Ferrara JL. Acute graft-versus-host disease: new treatment strategies. Curr Opin Hematol. 2009;16(6):427–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Dilger K et al. Pharmacokinetics and pharmacodynamic action of budesonide after buccal administration in healthy subjects and patients with oral chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2009;15(3):336–43.

    Article  CAS  PubMed  Google Scholar 

  24. Hiraoka A et al. Phase III study comparing tacrolimus (FK506) with cyclosporine for graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation. Bone Marrow Transplant. 2001;28(2):181–5.

    Article  CAS  PubMed  Google Scholar 

  25. Fuji S et al. Hyperglycemia during the neutropenic period is associated with a poor outcome in patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation. Transplantation. 2007;84(7):814–20.

    Article  PubMed  Google Scholar 

  26. Yanada M et al. Tacrolimus instead of cyclosporine used for prophylaxis against graft-versus-host disease improves outcome after hematopoietic stem cell transplantation from unrelated donors, but not from HLA-identical sibling donors: a nationwide survey conducted in Japan. Bone Marrow Transplant. 2004;34(4):331–7.

    Article  CAS  PubMed  Google Scholar 

  27. Vincenti F et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant. 2007;7(6):1506–14.

    Article  CAS  PubMed  Google Scholar 

  28. Redmon JB et al. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. J Clin Invest. 1996;98(12):2786–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gramlich L et al. Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition. 2004;20(10):843–8.

    Article  PubMed  Google Scholar 

  30. Sheean PM et al. Adverse clinical consequences of hyperglycemia from total parenteral nutrition exposure during hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2006;12(6):656–64.

    Article  PubMed  Google Scholar 

  31. der Voort PH et al. Intravenous glucose intake independently related to intensive care unit and hospital mortality: an argument for glucose toxicity in critically ill patients. Clin Endocrinol (Oxf). 2006;64(2):141–5.

    Article  Google Scholar 

  32. Sheean PM, Braunschweig C, Rich E. The incidence of hyperglycemia in hematopoietic stem cell transplant recipients receiving total parenteral nutrition: a pilot study. J Am Diet Assoc. 2004;104(9):1352–60.

    Article  PubMed  Google Scholar 

  33. Nottage KA et al. Metabolic syndrome and cardiovascular risk among long-term survivors of acute lymphoblastic leukaemia—from the St. Jude Lifetime Cohort. Br J Haematol. 2014;165(3):364–74.

    Article  CAS  PubMed  Google Scholar 

  34. Chow EJ et al. Increased cardiometabolic traits in pediatric survivors of acute lymphoblastic leukemia treated with total body irradiation. Biol Blood Marrow Transplant. 2010;16(12):1674–81.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Oeffinger KC et al. Insulin resistance and risk factors for cardiovascular disease in young adult survivors of childhood acute lymphoblastic leukemia. J Clin Oncol. 2009;27(22):3698–704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Siviero-Miachon AA et al. Cranial radiotherapy predisposes to abdominal adiposity in survivors of childhood acute lymphocytic leukemia. Radiat Oncol. 2013;8:39.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Petryk A et al. Blunted response to a growth hormone stimulation test is associated with unfavorable cardiovascular risk factor profile in childhood cancer survivors. Pediatr Blood Cancer. 2013;60(3):467–73.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Frisk P et al. Glucose metabolism and body composition in young adults treated with TBI during childhood. Bone Marrow Transplant. 2011;46(10):1303–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bulow B et al. Survivors of childhood acute lymphoblastic leukaemia, with radiation-induced GH deficiency, exhibit hyperleptinaemia and impaired insulin sensitivity, unaffected by 12 months of GH treatment. Clin Endocrinol (Oxf). 2004;61(6):683–91.

    Article  Google Scholar 

  40. de Vathaire F et al. Radiation dose to the pancreas and risk of diabetes mellitus in childhood cancer survivors: a retrospective cohort study. Lancet Oncol. 2012;13(10):1002–10.

    Article  PubMed  Google Scholar 

  41. Donihi AC et al. Prevalence and predictors of corticosteroid-related hyperglycemia in hospitalized patients. Endocr Pract. 2006;12(4):358–62.

    Article  PubMed  Google Scholar 

  42. Harris D et al. Glucocorticoid-induced hyperglycemia is prevalent and unpredictable for patients undergoing cancer therapy: an observational cohort study. Curr Oncol. 2013;20(6):e532–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Weiser MA et al. Relation between the duration of remission and hyperglycemia during induction chemotherapy for acute lymphocytic leukemia with a hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone/methotrexate-cytarabine regimen. Cancer. 2004;100(6):1179–85.

    Article  CAS  PubMed  Google Scholar 

  44. Ali NA et al. Hyperglycemia in patients with acute myeloid leukemia is associated with increased hospital mortality. Cancer. 2007;110(1):96–102.

    Article  PubMed  Google Scholar 

  45. Sonabend RY et al. Hyperglycemia during induction therapy is associated with poorer survival in children with acute lymphocytic leukemia. J Pediatr. 2009;155(1):73–8.

    Article  PubMed  Google Scholar 

  46. Derr RL, Hsiao VC, Saudek CD. Antecedent hyperglycemia is associated with an increased risk of neutropenic infections during bone marrow transplantation. Diabetes Care. 2008;31(10):1972–7.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hammer MJ et al. The contribution of malglycemia to mortality among allogeneic hematopoietic cell transplant recipients. Biol Blood Marrow Transplant. 2009;15(3):344–51.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Pidala J et al. Dysglycemia following glucocorticoid therapy for acute graft-versus-host disease adversely affects transplantation outcomes. Biol Blood Marrow Transplant. 2011;17(2):239–48.

    Article  CAS  PubMed  Google Scholar 

  49. Brunello A, Kapoor R, Extermann M. Hyperglycemia during chemotherapy for hematologic and solid tumors is correlated with increased toxicity. Am J Clin Oncol. 2011;34(3):292–6.

    Article  CAS  PubMed  Google Scholar 

  50. Garg R et al. Hyperglycemia and length of stay in patients hospitalized for bone marrow transplantation. Diabetes Care. 2007;30(4):993–4.

    Article  PubMed  Google Scholar 

  51. Roberson JR et al. Diabetic ketoacidosis during therapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;50(6):1207–12.

    Article  PubMed  Google Scholar 

  52. Pasquel FJ et al. Hyperglycemia during total parenteral nutrition: an important marker of poor outcome and mortality in hospitalized patients. Diabetes Care. 2010;33(4):739–41.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Cheung NW et al. Hyperglycemia is associated with adverse outcomes in patients receiving total parenteral nutrition. Diabetes Care. 2005;28(10):2367–71.

    Article  PubMed  Google Scholar 

  54. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3–4):259–65.

    Article  CAS  PubMed  Google Scholar 

  55. Vu K et al. A randomized controlled trial of an intensive insulin regimen in patients with hyperglycemic acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2012;12(5):355–62. This was a randomized controlled trial that compared glargine plus aspart vs. conventional therapy in patients with ALL.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Baldwin D, Apel J. Management of hyperglycemia in hospitalized patients with renal insufficiency or steroid-induced diabetes. Curr Diab Rep. 2013;13(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  57. Moghissi ES et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Endocr Pract. 2009;15(4):353–69.

    Article  PubMed  Google Scholar 

  58. Umpierrez GE et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(1):16–38.

    Article  CAS  PubMed  Google Scholar 

  59. Lansang MC, Hustak LK. Glucocorticoid-induced diabetes and adrenal suppression: how to detect and manage them. Cleve Clin J Med. 2011;78(11):748–56.

    Article  PubMed  Google Scholar 

  60. Aggarwal N et al. Immeasurable glycosylated haemoglobin: a marker for severe haemolysis. BMJ Case Rep. 2013.

  61. Kutter D, Thoma J. Hereditary spherocytosis and other hemolytic anomalies distort diabetic control by glycated hemoglobin. Clin Lab. 2006;52(9–10):477–81.

    CAS  PubMed  Google Scholar 

  62. Greenberg PD et al. Decline in haemoglobin A1c values in diabetic patients receiving interferon-alpha and ribavirin for chronic hepatitis C. J Viral Hepat. 2006;13(9):613–7.

    Article  CAS  PubMed  Google Scholar 

  63. Suzuki Y et al. A patient with acute lymphoblastic leukaemia presenting with an extremely high level (21.0%) of HbA(1c). Ann Clin Biochem. 2011;48(Pt 5):474–7.

    Article  CAS  PubMed  Google Scholar 

  64. Hardikar PS et al. Spuriously high prevalence of prediabetes diagnosed by HbA(1c) in young Indians partly explained by hematological factors and iron deficiency anemia. Diabetes Care. 2012;35(4):797–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kim C et al. Association between iron deficiency and A1C Levels among adults without diabetes in the National Health and Nutrition Examination Survey, 1999-2006. Diabetes Care. 2010;33(4):780–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Dungan KM. Predicting outcomes and assessing control with alternate glycemic markers. Diabetes Technol Ther. 2012;14(9):749–52.

    Article  PubMed  Google Scholar 

  67. Vos FE et al. Assessment of markers of glycaemic control in diabetic patients with chronic kidney disease using continuous glucose monitoring. Nephrology (Carlton). 2012;17(2):182–8.

    Article  CAS  Google Scholar 

  68. Gosmanov AR et al. Management of hyperglycemia in diabetic patients with hematologic malignancies during dexamethasone therapy. Endocr Pract. 2013;19(2):231–5. This is the first study comparing basal/bolus insulin and sliding scale insulin in diabetic patients with hematologic malignancies treated with dexamethasone.

    Article  PubMed  Google Scholar 

  69. Spanakis EK et al. Insulin requirements in non-critically ill hospitalized patients with diabetes and steroid-induced hyperglycemia. Hosp Pract (1995). 2014;42(2):23–30.

    Article  Google Scholar 

  70. Dhital SM et al. A retrospective study comparing neutral protamine hagedorn insulin with glargine as basal therapy in prednisone-associated diabetes mellitus in hospitalized patients. Endocr Pract. 2012;18(5):712–9. This study in hospitalized patients receiving prednisone demonstrated that NPH and glargine appeared equally effective.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Korytkowski MT et al. Insulin therapy and glycemic control in hospitalized patients with diabetes during enteral nutrition therapy: a randomized controlled clinical trial. Diabetes Care. 2009;32(4):594–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Schloerb PR. Glucose in parenteral nutrition: a survey of U.S. medical centers. JPEN J Parenter Enteral Nutr. 2004;28(6):447–52.

    Article  PubMed  Google Scholar 

  73. Baldwin D et al. Insulin treatment of hyperglycemia in hospitalized patients receiving total parenteral nutrition (TPN). In: American Diabetes Association 72nd Scientific Sessions. Philadelphia, PA; 2012. p. #1070-P.

  74. van Genugten RE et al. Does dipeptidyl peptidase-4 inhibition prevent the diabetogenic effects of glucocorticoids in men with the metabolic syndrome? A randomized controlled trial. Eur J Endocrinol. 2014;170(3):429–39. This was a double-blind randomized-controlled study investigating DPP4 inhibition in patients with metabolic syndrome receiving high dose prednisolone.

    Article  PubMed  Google Scholar 

  75. van Raalte DH et al. Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care. 2011;34(2):412–7. This randomized, placebo-controlled, double-blind, crossover study showed that glucagon-like peptide receptor agonist exenatide prevented glucocorticoid-induced glucose intolerance.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Gornik I et al. A prospective observational study of the relationship of critical illness associated hyperglycaemia in medical ICU patients and subsequent development of type 2 diabetes. Crit Care. 2010;14(4):R130.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Davidson J et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation. 2003;75(10 Suppl):Ss3–24.

    PubMed  Google Scholar 

  78. Wilkinson A et al. Guidelines for the treatment and management of new-onset diabetes after transplantation. Clin Transplant. 2005;19(3):291–8.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Sara J. Healy declares that she has no conflict of interest.

Kathleen M. Dungan reports research support from Novo Nordisk, Merck, Grifols, Mylan, and Bristol Myers Squibb, advisory board for Eli Lilly, and receives royalties from Up To Date.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Dungan.

Additional information

This article is part of the Topical Collection on Hospital Management of Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Healy, S.J., Dungan, K.M. Hyperglycemia in Patients with Hematologic Malignancies. Curr Diab Rep 15, 8 (2015). https://doi.org/10.1007/s11892-015-0581-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0581-x

Keywords

Navigation