Skip to main content

Advertisement

Log in

Evolving Tissue and Circulating Biomarkers as Prognostic and Predictive Tools in Colorectal Cancer

  • Personalized Medicine in ColorectalCancer (D Cunningham and EC Smyth, Section Editors)
  • Published:
Current Colorectal Cancer Reports

Abstract

Purpose of Review

The success of precision medicine relies heavily on biomarkers. Validated biomarkers that help stratify risk and guide treatments in patients with colorectal cancers are limited. With advances in genomics, immune landscapes and technological assays, there are increasing numbers of biomarkers that show potential to guide treatment decisions in the clinic. In this article, we review the key emerging biomarkers including tissue-based gene-based expression biomarkers, microRNA and immune signatures along with circulating tumour DNA in plasma, biomarkers of anti-angiogenic agents.

Recent Findings

Mismatch repair proteins have emerged as predictive biomarkers of immune-oncology agents. Lack of caudal-type homeobox transcription factor 2 (CDX2) expression has been identified as a potential prognostic biomarker identifying a subgroup of patients with high-risk stage 2 colon cancer who would benefit from adjuvant chemotherapy. A validated biomarker, Immunoscore, has been proposed as an adjunct to the conventional TNM classification to help with prognostication. Circulating tumour DNA has the potential to be a prognostic and predictive biomarker in patients with metastatic colorectal cancer, and by identifying minimal residual disease in stage 2 and 3 colorectal cancer, it can be useful to detect early relapse.

Summary

Biomarker discovery and validation has its own challenges, but to truly deliver precision medicine to our patients, it is crucial to understand and address key research gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Cremolini C, Schirripa M, Antoniotti C, Moretto R, Salvatore L, Masi G, et al. First-line chemotherapy for mCRC—a review and evidence-based algorithm. Nat Rev Clin Oncol. 2015;12(10):607–19.

    Article  CAS  PubMed  Google Scholar 

  3. Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(15):1803–5.

    Article  Google Scholar 

  4. Jaffee EM, Dang CV, Agus DB, , Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, De Pinho, RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol 2017; 18(11): e653-e706.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lawler M, Alsina D, Adams RA, Anderson AS, Brown G, Fearnhead NS, et al. Critical research gaps and recommendations to inform research prioritisation for more effective prevention and improved outcomes in colorectal cancer. Gut. 2018;67(1):179–93.

    Article  PubMed  Google Scholar 

  6. Ballman KV. Biomarker: predictive or prognostic? J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(33):3968–71.

    Article  CAS  Google Scholar 

  7. • Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. First clinical study to show benefit of using PD-1 blockade in solid tumours with MMRd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(8):773–9.

    Article  Google Scholar 

  10. Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. The lancet Gastroenterology & hepatology. 2016;1(3):207–16.

    Article  Google Scholar 

  11. • Dalerba P, Sahoo D, Paik S, et al. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N Engl J Med. 2016;374(3):211–22. Identification of a transcription factor as a prognostic biomarker in colon cancer

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Pages F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet (London, England). 2018;391(10135):2128–39. Validated prognostic marker of descriptive scoring of tumour immune infiltrate

    Article  Google Scholar 

  13. Primrose J, Falk S, Finch-Jones M, Valle J, O'Reilly D, Siriwardena A, et al. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis: the New EPOC randomised controlled trial. Lancet Oncology. 2014;15(6):601–11.

    Article  CAS  PubMed  Google Scholar 

  14. • Pugh S, Thiebaut R, Bridgewater J, et al. Association between miR-31-3p expression and cetuximab efficacy in patients with KRAS wild-type metastatic colorectal cancer: a post-hoc analysis of the New EPOC trial. Oncotarget. 2017;8(55):93856–66. First study demonstrating potential predictive role of microRNA and cetuximab efficacy

    PubMed  PubMed Central  Google Scholar 

  15. Tabernero J, Hozak RR, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, Ciuleanu TE, Portnoy DC, Muro K, Ouyang H, Melemed S, Ferry D, Nasroulah F, van Cutsem E et al. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 2017, 28.

  16. Price TJ, Bruhn MA, Lee CK, Hardingham JE, Townsend AR, Mann KP, et al. Correlation of extended RAS and PIK3CA gene mutation status with outcomes from the phase III AGITG MAX STUDY involving capecitabine alone or in combination with bevacizumab plus or minus mitomycin C in advanced colorectal cancer. Br J Cancer. 2015;112(6):963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weickhardt AJ, Williams DS, Lee CK, Chionh F, Simes J, Murone C, et al. Vascular endothelial growth factor D expression is a potential biomarker of bevacizumab benefit in colorectal cancer. Br J Cancer. 2015;113(1):37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO. 2015;26(8):1715–22.

    Article  CAS  Google Scholar 

  19. Khan K, Rata M, Cunningham D, et al. Functional imaging and circulating biomarkers of response to regorafenib in treatment-refractory metastatic colorectal cancer patients in a prospective phase II study. Gut 2017.

  20. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985-90. https://doi.org/10.1038/nm.1789

    Article  CAS  PubMed  Google Scholar 

  21. • Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8(346):346ra92. First study demonstarting minimal residual disease in stage 2 colon cancer patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. • Tie J, Cohen JD, Wang Y, et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut 2018. FIrst study demonstrating minimal residual disease in locally advacned rectal patients following neoadjuvant chemoradiotherapy.

  23. Venook AP, Niedzwiecki D, Lenz HJ, Innocenti F, Fruth B, Meyerhardt JA, et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. Jama. 2017;317(23):2392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hegde PS, Jubb AM, Chen D, Li NF, Meng YG, Bernaards C, et al. Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clinical cancer research: an official journal of the American Association for Cancer Research. 2013;19(4):929–37.

    Article  CAS  Google Scholar 

  25. Van Cutsem E, Joulain F, Hoff PM, et al. Aflibercept plus FOLFIRI vs. placebo plus FOLFIRI in second-line metastatic colorectal cancer: a post hoc analysis of survival from the phase III VELOUR study subsequent to exclusion of patients who had recurrence during or within 6 months of completing adjuvant oxaliplatin-based therapy. Target Oncol. 2016;11(3):383–400.

    Article  PubMed  Google Scholar 

  26. Van Cutsem E, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(28):3499–506.

    Article  CAS  Google Scholar 

  27. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

  28. Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342(2):69–77.

    Article  CAS  PubMed  Google Scholar 

  29. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32.

    Article  CAS  PubMed  Google Scholar 

  30. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science (New York, NY). 1993;260(5109):812–6.

    Article  CAS  Google Scholar 

  31. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science (New York, NY). 2017;357(6349):409–13.

    Article  CAS  Google Scholar 

  32. Hechtman JF, Middha S, Stadler ZK, Zehir A, Berger MF, Vakiani E, et al. Universal screening for microsatellite instability in colorectal cancer in the clinical genomics era: new recommendations, methods, and considerations. Familial Cancer. 2017;16(4):525–9.

    Article  PubMed  Google Scholar 

  33. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572–6.

    Article  CAS  PubMed  Google Scholar 

  34. Palles C, Cazier JB, Howarth KM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45(2):136–44.

    Article  CAS  PubMed  Google Scholar 

  35. Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C-->T:A mutations. Hum Mol Genet. 2002;11(23):2961–7.

    Article  CAS  PubMed  Google Scholar 

  36. Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science (New York, NY). 2007;317(5834):127–30.

    Article  CAS  Google Scholar 

  37. Guerra J, Pinto C, Pinto D, Pinheiro M, Silva R, Peixoto A, et al. POLE somatic mutations in advanced colorectal cancer. Cancer medicine. 2017;6(12):2966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stenzinger A, Pfarr N, Endris V, Penzel R, Jansen L, Wolf T, et al. Mutations in POLE and survival of colorectal cancer patients—link to disease stage and treatment. Cancer medicine. 2014;3(6):1527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baba Y, Nosho K, Shima K, Freed E, Irahara N, Philips J, et al. Relationship of CDX2 loss with molecular features and prognosis in colorectal cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2009;15(14):4665–73.

    Article  CAS  Google Scholar 

  40. Fearon ER, Huang EH. CDX2: linking cell and patient fates in colon cancer. Cell Stem Cell. 2016;18(2):168–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gray RG, Quirke P, Handley K, Lopatin M, Magill L, Baehner FL, et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(35):4611–9.

    Article  Google Scholar 

  42. Venook AP, Niedzwiecki D, Lopatin M, Ye X, Lee M, Friedman PN, et al. Biologic determinants of tumor recurrence in stage II colon cancer: validation study of the 12-gene recurrence score in cancer and leukemia group B (CALGB) 9581. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(14):1775–81.

    Article  Google Scholar 

  43. Salazar R, Roepman P, Capella G, Moreno V, Simon I, Dreezen C, et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(1):17–24.

    Article  Google Scholar 

  44. Kennedy RD, Bylesjo M, Kerr P, Davison T, Black JM, Kay EW, et al. Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(35):4620–6.

    Article  Google Scholar 

  45. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pilati C, Taieb J, Balogoun R, Marisa L, de Reynies A, Laurent-Puig P. CDX2 prognostic value in stage II/III resected colon cancer is related to CMS classification. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO. 2017;28(5):1032–5.

    Article  CAS  Google Scholar 

  47. Kim JH, Rhee YY, Bae JM, Cho NY, Kang GH. Loss of CDX2/CK20 expression is associated with poorly differentiated carcinoma, the CpG island methylator phenotype, and adverse prognosis in microsatellite-unstable colorectal cancer. Am J Surg Pathol. 2013;37(10):1532–41.

    Article  PubMed  Google Scholar 

  48. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.

    Article  CAS  PubMed  Google Scholar 

  49. Kather JN, Halama N, Jaeger D. Genomics and emerging biomarkers for immunotherapy of colorectal cancer. Semin Cancer Biol. 2018;

  50. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (New York, NY). 2006;313(5795):1960–4.

    Article  CAS  Google Scholar 

  51. Mlecnik B, Bindea G, Angell HK, Maby P, Angelova M, Tougeron D, et al. Integrative analyses of colorectal cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity. 2016;44(3):698–711.

    Article  CAS  PubMed  Google Scholar 

  52. Galon J, Pages F, Marincola FM, et al. Cancer classification using the Immunoscore: a worldwide task force. J Transl Med. 2012;10:205.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Manceau G, Imbeaud S, Thiebaut R, Liebaert F, Fontaine K, Rousseau F, et al. Hsa-miR-31-3p expression is linked to progression-free survival in patients with KRAS wild-type metastatic colorectal cancer treated with anti-EGFR therapy. Clinical cancer research: an official journal of the American Association for Cancer Research. 2014;20(12):3338–47.

    Article  CAS  Google Scholar 

  54. •• Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. Key study of circulating DNA in over 600 patients with solid tumours across various stages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A. 1999;96(16):9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  PubMed  Google Scholar 

  57. Lecomte T, Berger A, Zinzindohoue F, et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer. 2002;100(5):542–8.

    Article  CAS  PubMed  Google Scholar 

  58. Thierry AR, El Messaoudi S, Mollevi C, et al. Clinical utility of circulating DNA analysis for rapid detection of actionable mutations to select metastatic colorectal patients for anti-EGFR treatment. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO. 2017;28(9):2149–59.

    Article  CAS  Google Scholar 

  59. Schmiegel W, Scott RJ, Dooley S, Lewis W, Meldrum CJ, Pockney P, et al. Blood-based detection of RAS mutations to guide anti-EGFR therapy in colorectal cancer patients: concordance of results from circulating tumor DNA and tissue-based RAS testing. Mol Oncol. 2017;11(2):208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21(7):795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Spindler KG, Boysen AK, Pallisgard N, et al. Cell-free DNA in metastatic colorectal cancer: a systematic review and meta-analysis. Oncologist. 2017;22(9):1049–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer discovery. 2016;6(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  63. Thierry AR, Pastor B, Jiang ZQ, Katsiampoura AD, Parseghian C, Loree JM, et al. Circulating DNA demonstrates convergent evolution and common resistance mechanisms during treatment of colorectal cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2017;23(16):4578–91.

    Article  CAS  Google Scholar 

  64. Frenel JS, Carreira S, Goodall J, Roda D, Perez-Lopez R, Tunariu N, et al. Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clinical cancer research: an official journal of the American Association for Cancer Research. 2015;21(20):4586–96.

    Article  CAS  Google Scholar 

  65. Morelli MP, Overman MJ, Dasari A, Kazmi SMA, Mazard T, Vilar E, et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO. 2015;26(4):731–6.

    Article  CAS  Google Scholar 

  66. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Diaz LA Jr, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Trakarnsanga A, Ithimakin S, Weiser MR. Treatment of locally advanced rectal cancer: controversies and questions. World J Gastroenterol. 2012;18(39):5521–32.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo LJ, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. The Lancet Oncology. 2010;11(9):835–44.

    Article  PubMed  Google Scholar 

  70. Tie J, Semira C, Gibbs P. Circulating tumor DNA as a biomarker to guide therapy in post-operative locally advanced rectal cancer: the best option? Expert Rev Mol Diagn. 2018;18(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  71. Cabel L, Riva F, Servois V, Livartowski A, Daniel C, Rampanou A, et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO. 2017;28(8):1996–2001.

    Article  CAS  Google Scholar 

  72. Hatch AJ, Clarke JM, Nixon AB, Hurwitz HI. Identifying blood-based protein biomarkers for antiangiogenic agents in the clinic: a decade of progress. Cancer journal (Sudbury, Mass). 2015;21(4):322–6.

    Article  CAS  Google Scholar 

  73. Nixon AB, Sibley A, Hatch AJ, et al. Blood-based biomarkers in patients (pts) with metastatic colorectal cancer (mCRC) treated with FOLFOX or FOLFIRI plus bevacizumab (Bev), cetuximab (Cetux), or Bev plus Cetux: results from CALGB 80405 (Alliance). J Clin Oncol. 2016;34(15_suppl):3597.

    Article  Google Scholar 

  74. Lieu CH, Tran H, Jiang ZQ, Mao M, Overman MJ, Lin E, et al. The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer. PLoS One. 2013;8(10):e77117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sims TN, Gao B, Phillips R, Lowy I. Potential predictive and prognostic biomarkers identified in baseline plasma samples from the VELOUR trial. J Clin Oncol. 2015;33(3_suppl):638.

    Article  Google Scholar 

  76. Liu Y, Starr MD, Bulusu A, Pang H, Wong NS, Honeycutt W, et al. Correlation of angiogenic biomarker signatures with clinical outcomes in metastatic colorectal cancer patients receiving capecitabine, oxaliplatin, and bevacizumab. Cancer medicine. 2013;2(2):234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17(2):79–92.

    Article  CAS  PubMed  Google Scholar 

  78. Li G, Bankhead P, Dunne PD, O'Reilly PG, James JA, Salto-Tellez M, et al. Embracing an integromic approach to tissue biomarker research in cancer: perspectives and lessons learned. Brief Bioinform. 2017;18(4):634–46.

    PubMed  Google Scholar 

  79. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(23):9530–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34(5):547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science (New York, NY). 2018;359(6378):926–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Chau.

Ethics declarations

Conflict of Interest

Gayathri Anandappa and Ian Chau declare they have no conflict of interest. The authors would like to acknowledge the National Health Service funding to the National Institute for Health Research Biomedical Research Centre at the Royal Marsden NHS Foundation Trust and the Institute of Cancer Research.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandappa, G., Chau, I. Evolving Tissue and Circulating Biomarkers as Prognostic and Predictive Tools in Colorectal Cancer. Curr Colorectal Cancer Rep 14, 138–151 (2018). https://doi.org/10.1007/s11888-018-0410-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-018-0410-0

Keywords

Navigation