Skip to main content

Advertisement

Log in

Arterial Stiffness and its Impact on Cardiovascular Health

  • Global Cardiovascular Health (L Sperling and D Gaita, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular diseases are the leading cause of mortality globally. Identifying patients at risk is important to initiate preventive strategies. Over the last few decades, the role of the endothelium and its impact on arterial stiffness have been recognised as playing a pivotal role in cardiovascular disease. This review will focus on the effect of arterial stiffness in different patient cohorts with regard to cardiovascular morbidity and mortality, as well as its use in clinical practice.

Recent Findings

Arterial stiffness is associated with a range of cardiovascular risk factors and is an independent predictor of cardiovascular mortality. The gold standard for evaluating arterial stiffness is pulse wave velocity. Recently, cardio-ankle vascular index has been implemented as an easy and highly reproducible measure of arterial stiffness. Moreover, certain pharmacologic agents may modify arterial stiffness and alter progression of cardiovascular disease.

Summary

The endothelium plays an important role in cardiovascular disease. Implementing assessment of arterial stiffness in clinical practice will improve stratification of patients at risk of cardiovascular disease and help modify disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Liao J, Farmer J. Arterial stiffness as a risk factor for coronary artery disease. Current Atherosclerosis Reports. 2014;16(2). https://doi.org/10.1007/s11883-013-0387-8.

  2. Langille BL. Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J Cardiovasc Pharmacol. 1993;21(1):11–7. https://doi.org/10.1097/00005344-199321001-00003.

    Article  Google Scholar 

  3. Gauthier-Bastien A, Ung R-V, Larivière R, Mac-Way F, Lebel M, Agharazii M. Vascular remodeling and media calcification increases arterial stiffness in chronic kidney disease. Clin Exp Hypertens. 2013;36(3):173–80. https://doi.org/10.3109/10641963.2013.804541.

    Article  PubMed  Google Scholar 

  4. London GM, Cohn JN. Prognostic application of arterial stiffness: task forces. Am J Hypertens. 2002;15(8):754–8. 6. https://doi.org/10.1016/s0895-7061(02)02966-7.

  5. de Souza F, Muxfeldt ES, Salles GF. Prognostic factors in resistant hypertension: implications for cardiovascular risk stratification and therapeutic management. Expert Rev Cardiovasc Ther. 2012;10(6):735–45. https://doi.org/10.1586/erc.12.58.

    Article  CAS  PubMed  Google Scholar 

  6. Hooglugt A, Klatt O, Huveneers S. Vascular stiffening and endothelial dysfunction in atherosclerosis. Curr Opin Lipidol. 2022;33(6):353–63. https://doi.org/10.1097/MOL.0000000000000852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arribas SM, Hinek A, González MC. Elastic fibres and vascular structure in hypertension.Pharmacol Ther. 2006;111:771–791. https://doi.org/10.1016/j.pharmthera.2005.12.003.

  8. Benetos A, Waeber B, Izzo J, Mitchell G, Lawrence R, Roland A, et al. Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications. Am J Hypertens. 2002;15:1101–8. https://doi.org/10.1016/s0895-7061(02)03029-7.

    Article  PubMed  Google Scholar 

  9. •• Fantin F, Giani A, Trentin M, Rossi AP, Zoico E, Mazzali G, et al. The correlation of arterial stiffness parameters with aging and comorbidity burden. J Clin Med. 2022;11(19):5761. https://doi.org/10.3390/jcm11195761. Recent study suggesting that arterial stiffness parameters can complement the characterization of patients affected by a remarkable comorbidity burden.

  10. Bonarjee VVS. Arterial stiffness: a prognostic marker in coronary heart disease. Available methods and clinical application. Front Cardiovasc Med. 2018;5:64. https://doi.org/10.3389/fcvm.2018.00064.

  11. Ungvari Z, Gupte S, Recchia F, Batkai S, Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol. 2005;3(3):221–9. https://doi.org/10.2174/1570161054368607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chowienczyk PJ, Watts GF, Cockcroft JR, Ritter JM. Impaired endothelium-dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet. 1992;340(8833):1430–2. https://doi.org/10.1016/0140-6736(92)92621-l.

    Article  CAS  PubMed  Google Scholar 

  13. Britten MB, Zeiher AM, Volker Schächinger. Clinical importance of coronary endothelial vasodilator dysfunction and therapeutic options. J Intern Med. Wiley-Blackwell; 1999;245(4):315–27. https://doi.org/10.1046/j.1365-2796.1999.00449.x.

  14. Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest. 1993;92(2):652–62. https://doi.org/10.1172/JCI116634.

  15. Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89:122–35. https://doi.org/10.1016/j.yjmcc.2015.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. •• Hahad O, Arnold N, Prochaska JH, Panova-Noeva M, Schulz A, Lackner KJ, et al. Cigarette smoking is related to endothelial dysfunction of resistance, but not conduit arteries in the general population-results from the Gutenberg health study. Front Cardiovasc Med. 2021;8:674622. https://doi.org/10.3389/fcvm.2021.674622. Findings from this study suggest that cigarette smoking is associated with altered endothelial function of resistance.

  17. Lavi S, Prasad A, Yang EH, Mathew V, Simari RD, Rihal CS, et al. Smoking is associated with epicardial coronary endothelial dysfunction and elevated white blood cell count in patients with chest pain and early coronary artery disease. Circulation. 2007;115(20):2621–7. https://doi.org/10.1161/CIRCULATIONAHA.106.641654.

    Article  PubMed  Google Scholar 

  18. •• Yang Q, Wang P, Cai Y, Cui Y, Cui J, Du X, et al. Circulating microRNA-505 may serve as a prognostic biomarker for hypertension-associated endothelial dysfunction and inflammation. Front Cardiovasc Med. 2022;9:834121. https://doi.org/10.3389/fcvm.2022.834121. This study links for the first time miR-505 to endothelial dysfunction and inflammation under hypertensive conditions, supporting the translational value of miR-505 in prognosticating hypertension-associated endothelial impairment and inflammatory injuries in target organs such as the vessels and kidneys.

  19. Negro R. Endothelial effects of antihypertensive treatment: focus on irbesartan. Vasc Health Risk Manag. 2008;4(1):89–101. https://doi.org/10.2147/vhrm.2008.04.01.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74. https://doi.org/10.1016/0735-1097(95)00522-6.

    Article  CAS  PubMed  Google Scholar 

  21. Bridger T. Childhood obesity and cardiovascular disease. Paediatr Child Health. 2009;14(3):177–82. https://doi.org/10.1093/pch/14.3.177.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation. 2002;105(7):804–9. https://doi.org/10.1161/hc0702.104279.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson TJ. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk. Can J Cardiol. 2006;22:72–80. https://doi.org/10.1016/s0828-282x(06)70990-4.

    Article  Google Scholar 

  24. Wilkinson IB, MacCallum H, Cockcroft JR, Webb DJ. Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo. Br J Clin Pharmacol. 2002;53(2):189–92. https://doi.org/10.1046/j.1365-2125.2002.1528adoc.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McVeigh GE, Allen PB, Morgan DR, Hanratty CG, Silke B. Nitric oxide modulation of blood vessel tone identified by arterial waveform analysis. Clin Sci (Lond). 2001;100(4):387–93 PMID: 11256976.

    Article  CAS  PubMed  Google Scholar 

  26. Verma S, Buchanan MR, Anderson TJ. Endothelial function testing as a biomarker of vascular disease. Circulation. 2003;108(17):2054–9. https://doi.org/10.1161/01.CIR.0000089191.72957.ED.

    Article  PubMed  Google Scholar 

  27. Hadi HA, Carr CS, Al SJ. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98 PMID: 17319104.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilkinson IB, Mäki-Petäjä KM, Mitchell GF. Uses of arterial stiffness in clinical practice. Arterioscler Thromb Vasc Biol. 2020;40(5):1063–7. https://doi.org/10.1161/atvbaha.120.313130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verdecchia P, Angeli F, Taddei S. At the beginning of stiffening: endothelial dysfunction meets “pulsology.” Hypertension. 2006;48(4):541–2. https://doi.org/10.1161/01.HYP.0000239236.12524.d3.

    Article  CAS  PubMed  Google Scholar 

  30. Bonarjee VVS. Arterial stiffness: a prognostic marker in coronary heart disease. Available Methods and Clinical Application. Front Cardiovasc Med. 2018;5:64. https://doi.org/10.3389/fcvm.2018.00064.

  31. Segers P, Rietzschel ER, Chirinos JA. Brief review on how to measure arterial stiffness in humans. Arterioscler Thromb Vasc Biol. 2019;40:1034–43. https://doi.org/10.1161/ATVBAHA.119.313132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H, Wang JG, Wilkinson IB, Williams B, Vlachopoulos C. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension. 2007;50(1):154–60. https://doi.org/10.1161/HYPERTENSIONAHA.107.090068.

    Article  CAS  PubMed  Google Scholar 

  33. Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarc’h PM, London GM. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39(3):735–8. https://doi.org/10.1161/hy0202.098325.

    Article  CAS  PubMed  Google Scholar 

  34. Dolan E, Thijs L, Li Y, Atkins N, McCormack P, McClory S, et al. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study. Hypertension. 2006;47:365–70. https://doi.org/10.1161/01.HYP.0000200699.74641.c5.

    Article  CAS  PubMed  Google Scholar 

  35. Hansen TW, Li Y, Staessen JA, Jeppesen J, Rasmussen S, Wang JG, et al. Independent prognostic value of the ambulatory arterial stiffness index and aortic pulse wave velocity in a general population. J Hum Hypertens. 2008;22:214–6. https://doi.org/10.1038/sj.jhh.1002295.

    Article  CAS  PubMed  Google Scholar 

  36. Fantin F, Mattocks A, Bulpitt CJ, Banya W, Rajkumar C. Is augmentation index a good measure of vascular stiffness in the elderly? Age Ageing. 2007;36(1):43–8. https://doi.org/10.1093/ageing/afl115.

    Article  PubMed  Google Scholar 

  37. Chen CH, Ting CT, Nussbacher A, Nevo E, Kass DA, Pak P, et al. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension. 1996;27(2):168–75. https://doi.org/10.1161/01.hyp.27.2.168.

    Article  CAS  PubMed  Google Scholar 

  38. Franklin SS. Ageing and hypertension: the assessment of blood pressure indices in predicting coronary heart disease. J Hypertens Suppl. 1999;17(5):S29-36 PMID: 10706323.

    CAS  PubMed  Google Scholar 

  39. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38(4):932–7. https://doi.org/10.1161/hy1001.096106.

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi T, Nakayama Y, Tsumura K, Yoshimaru K, Ueda H. Reflection in the arterial system and the risk of coronary heart disease. Am J Hypertens. 2002;15(5):405–9. https://doi.org/10.1016/s0895-7061(02)02260-4.

    Article  PubMed  Google Scholar 

  41. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37(5):1236–41. https://doi.org/10.1161/01.hyp.37.5.1236.

    Article  CAS  PubMed  Google Scholar 

  42. Weber T, Auer J, O’rourke MF, Kvas E, Lassnig E, Lamm G, et al. Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J. 2005;26(24):2657–63. https://doi.org/10.1093/eurheartj/ehi504.

    Article  PubMed  Google Scholar 

  43. London GM, Blacher J, Pannier B, Guérin AP, Marchais SJ, Safar ME. Arterial wave reflections and survival in end-stage renal failure. Hypertension. 2001;38(3):434–8. https://doi.org/10.1161/01.hyp.38.3.434.

    Article  CAS  PubMed  Google Scholar 

  44. Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 1999;33(5):1111–7. https://doi.org/10.1161/01.hyp.33.5.1111.

    Article  CAS  PubMed  Google Scholar 

  45. Kim HL, Kim SH. Pulse wave velocity in atherosclerosis. Front Cardiovasc Med. 2019;6:41. https://doi.org/10.3389/fcvm.2019.00041.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Niiranen TJ, Kalesan B, Mitchell GF, Vasan RS. Relative contributions of pulse pressure and arterial stiffness to cardiovascular disease. Hypertension. 2019;73(3):712–7. https://doi.org/10.1161/HYPERTENSIONAHA.118.12289.

    Article  CAS  PubMed  Google Scholar 

  47. Bramwell JC, Hill AV. The velocity of pulse wave in man. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. 1922;93(652):298–306.

  48. Cheng HM, Chen CH. Measuring arterial stiffness in clinical practice: moving one step forward. J Clin Hypertens. 2020;22:1824–6. https://doi.org/10.1111/jch.13965.

    Article  Google Scholar 

  49. • Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43(6):1239–45. https://doi.org/10.1161/01.HYP.0000128420.01881.aa. Findings from this study suggest that in a healthy cohort with a minimal burden of cardiovascular disease risk factors, an age-related increase in aortic stiffness, as compared with peripheral arterial stiffness, is associated with increasing forward wave amplitude and pulse pressure and reversal of the arterial stiffness gradient.

  50. • Mendis S. The contribution of the Framingham Heart Study to the prevention of cardiovascular disease: a global perspective. Prog Cardiovasc Dis. 2010;53(1):10–4. https://doi.org/10.1016/j.pcad.2010.01.001. The Framingham Heart Study has also been in the forefront of the development of cardiovascular risk prediction equations for assessment of absolute risk. The Framingham Study provided insights into the prevalence, incidence, prognosis, predisposing factors and determinants of CVD.

  51. Hasegawa M. Fundamental research on human aortic pulse wave velocity. Jikei Med J. 1970;85:742–60.

    Google Scholar 

  52. Emoto M, Nishizawa Y, Kawagishi T, Maekawa K, Hiura Y, Kanda H, et al. Stiffness indexes beta of the common carotid and femoral arteries are associated with insulin resistance in NIDDM. Diabetes Care. 1998;21(7):1178–82. https://doi.org/10.2337/diacare.21.7.1178.

    Article  CAS  PubMed  Google Scholar 

  53. Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb. 2006;13:101–7. https://doi.org/10.5551/jat.13.101.

    Article  PubMed  Google Scholar 

  54. Wohlfahrt P, Cífková R, Movsisyan N, Kunzová Š, Lešovský J, Homolka M, et al. Reference values of cardio-ankle vascular index in a random sample of a white population. J Hypertens. 2017;35:2238–44. https://doi.org/10.1097/HJH.0000000000001437.

    Article  CAS  PubMed  Google Scholar 

  55. Miyoshi T, Ito H. Assessment of arterial stiffness using the cardio-ankle vascular index. Pulse. 2016;4(1):11–23. https://doi.org/10.1159/000445214.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. European network for non-invasive investigation of large arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–2605. https://doi.org/10.1093/eurheartj/ehl254.

  57. Dobsak P, Soska V, Sochor O, Jarkovsky J, Novakova M, Homolka M, et al. Increased cardio-ankle vascular index in hyperlipidemic patients without diabetes or hypertension. J Atheroscler Thromb. 2015;22(3):272–83. https://doi.org/10.5551/jat.24851.

    Article  CAS  PubMed  Google Scholar 

  58. Nagayama D, Watanabe Y, Saiki A, Shirai K, Tatsuno I. Lipid parameters are independently associated with cardio-ankle vascular index (CAVI) in healthy Japanese subjects. J Atheroscler Thromb. 2018;25(7):621–33. https://doi.org/10.5551/jat.42291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakamura K, Tomaru T, Yamamura S, Miyashita Y, Shirai K, Noike H. Cardio-ankle vascular index is a candidate predictor of coronary atherosclerosis. Circ J. 2008;72(4):598–604. https://doi.org/10.1253/circj.72.598.

    Article  PubMed  Google Scholar 

  60. Satoh N, Shimatsu A, Kato Y, Araki R, Koyama K, Okajima T, et al. Evaluation of the cardio-ankle vascular index, a new indicator of arterial stiffness independent of blood pressure, in obesity and metabolic syndrome. Hypertens Res. 2008;31(10):1921–30. https://doi.org/10.1291/hypres.31.1921.

    Article  CAS  PubMed  Google Scholar 

  61. Tanaka H, DeSouza CA, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol. 1998;18(1):127–32. https://doi.org/10.1161/01.atv.18.1.127.

    Article  CAS  PubMed  Google Scholar 

  62. Kaess BM, Rong J, Larson MG, Hamburg N, Vita J, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308(9):875–81. https://doi.org/10.1001/2012.jama.10503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41. https://doi.org/10.1161/01.hyp.37.5.1236.

    Article  CAS  PubMed  Google Scholar 

  64. Benetos A, Adamopoulos C, Bureau JM, Temmar M, Labat C, Bean K, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002;105(10):1202–7. https://doi.org/10.1161/hc1002.105135.

    Article  PubMed  Google Scholar 

  65. Wilkinson IB, Prasad K, Hall IR, Thomas A, MacCallum H, Webb DJ, et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol. 2002;39(6):1005–11. https://doi.org/10.1016/s0735-1097(02)01723-0.

    Article  PubMed  Google Scholar 

  66. • Mitchell GF, Guo CY, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D. Cross-sectional correlates of increased aortic stiffness in the community: the Framingham Heart Study. Circulation. 2007;115(20):2628–36. https://doi.org/10.1161/CIRCULATIONAHA.106.667733Findings from this study suggest that the prevalence of abnormal aortic stiffness increases steeply with advancing age, especially in the presence of obesity or diabetes.

  67. Stefanadis C, Tsiamis E, Vlachopoulos C, Stratos C, Toutouzas K, Pitsavos C, Marakas S, Boudoulas H, Toutouzas P. Unfavorable effect of smoking on the elastic properties of the human aorta. Circulation. 1997;95(1):31–8. https://doi.org/10.1161/01.cir.95.1.31.

    Article  CAS  PubMed  Google Scholar 

  68. Salomaa V, Riley W, Kark JD, Nardo C, Folsom AR. Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation. 1995;91(5):1432–43. https://doi.org/10.1161/01.cir.91.5.1432.

  69. Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106(16):2085–90. https://doi.org/10.1161/01.cir.0000033824.02722.f7.

    Article  PubMed  Google Scholar 

  70. Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, Jeppesen J. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113(5):664–70. https://doi.org/10.1161/CIRCULATIONAHA.105.579342.

    Article  PubMed  Google Scholar 

  71. Sutton-Tyrrell K, Najjar SS, Boudreau RM, Venkitachalam L, Kupelian V, Simonsick EM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation. 2005;111(25):3384–90. https://doi.org/10.1161/CIRCULATIONAHA.104.483628.

    Article  PubMed  Google Scholar 

  72. Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113(5):657–63. https://doi.org/10.1161/CIRCULATIONAHA.105.555235.

    Article  PubMed  Google Scholar 

  73. Shokawa T, Imazu M, Yamamoto H, Toyofuku M, Tasaki N, Okimoto T, et al. Pulse wave velocity predicts cardiovascular mortality: findings from the Hawaii-Los Angeles-Hiroshima study. Circ J. 2005;69(3):259–64. https://doi.org/10.1253/circj.69.259.

    Article  PubMed  Google Scholar 

  74. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39(1):10–5. https://doi.org/10.1161/hy0102.099031.

    Article  CAS  PubMed  Google Scholar 

  75. • Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham heart study Circulation. 1999;100(4):354–60. https://doi.org/10.1161/01.cir.100.4.354. Findings from this study suggest that higher pulse pressure is an important component of cardiovascular risk.

  76. • Benjamin EJ, Larson MG, Keyes MJ, Mitchell GF, Vasan RS, Keaney JF Jr, et al. Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. Circulation. 2004;109(5):613–9. https://doi.org/10.1161/01.CIR.0000112565.60887.1E. Findings from this study suggest that increasing age, systolic blood pressure, and smoking are associated with lower flow-mediated dilation, whereas prior exercise and increasing heart rate were associated with higher flow-mediated dilation.

  77. • Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113(5):657–63. https://doi.org/10.1161/CIRCULATIONAHA.105.555235. This study concluded that aortic pulse wave velocity is an independent predictor of coronary heart disease and stroke in healthy individuals.

  78. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27. https://doi.org/10.1016/j.jacc.2009.10.061.

    Article  PubMed  Google Scholar 

  79. Liao J, Farmer J. Arterial stiffness as a risk factor for coronary artery disease. Curr Atheroscler Rep. 2014;16(2):387. https://doi.org/10.1007/s11883-013-0387-8.

    Article  PubMed  Google Scholar 

  80. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99(18):2434–9. https://doi.org/10.1161/01.cir.99.18.2434.

    Article  CAS  PubMed  Google Scholar 

  81. Shoji T, Emoto M, Shinohara K, Kakiya R, Tsujimoto Y, Kishimoto H, et al. Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol. 2001;12(10):2117–24. https://doi.org/10.1681/ASN.V12102117.

    Article  PubMed  Google Scholar 

  82. •• Wang N, Guo Y, Li X, Dong Y, Liu Q, Wang G, et al. Association between cardio-ankle vascular index and masked uncontrolled hypertension in hypertensive patients: a cross-sectional study. J Atheroscler Thromb. 2022;2022(2):1–8. https://doi.org/10.1155/2022/3167518Findings of this study support, for the first time, the novel notion that cardio-ankle vascular index, as an arterial stiffness parameter, is an independent risk factor for masked uncontrolled hypertension.

  83. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103(7):987–92. https://doi.org/10.1161/01.cir.103.7.987.

    Article  CAS  PubMed  Google Scholar 

  84. Muhammad IF, Borné Y, Östling G, Kennbäck C, Gottsäter M, Persson M, et al. Arterial stiffness and incidence of diabetes: a population-based cohort study. Diabetes Care. 2017;40(12):1739–45. https://doi.org/10.2337/dc17-1071.

    Article  CAS  PubMed  Google Scholar 

  85. Kimoto E, Shoji T, Shinohara K, Inaba M, Okuno Y, Miki T, et al. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes. 2003;52(2):448–52. https://doi.org/10.2337/diabetes.52.2.448.

    Article  CAS  PubMed  Google Scholar 

  86. Smith A, Karalliedde J, De Angelis L, Goldsmith D, Viberti G. Aortic pulse wave velocity and albuminuria in patients with type 2 diabetes. J Am Soc Nephrol. 2005;16(4):1069–75. https://doi.org/10.1681/ASN.2004090769.

    Article  PubMed  Google Scholar 

  87. Cardoso CR, Moran CB, Marinho FS, Ferreira MT, Salles GF. Increased aortic stiffness predicts future development and progression of peripheral neuropathy in patients with type 2 diabetes: the Rio de Janeiro Type 2 Diabetes Cohort Study. Diabetologia. 2015;58(9):2161–8. https://doi.org/10.1007/s00125-015-3658-9.

    Article  CAS  PubMed  Google Scholar 

  88. Mansour AS, Yannoutsos A, Majahalme N, Agnoletti D, Safar ME, Ouerdane S, et al. Aortic stiffness and cardiovascular risk in type 2 diabetes. J Hypertens. 2013;31(8):1584–92. https://doi.org/10.1097/HJH.0b013e3283613074.

    Article  CAS  PubMed  Google Scholar 

  89. Wijkman M, Länne T, Östgren CJ, Nystrom FH. Aortic pulse wave velocity predicts incident cardiovascular events in patients with type 2 diabetes treated in primary care. J Diabetes Complications. 2016;30(7):1223–8. https://doi.org/10.1016/j.jdiacomp.2016.06.008.

    Article  PubMed  Google Scholar 

  90. •• Mavraganis G, Dimopoulou MA, Delialis D, Bampatsias D, Patras R, Sianis A, Maneta E, Stamatelopoulos K, Georgiopoulos G. Clinical implications of vascular dysfunction in acute and convalescent COVID-19: a systematic review. Eur J Clin Invest. 2022;52(11):e13859. https://doi.org/10.1111/eci.13859. Recent study, suggesting a detrimental effect of COVID‐19 on markers of endothelial function and arterial stiffness that could persist for months after the resolution of the infection.

  91. •• Schnaubelt S, Oppenauer J, Tihanyi D, et al. Arterial stiffness in acute COVID-19 and potential associations with clinical outcome. J Intern Med. 2021;290(2):437–43. https://doi.org/10.1111/joim.13275. Findings from this study suggest that COVID‐19 is related to enhanced pulse wave velocity, reflecting an increase in arterial stiffness.

  92. •• Ratchford SM, Stickford JL, Province VM, et al. Vascular alterations among young adults with SARS‐CoV‐2. Am J Physiol Heart Circ Physiol. 2021;320(1):404‐410. https://doi.org/10.1152/ajpheart.00897. This study was the first to investigate the vascular implications of contracting SARS-CoV-2 among young, otherwise healthy adults. The main findings from this study are a strikingly lower vascular function and a higher arterial stiffness compared with healthy controls. This suggests significant vascular effects seen weeks after contracting SARS-CoV-2 in young adults.

  93. •• Jud P, Gressenberger P, Muster V, et al. Evaluation of endothelial dysfunction and inflammatory vasculopathy after SARS‐CoV‐2 infection‐a cross‐sectional study. Front Cardiovasc Med. 2021;8:750887. https://doi.org/10.3389/fcvm.2021.750887. Recent study suggesting that COVID-19 affects arterial stiffness, capillary morphology and selected parameters of arginine, kynurenine and homocysteine metabolism.

  94. •• Szeghy RE, Province VM, Stute NL, et al. Carotid stiffness, intima‐media thickness and aortic augmentation index among adults with SARS‐CoV‐2. Exp Physiol. 2022;107(7):694‐707. https://doi.org/10.1113/ep089481. This study found that carotid stiffness and aortic augmentation index were greater in young adults who tested positive for SARS-CoV-2 compared with healthy young adults. These findings provide additional evidence for detrimental effects of SARS-CoV-2 on young adult vasculature, which might have implications for cardiovascular health.

  95. •• Zanoli L, Gaudio A, Mikhailidis DP, et al. Vascular dysfunction of COVID‐19 is partially reverted in the long‐term. Circ Res. 2022;130(9):1276‐1285. https://doi.org/10.1161/circresaha.121.320460. Recent study suggesting that COVID-19-related arterial stiffening involves several arterial tree portions and is partially resolved in the long-term.

  96. •• Evans PC, Rainger GE, Mason JC, Guzik TJ, Osto E, Stamataki Z, Neil D, Hoefer IE, Fragiadaki M, Waltenberger J, Weber C, Bochaton-Piallat ML, Bäck M. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020;116(14):2177–2184. https://doi.org/10.1093/cvr/cvaa230. The Working Group on Atherosclerosis and Vascular Biology together with the Council of Basic Cardiovascular Science of the European Society of Cardiology provide a Position Statement on the importance of the endothelium in the underlying pathophysiology behind the clinical presentation in COVID-19 and identify key questions for future research to address. This position paper proposes that endothelial biomarkers and tests of function should be evaluated for their usefulness in the risk stratification of COVID-19 patients.

  97. Poulter NR, Wedel H, Dahlöf B, Sever PS, Beevers DG, Caulfield M, et al. Role of blood pressure and other variables in the differential cardiovascular event rates noted in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA). Lancet. 2005;366(9489):907–13. https://doi.org/10.1016/S0140-6736(05)67186-3.

    Article  CAS  PubMed  Google Scholar 

  98. Williams B, Lacy PS; CAFE and the ASCOT (Anglo-Scandinavian Cardiac Outcomes Trial) Investigators. Impact of heart rate on central aortic pressures and hemodynamics: analysis from the CAFE (Conduit Artery Function Evaluation) study: CAFE-Heart Rate. J Am Coll Cardiol. 2009;54(8):705–13. https://doi.org/10.1016/j.jacc.2009.02.088.

  99. Mallareddy M, Parikh CR, Peixoto AJ. Effect of angiotensin-converting enzyme inhibitors on arterial stiffness in hypertension: systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2006;8(6):398–403. https://doi.org/10.1111/j.1076-7460.2006.05418.x.

    Article  CAS  PubMed  Google Scholar 

  100. Asmar RG, London GM, O'Rourke ME, Safar ME; REASON Project Coordinators and Investigators. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol. Hypertension. 2001;38(4):922–6.https://doi.org/10.1161/hy1001.095774.

  101. •• Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486. The emphasis in these guidelines is to provide information on the current state of the art in how to prevent and manage the effects of diabetes mellitus on the heart and vasculature.

  102. Adam CA, Anghel R, Marcu DTM, Mitu O, Roca M, Mitu F. Impact of sodium–glucose cotransporter 2 (SGLT2) inhibitors on arterial stiffness and vascular aging—what do we know so far? (a narrative review). Life. 2022;12:803. https://doi.org/10.3390/life12060803.

    Article  PubMed  PubMed Central  Google Scholar 

  103. •• Patoulias D, Papadopoulos C, Stavropoulos K, Zografou I, Doumas M, Karagiannis A. Prognostic value of arterial stiffness measurements in cardiovascular disease, diabetes, and its complications: The potential role of sodium-glucose co-transporter-2 inhibitors. The Journal of Clinical Hypertension. 2020;22(4):562–71. https://doi.org/10.1111/jch.13831This paper summarised knowledge regarding the prognostic role of arterial stiffness in type 2 diabetes mellitus, along with the presentation of retrieved data on the potential role of sodium‐glucose co‐transporter‐2 inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93. https://doi.org/10.1111/dom.12572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Soares RN, Ramirez-Perez FI, Cabral-Amador FJ, Morales-Quinones M, Foote C, Ghiarone T, et al. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. GeroScience. 2022;44:1657–75. https://doi.org/10.1007/s11357-022-00563-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Muramatsu J, Kobayashi A, Hasegawa N, Yokouchi S. Hemodynamic changes associated with reduction in total cholesterol by treatment with the HMG-CoA reductase inhibitor pravastatin. Atherosclerosis. 1997;130(1–2):179–82. https://doi.org/10.1016/s0021-9150(96)06024-8.

    Article  CAS  PubMed  Google Scholar 

  107. Yokoyama H, Kawasaki M, Ito Y, Minatoguchi S, Fujiwara H. Effects of fluvastatin on the carotid arterial media as assessed by integrated backscatter ultrasound compared with pulse-wave velocity. J Am Coll Cardiol. 2005;46(11):2031–7. https://doi.org/10.1016/j.jacc.2005.06.084.

    Article  CAS  PubMed  Google Scholar 

  108. Laufs U, Marra D, Node K, Liao JK. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27(Kip1). J Biol Chem. 1999;274(31):21926–31. https://doi.org/10.1074/jbc.274.31.21926.

    Article  CAS  PubMed  Google Scholar 

  109. Yang Z, Kozai T, van der Loo B, Viswambharan H, Lachat M, Turina MI, et al. HMG-CoA reductase inhibition improves endothelial cell function and inhibits smooth muscle cell proliferation in human saphenous veins. J Am Coll Cardiol. 2000;36(5):1691–7. https://doi.org/10.1016/s0735-1097(00)00924-4.

    Article  CAS  PubMed  Google Scholar 

  110. Van Doornum S, McColl G, Wicks IP. Atorvastatin reduces arterial stiffness in patients with rheumatoid arthritis. Ann Rheum Dis. 2004;63(12):1571–5. https://doi.org/10.1136/ard.2003.018333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ferrier KE, Muhlmann MH, Baguet JP, Cameron JD, Jennings GL, Dart AM, Kingwell BA. Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J Am Coll Cardiol. 2002;39(6):1020–5. https://doi.org/10.1016/s0735-1097(02)01717-5.

    Article  CAS  PubMed  Google Scholar 

  112. Adams SP, Sekhon SS, Tsang M, Wright JM. Fluvastatin for lowering lipids. Cochrane Database Syst Rev. 2018;3(3):CD012282. https://doi.org/10.1002/14651858.CD012282.pub2.

  113. Efrati S, Averbukh M, Dishy V, Faygenzo M, Friedensohn L, Golik A. The effect of simvastatin, ezetimibe and their combination on the lipid profile, arterial stiffness and inflammatory markers. Eur J Clin Pharmacol. 2007;63(2):113–21. https://doi.org/10.1007/s00228-006-0238-4.

    Article  CAS  PubMed  Google Scholar 

  114. Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. Endothelial function, arterial stiffness and lipid lowering drugs. Expert Opin Ther Targets. 2007;11(9):1143–60. https://doi.org/10.1517/14728222.11.9.1143.

    Article  CAS  PubMed  Google Scholar 

  115. Mandraffino G, Scicali R, Rodríguez-Carrio J, Savarino F, Mamone F, Scuruchi M, et al. Arterial stiffness improvement after adding on PCSK9 inhibitors or ezetimibe to high-intensity statins in patients with familial hypercholesterolemia: A Two-Lipid Center Real-World Experience. J Clin Lipidol. 2020;14(2):231–40. https://doi.org/10.1016/j.jacl.2020.01.015.

    Article  PubMed  Google Scholar 

  116. Van Bortel LM, Duprez D, Starmans-Kool MJ, Safar ME, Giannattasio C, Cockcroft J, et al. Clinical applications of arterial stiffness, Task Force III: recommendations for user procedures. Am J Hypertens. 2002;15(5):445–52. https://doi.org/10.1016/s0895-7061(01)02326-3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Anne Xuereb.

Ethics declarations

Conflict of Interest

The authors confirm that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuereb, R.A., Magri, C.J. & Xuereb, R.G. Arterial Stiffness and its Impact on Cardiovascular Health. Curr Cardiol Rep 25, 1337–1349 (2023). https://doi.org/10.1007/s11886-023-01951-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01951-1

Keywords

Navigation