Skip to main content
Log in

Contrast Echocardiography for Assessing Myocardial Perfusion

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Improvements in ultrasound methods for detecting microbubble ultrasound enhancing agents have led to an increase in the use of perfusion imaging with myocardial contrast echocardiography (MCE). This technique is now beginning to play an important role in specific clinical scenarios, which is the focus of this review.

Recent Findings

MCE was originally conceived as a technique for detecting resting perfusion abnormalities related to ischemia at rest or during stress from coronary artery disease. More recently, MCE has increasingly been used in circumstances where the technique’s ability to provide rapid, quantitative, or bedside assessment of perfusion is advantageous. Quantitative MCE is also increasingly being used as a research technique for evaluating pathobiology and therapy that involve changes in the myocardial microcirculation.

Summary

While MCE was developed and validated decades ago, it is only now beginning to be used by an increasing number of clinicians due to improvements in imaging technology and recognition of specific situations where the technique is impactful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, et al. Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography Guidelines update. J Am Soc Echocardiogr. 2018;31:241–74. https://doi.org/10.1016/j.echo.2017.11.013.

    Article  PubMed  Google Scholar 

  2. Kaufmann BA, Wei K, Lindner JR. Contrast echocardiography. Curr Probl Cardiol. 2007;32:51–96.

    Article  PubMed  Google Scholar 

  3. Epstein PSP, M.S. On the stability of gas bubbles in liquid-gas solutions. J Chem Phys. 1950;18:1505–1509.

  4. de Jong N, Hoff L, Skotland T, Bom N. Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics. 1992;30:95–103.

    Article  PubMed  Google Scholar 

  5. Sarkar K, Shi WT, Chatterjee D, Forsberg F. Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J Acoust Soc Am. 2005;118:539–50.

    Article  CAS  PubMed  Google Scholar 

  6. Wei K, Mulvagh SL, Carson L, Davidoff R, Gabriel R, Grimm RA, et al. The safety of deFinity and Optison for ultrasound image enhancement: a retrospective analysis of 78,383 administered contrast doses. J Am Soc Echocardiogr. 2008;21:1202–6.

    Article  PubMed  Google Scholar 

  7. • Lindner JR, Belcik T, Main ML, Montanaro A, Mulvagh SL, Olson J, et al. Expert consensus statement from the American Society of Echocardiography on Hypersensitivity Reactions to Ultrasound Enhancing Agents in Patients with Allergy to Polyethylene Glycol. J Am Soc Echocardiogr. 2021;34:707–708. https://doi.org/10.1016/j.echo.2021.05.002. This conensus statement from the ASE summarizes new safety-related information related to the possibility of type I hypersensitivity reactions to the PEG component of microbubble contrast agents.

  8. Chin CT, Burns PN. Predicting the acoustic response of a microbubble population for contrast imaging in medical ultrasound. Ultrasound Med Biol. 2000;26:1293–300.

    Article  CAS  PubMed  Google Scholar 

  9. Emmer M, van Wamel A, Goertz DE, de Jong N. The onset of microbubble vibration. Ultrasound Med Biol. 2007;33:941–9. https://doi.org/10.1016/j.ultrasmedbio.2006.11.004.

    Article  PubMed  Google Scholar 

  10. Davidson BP, Hodovan J, Belcik JT, Moccetti F, Xie A, Ammi AY, et al. Rest-stress limb perfusion imaging in humans with contrast ultrasound using intermediate-power imaging and microbubbles resistant to inertial cavitation. J Am Soc Echocardiogr. 2017;30(503–510): e501. https://doi.org/10.1016/j.echo.2016.12.011.

    Article  Google Scholar 

  11. Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr. 2002;15:396–403.

    Article  PubMed  Google Scholar 

  12. Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res. 1994;74:1157–1165.

  13. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97:473–83.

    Article  CAS  PubMed  Google Scholar 

  14. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Basis for detection of stenosis using venous administration of microbubbles during myocardial contrast echocardiography: bolus or continuous infusion? J Am Coll Cardiol. 1998;32:252–60.

    Article  CAS  PubMed  Google Scholar 

  15. Rinkevich D, Kaul S, Wang XQ, Tong KL, Belcik T, Kalvaitis S, Lepper W, et al. Regional left ventricular perfusion and function in patients presenting to the emergency department with chest pain and no ST-segment elevation. Eur Heart J. 2005;26:1606–11.

    Article  PubMed  Google Scholar 

  16. Tong KL, Kaul S, Wang XQ, Rinkevich D, Kalvaitis S, Belcik T, et al. Myocardial contrast echocardiography versus thrombolysis in myocardial infarction score in patients presenting to the emergency department with chest pain and a nondiagnostic electrocardiogram. J Am Coll Cardiol. 2005;46:920–7.

    Article  PubMed  Google Scholar 

  17. Davidson BP, Kaufmann BA, Belcik JT, Xie A, Qi Y, Lindner JR. Detection of antecedent myocardial ischemia with multiselectin molecular imaging. J Am Coll Cardiol. 2012;60:1690–7. https://doi.org/10.1016/j.jacc.2012.07.027.

    Article  CAS  PubMed  Google Scholar 

  18. Mott B, Packwood W, Xie A, Belcik JT, Taylor RP, Zhao Y, et al. Echocardiographic ischemic memory imaging through complement-mediated vascular adhesion of phosphatidylserine-containing microbubbles. JACC Cardiovasc Imaging. 2016:937–946. https://doi.org/10.1016/j.jcmg.2015.11.031.

  19. Davidson BP, Hodovan J, Layoun ME, Golwala H, Zahr F, Lindner JR. Echocardiographic ischemic memory molecular imaging for point-of-care detection of myocardial ischemia. J Am Coll Cardiol. 2021;78:1990–2000. https://doi.org/10.1016/j.jacc.2021.08.068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abdelmoneim SS, Mankad SV, Bernier M, Dhoble A, Hagen ME, Ness SA, et al. Microvascular function in Takotsubo cardiomyopathy with contrast echocardiography: prospective evaluation and review of literature. J Am Soc Echocardiogr. 2009;22:1249–55.

    Article  PubMed  Google Scholar 

  21. Soman P, Swinburn J, Callister M, Stephens NG, Senior R. Apical hypertrophic cardiomyopathy: bedside diagnosis by intravenous contrast echocardiography. J Am Soc Echocardiogr. 2001;14:311–3. https://doi.org/10.1067/mje.2001.108475.

    Article  CAS  PubMed  Google Scholar 

  22. Abdelmoneim SS, Mulvagh SL, Xie F, O’Leary E, Adolphson M, Omer MA, et al. Regadenoson stress real-time myocardial perfusion echocardiography for detection of coronary artery disease: feasibility and accuracy of two different ultrasound contrast agents. J Am Soc Echocardiogr. 2015;28:1393–400. https://doi.org/10.1016/j.echo.2015.08.011.

    Article  PubMed  Google Scholar 

  23. Elhendy A, O’Leary EL, Xie F, McGrain AC, Anderson JR, Porter TR. Comparative accuracy of real-time myocardial contrast perfusion imaging and wall motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease. J Am Coll Cardiol. 2004;44:2185–91.

    Article  PubMed  Google Scholar 

  24. Mattoso AA, Kowatsch I, Tsutsui JM, de la Cruz VY, Ribeiro HB, Sbano JC, et al. Prognostic value of qualitative and quantitative vasodilator stress myocardial perfusion echocardiography in patients with known or suspected coronary artery disease. J Am Soc Echocardiogr. 2013;26:539–47. https://doi.org/10.1016/j.echo.2013.01.016.

    Article  PubMed  Google Scholar 

  25. Shimoni S, Zoghbi WA, Xie F, Kricsfeld D, Iskander S, Gobar L, et al. Real-time assessment of myocardial perfusion and wall motion during bicycle and treadmill exercise echocardiography: comparison with single photon emission computed tomography. J Am Coll Cardiol. 2001;37:741–7. https://doi.org/10.1016/s0735-1097(00)01179-7.

    Article  CAS  PubMed  Google Scholar 

  26. Wei K, Ragosta M, Thorpe J, Coggins M, Moos S, Kaul S. Noninvasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography. Circulation. 2001;103:2560–5.

    Article  CAS  PubMed  Google Scholar 

  27. Vogel R, Indermuhle A, Reinhardt J, Meier P, Siegrist PT, Namdar M, et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol. 2005;45:754–62.

    Article  PubMed  Google Scholar 

  28. Barton D, Xie F, O’Leary E, Chatzizisis YS, Pavlides G, Porter TR. The relationship of capillary blood flow assessments with real time myocardial perfusion echocardiography to invasively derived microvascular and epicardial assessments. J Am Soc Echocardiogr. 2019;32:1095–101. https://doi.org/10.1016/j.echo.2019.04.424.

    Article  PubMed  Google Scholar 

  29. Jeetley P, Hickman M, Kamp O, Lang RM, Thomas JD, Vannan MA, et al. Myocardial contrast echocardiography for the detection of coronary artery stenosis: a prospective multicenter study in comparison with single-photon emission computed tomography. J Am Coll Cardiol. 2006;47:141–5.

    Article  PubMed  Google Scholar 

  30. Peltier M, Vancraeynest D, Pasquet A, Ay T, Roelants V, D'Hondt A M, et al. Assessment of the physiologic significance of coronary disease with dipyridamole real-time myocardial contrast echocardiography. Comparison with technetium-99m sestamibi single-photon emission computed tomography and quantitative coronary angiography. J Am Coll Cardiol. 2004;43:257–264.

  31. Leong-Poi H, Rim SJ, Le DE, Fisher NG, Wei K, Kaul S. Perfusion versus function: the ischemic cascade in demand ischemia: implications of single-vessel versus multivessel stenosis. Circulation. 2002;105:987–92.

    Article  PubMed  Google Scholar 

  32. Shah BN, Chahal NS, Bhattacharyya S, Li W, Roussin I, Khattar RS, et al. The feasibility and clinical utility of myocardial contrast echocardiography in clinical practice: results from the incorporation of myocardial perfusion assessment into clinical testing with stress echocardiography study. J Am Soc Echocardiogr. 2014;27:520–30. https://doi.org/10.1016/j.echo.2014.01.028.

    Article  PubMed  Google Scholar 

  33. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364:1607–16. https://doi.org/10.1056/NEJMoa1100356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Janardhanan R, Moon JC, Pennell DJ, Senior R. Myocardial contrast echocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. Am Heart J. 2005;149:355–62. https://doi.org/10.1016/j.ahj.2004.06.018.

    Article  PubMed  Google Scholar 

  35. Coggins MP, Sklenar J, Le DE, Wei K, Lindner JR, Kaul S. Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateral-derived myocardial blood flow. Circulation. 2001;104:2471–7.

    Article  CAS  PubMed  Google Scholar 

  36. Balcells E, Powers ER, Lepper W, Belcik T, Wei K, Ragosta M, et al. Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. J Am Coll Cardiol. 2003;41:827–33.

    Article  PubMed  Google Scholar 

  37. Main ML, Magalski A, Chee NK, Coen MM, Skolnick DG, Good TH. Full-motion pulse inversion power Doppler contrast echocardiography differentiates stunning from necrosis and predicts recovery of left ventricular function after acute myocardial infarction. J Am Coll Cardiol. 2001;38:1390–4.

    Article  CAS  PubMed  Google Scholar 

  38. Swinburn JM, Lahiri A, Senior R. Intravenous myocardial contrast echocardiography predicts recovery of dysynergic myocardium early after acute myocardial infarction. J Am Coll Cardiol. 2001;38:19–25. https://doi.org/10.1016/s0735-1097(01)01317-1.

    Article  CAS  PubMed  Google Scholar 

  39. Herscovici R, Sedlak T, Wei J, Pepine CJ, Handberg E, Bairey Merz CN. Ischemia and no obstructive coronary artery disease (INOCA): what is the risk? J Am Heart Assoc. 2018;7: e008868. https://doi.org/10.1161/JAHA.118.008868.

    Article  PubMed  PubMed Central  Google Scholar 

  40. •• Taqui S, Ferencik M, Davidson BP, Belcik JT, Moccetti F, Layoun M, et al. Coronary microvascular dysfunction by myocardial contrast echocardiography in nonelderly patients referred for computed tomographic coronary angiography. J Am Soc Echocardiogr. 2019;32:817–825. https://doi.org/10.1016/j.echo.2019.03.001. This study demonstrated that MCE perfusion imaging can be used to identify microvascular dysfunction in symptomatic patients who do not have obstructive coronary artery disease.

  41. Wu MD, Moccetti F, Brown E, Davidson BP, Atkinson T, Belcik JT, et al. Lipoprotein apheresis acutely reverses coronary microvascular dysfunction in patients with severe hypercholesterolemia. JACC Cardiovasc Imaging. 2018. https://doi.org/10.1016/j.jcmg.2018.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lindner JR, Belcik T, Widlansky M, Harmann LM, Karafin MS, Wandersee NJ, et al. Contrast-enhanced ultrasound detects changes in microvascular blood flow in adults with sickle cell disease. PLoS ONE. 2019;14: e0218783. https://doi.org/10.1371/journal.pone.0218783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sachdev V, Sidenko S, Wu MD, Minniti CP, Hannoush H, Brenneman CL, et al. Skeletal and myocardial microvascular blood flow in hydroxycarbamide-treated patients with sickle cell disease. Br J Haematol. 2017;179:648–56. https://doi.org/10.1111/bjh.14918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fine NM, Greenway SC, Mulvagh SL, Huang R, Maxon SA, Hepinstall MJ, et al. Feasibility of real-time myocardial contrast echocardiography to detect cardiac allograft vasculopathy in pediatric heart transplant recipients. J Am Soc Echocardiogr. 2021;34:503–10. https://doi.org/10.1016/j.echo.2020.12.009.

    Article  PubMed  Google Scholar 

  45. Roldan P, Ravi S, Hodovan J, Belcik JT, Heitner SB, Masri A, et al. Myocardial contrast echocardiography assessment of perfusion abnormalities in hypertrophic cardiomyopathy. Cardiovasc Ultrasound. 2022;20:23. https://doi.org/10.1186/s12947-022-00293-2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kirkpatrick JN, Wong T, Bednarz JE, Spencer KT, Sugeng L, Ward RP, et al. Differential diagnosis of cardiac masses using contrast echocardiographic perfusion imaging. J Am Coll Cardiol. 2004;43:1412–9. https://doi.org/10.1016/j.jacc.2003.09.065.

    Article  PubMed  Google Scholar 

  47. Huang R, DeMarco JK, Ota H, Macedo TA, Abdelmoneim SS, Huston J 3rd, et al. Prognostic value of intraplaque neovascularization detected by carotid contrast-enhanced ultrasound in patients undergoing stress echocardiography. J Am Soc Echocardiogr. 2021;34:614–24. https://doi.org/10.1016/j.echo.2020.12.016.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Lindner is supported by grants R01-HL078610, R01-HL130046, and R01-HL165422 from the NIH and grant 18-18HCFBP_2-0009 from NASA, Houston, TX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Lindner.

Ethics declarations

Conflict of Interest

Dr. Lindner reports grants from Lantheus Medical Imaging and non-financial support from Philips Ultrasound (equipment grant), outside the submitted work. The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capdeville, S., Gholson, B.A. & Lindner, J.R. Contrast Echocardiography for Assessing Myocardial Perfusion. Curr Cardiol Rep 25, 1581–1587 (2023). https://doi.org/10.1007/s11886-023-01970-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01970-y

Keywords

Navigation