Skip to main content

Advertisement

Log in

BRAF Mutations in Non-Metastatic Colorectal Cancer: Current Relevance and Future Implications

  • Adjuvant Therapy for Colon Cancers (AB Benson III and A de Gramont, Section Editors)
  • Published:
Current Colorectal Cancer Reports

Abstract

BRAF V600E-mutated colorectal cancer (CRC) is a distinct entity that accounts for less than 10 % of all CRC patients and is associated with unique clinical and pathologic features. This biomarker also confers a poor prognostic outcome across all stages of CRC relative to wild-type counterparts. Currently, the landscape of effective therapies, both in terms of adjuvant treatment and in the metastatic setting, remains limited. This review will detail the role of the BRAF V600E mutation as a prognostic biomarker in the management of patients with non-metastatic and metastatic CRC, and highlight recent advances in targeted therapies for this subset of CRC, which may represent the most significant progress made thus far toward improving survival in these patients. The role of mismatch repair status and its relationship with the BRAF V600E mutation in CRC will also be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel R et al. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61(4):212–36.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  3. Chong H, Lee J, Guan KL. Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J. 2001;20(14):3716–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wan PT et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.

    Article  CAS  PubMed  Google Scholar 

  5. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351(Pt 2):289–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Davies H et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  7. Yeh JJ et al. KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther. 2009;8(4):834–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Di Nicolantonio F et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.

    Article  PubMed  Google Scholar 

  9. Yang S et al. BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am J Surg Pathol. 2004;28(11):1452–9.

    Article  PubMed  Google Scholar 

  10. Kambara T et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004;53(8):1137–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. O'Brien MJ et al. Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol. 2006;30(12):1491–501.

    Article  PubMed  Google Scholar 

  12. Weisenberger DJ et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–93.

    Article  CAS  PubMed  Google Scholar 

  13. Shen L et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A. 2007;104(47):18654–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yagi K et al. Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res. 2010;16(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  15. Rajagopalan H et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418(6901):934.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka H et al. BRAF mutation, CpG island methylator phenotype and microsatellite instability occur more frequently and concordantly in mucinous than non-mucinous colorectal cancer. Int J Cancer. 2006;118(11):2765–71.

    Article  CAS  PubMed  Google Scholar 

  17. Richman SD et al. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol. 2009;27(35):5931–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kane MF et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57(5):808–11.

    CAS  PubMed  Google Scholar 

  19. Douillard JY et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369(11):1023–34.

    Article  CAS  PubMed  Google Scholar 

  20. Tie J et al. Optimizing targeted therapeutic development: analysis of a colorectal cancer patient population with the BRAF(V600E) mutation. Int J Cancer. 2011;128(9):2075–84. BRAF mutations are associated with unique clinical and pathologic features in CRC.

    Article  CAS  PubMed  Google Scholar 

  21. Clancy C et al. BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. Color Dis. 2013;15(12):e711–8. Meta-analysis of nearly 10,000 CRC patients revealing association between BRAF mutations and T4, poorly differentiated, proximal colon lesions.

    Article  CAS  Google Scholar 

  22. Hurwitz H et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.

    Article  CAS  PubMed  Google Scholar 

  23. Van Cutsem E et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17.

    Article  PubMed  Google Scholar 

  24. Fong Y et al. Liver resection for colorectal metastases. J Clin Oncol. 1997;15(3):938–46.

    CAS  PubMed  Google Scholar 

  25. Choti MA et al. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg. 2002;235(6):759–66.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kopetz S et al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol. 2009;27(22):3677–83.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med. 2009;361(1):98–9.

    Article  CAS  PubMed  Google Scholar 

  28. Van Cutsem E et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29(15):2011–9.

    Article  PubMed  Google Scholar 

  29. Maughan TS et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011;377(9783):2103–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tran B et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011;117(20):4623–32. Retrospective review from >500 patients with metastatic CRC at 2 major academic centers showing a drastically worse prognosis for those with BRAF-mutated tumors.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Morris V et al. Progression-free survival remains poor over sequential lines of systemic therapy in patients with BRAF-mutated colorectal cancer. Clin Colorectal Cancer. 2014;13(3):164–71.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chapman PB et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hauschild A et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  CAS  PubMed  Google Scholar 

  34. Kim KB et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid. 2013;23(10):1277–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Munoz J, Schlette E, Kurzrock R. Rapid response to vemurafenib in a heavily pretreated patient with hairy cell leukemia and a BRAF mutation. J Clin Oncol. 2013;31(20):e351–2.

    Article  PubMed  Google Scholar 

  36. Kopetz S. A Phase I Study of vemurafenib in patients with metastatic, BRAF-mutant colorectal cancer. J Clin Oncol. 2010. 28: p. 15s (suppl: abstr 3534).

  37. Corcoran RB. Pharmacodynamic and efficacy analysis of the BRAF inhibitor dabrafenib (GSK436) in combination with the MEK inhibitor trametinib (GSK212) in patients with BRAFV600 mutant colorectal cancer (CRC). J Clin Oncol. 2013. 31: p. suppl; abstr 3507.

  38. Prahallad A et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483(7387):100–3. Preclinical work revealing that inhibition of BRAF V600E by vemurafenib generates reflexive activation of EGFR signaling, whose activity is blocked by the concomitant addition of cetuximab in cell line models and in xenograft models.

    Article  CAS  PubMed  Google Scholar 

  39. Corcoran RB et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2(3):227–35. Dual BRAF and EGFR bloackade can reduce antitumor activity in preclinical models of BRAF-mutated metastatic colorectal cancer.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. French AJ et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 2008;14(11):3408–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hutchins G et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol. 2011;29(10):1261–70.

    Article  PubMed  Google Scholar 

  42. Gavin PG et al. Mutation profiling and microsatellite instability in stage II and III colon cancer: an assessment of their prognostic and oxaliplatin predictive value. Clin Cancer Res. 2012;18(23):6531–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Maestro ML et al. Role of the BRAF mutations in the microsatellite instability genetic pathway in sporadic colorectal cancer. Ann Surg Oncol. 2007;14(3):1229–36.

    Article  CAS  PubMed  Google Scholar 

  44. Samowitz WS et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65(14):6063–9.

    Article  CAS  PubMed  Google Scholar 

  45. Phipps AI et al. BRAF mutation status and survival after colorectal cancer diagnosis according to patient and tumor characteristics. Cancer Epidemiol Biomarkers Prev. 2012;21(10):1792–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ogino S et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58(1):90–6. Retrospective analysis of 2,300 patients with stage II or stage III CRC on the NSABP C-07 and C-08 studies showed that there was no added benefit of oxaliplatin according to BRAF mutation status or mismatch repair status.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kadowaki S et al. Prognostic value of KRAS and BRAF mutations in curatively resected colorectal cancer. World J Gastroenterol. 2015;21(4):1275–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ogino S et al. Predictive and prognostic roles of BRAF mutation in stage III colon cancer: results from intergroup trial CALGB 89803. Clin Cancer Res. 2012;18(3):890–900. Retrospective analysis of the CALGB 89803 trial stratifying stage III CRC patients into prognostic subtypes according to BRAF mutation status and mismatch repair status.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ooki A et al. Combined microsatellite instability and BRAF gene status as biomarkers for adjuvant chemotherapy in stage III colorectal cancer. J Surg Oncol. 2014;110(8):982–8. Review of > 400 patients with stage III CRC assessed into 4 prognostic subgroups: MSI-H/BRAF-mutated, MSS/BRAF-mutated, MSI-H/BRAF wild-type, MSS/BRAF wild-type.

    Article  CAS  PubMed  Google Scholar 

  50. Farina-Sarasqueta A et al. The BRAF V600E mutation is an independent prognostic factor for survival in stage II and stage III colon cancer patients. Ann Oncol. 2010;21(12):2396–402.

    Article  CAS  PubMed  Google Scholar 

  51. Roth AD et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol. 2010;28(3):466–74.

    Article  CAS  PubMed  Google Scholar 

  52. Klingbiel D et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann Oncol. 2015;26(1):126–32. Tissue specimens from >1500 patients from the PETACC-3 trial were analyzed and assessed for clinical survival outcomes according to mutation status and the presence or absence of microsatellite instability.

    Article  CAS  PubMed  Google Scholar 

  53. Lochhead P et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst. 2013;105(15):1151–6. BRAF wild-type, MSI-H CRC tumors appear to be the best prognostic subtype from a series of >1250 patients. No interaction is apparent between BRAF mutation and mismatch repair status.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012. 487(7407): p. 330-7. Extensive characterization of 276 CRC specimens according to whole exome sequencing, DNA copy number, RNA expression, and methylation profiling analysis.

  55. Tournigand C et al. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the Multicenter International Study of Oxaliplatin, Fluorouracil, and Leucovorin in the Adjuvant Treatment of Colon Cancer trial. J Clin Oncol. 2012;30(27):3353–60. Subgroup analysis of stage II CRC patients on a clinical trial of 5-fluorouracil with or without oxaliplatin revealed that the addition of oxaliplatin did not offer benefit in the adjuvant setting.

    Article  CAS  PubMed  Google Scholar 

  56. Quasar Collaborative G et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370(9604):2020–9.

    Article  Google Scholar 

  57. Yothers G et al. Oxaliplatin as adjuvant therapy for colon cancer: updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol. 2011;29(28):3768–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Loupakis F et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371(17):1609–18.

    Article  PubMed  Google Scholar 

  59. Van Cutsem E et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J Clin Oncol. 2009;27(19):3117–25.

    Article  PubMed  Google Scholar 

  60. Ychou M et al. A phase III randomised trial of LV5FU2 + irinotecan versus LV5FU2 alone in adjuvant high-risk colon cancer (FNCLCC Accord02/FFCD9802). Ann Oncol. 2009;20(4):674–80.

    Article  CAS  PubMed  Google Scholar 

  61. de Gramont A et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol. 2012;13(12):1225–33. Results from the AVANT-3 clinical trial studying the effects of bevacizumab to standard adjuvant therapies for high-risk stage II/ stage III CRC revealed no added benefit with bevacizumab.

    Article  PubMed  Google Scholar 

  62. Hendriks YM et al. Diagnostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin. 2006;56(4):213–25.

    Article  PubMed  Google Scholar 

  63. Loddenkemper C, Nagorsen D, Zeitz M. Foxp3 and microsatellite stability phenotype in colorectal cancer. Gut. 2008;57(6):725–6.

    Article  PubMed  Google Scholar 

  64. Foulds KE, Rotte MJ, Seder RA. IL-10 is required for optimal CD8 T cell memory following Listeria monocytogenes infection. J Immunol. 2006;177(4):2565–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this manuscript was provided by CA016672 (Cancer Center Grant for Statistical Support) and CA187238 (SK).

Compliance with Ethics Guidelines

Conflict of Interest

Van Morris declares that he has no conflict of interest.

Wei Qiao declares that he has no conflict of interest.

Scott Kopetz has received research funding through grants from GlaxoSmithKline, Genentech, Amgen, Roche, Sysmex Corporation, Agendia, Sanofi, Biocartis, and Guardant Health, and has received compensation from GlaxoSmithKline, Genentech, Taiho, Amgen, Bristol-Myers Squibb, Roche, Merrimack Pharmaceuticals, Sysmex Corporation, Bayer, Agendia, Sanofi, and Array BioPharma for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Kopetz.

Additional information

This article is part of the Topical Collection on Adjuvant Therapy for Colon Cancers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, V., Qiao, W. & Kopetz, S. BRAF Mutations in Non-Metastatic Colorectal Cancer: Current Relevance and Future Implications. Curr Colorectal Cancer Rep 11, 303–310 (2015). https://doi.org/10.1007/s11888-015-0295-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-015-0295-0

Keywords

Navigation