Skip to main content

Advertisement

Log in

Review of Pathophysiology of Cardiogenic Shock and Escalation of Mechanical Circulatory Support Devices

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiogenic shock (CS) is a complex clinical entity that continues to carry a high risk of mortality. The landscape of CS management has changed with the advent of several temporary mechanical circulatory support (MCS) devices designed to provide hemodynamic support. It remains challenging to understand the role of different temporary MCS devices in patients with CS, as many of these patients are critically ill, requiring complex care with multiple MCS device options. Each temporary MCS device can provide different types and levels of hemodynamic support. It is important to understand the risk/benefit profile of each one of them for appropriate device selection in patients with CS.

Recent Findings

MCS may be beneficial in CS patients through augmentation of cardiac output with subsequent improvement of systemic perfusion. Selecting the optimal MCS device depends on several variables including the underlying etiology of CS, clinical strategy of MCS use (bridge to recovery, bridge to transplant or durable MCS, or abridge to decision), amount of hemodynamic support needed, associated respiratory failure, and institutional preference. Furthermore, it is even more challenging to determine the appropriate time to escalate from one MCS device to another or combine different MCS devices.

Summary

In this review, we discuss the current available data published in the literature on the management of CS and propose a standardized approach for escalation of MCS devices in patients with CS. Shock teams can play an important role to help in hemodynamic-guided management and algorithm-based step-by-step approach in early initiation and escalation of temporary MCS devices at different stages of CS. It is important to define the etiology of CS, and stage of shock and recognize univentricular vs biventricular shock for appropriate device selection and escalation of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 A
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96. https://doi.org/10.1056/NEJMoa1208410.

    Article  CAS  PubMed  Google Scholar 

  2. van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2017;136(16):e232–68. https://doi.org/10.1161/CIR.0000000000000525.

    Article  PubMed  Google Scholar 

  3. Jentzer JC, van Diepen S, Barsness GW, Henry TD, Menon V, Rihal CS, et al. Cardiogenic shock classification to predict mortality in the cardiac intensive care unit. J Am Coll Cardiol. 2019;74(17):2117–28. https://doi.org/10.1016/j.jacc.2019.07.077.

    Article  PubMed  Google Scholar 

  4. Thiele H, Jobs A, Ouweneel DM, Henriques JPS, Seyfarth M, Desch S, et al. Percutaneous short-term active mechanical support devices in cardiogenic shock: a systematic review and collaborative meta-analysis of randomized trials. Eur Heart J. 2017;38(47):3523–31. https://doi.org/10.1093/eurheartj/ehx363.

    Article  PubMed  Google Scholar 

  5. Baran DA, Grines CL, Bailey S, Burkhoff D, Hall SA, Henry TD, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv. 2019;94(1):29–37. https://doi.org/10.1002/ccd.28329.

    Article  PubMed  Google Scholar 

  6. Garan AR, Kanwar M, Thayer KL, Whitehead E, Zweck E, Hernandez-Montfort J, et al. Complete hemodynamic profiling with pulmonary artery catheters in cardiogenic shock is associated with lower in-hospital mortality. JACC Heart Fail. 2020;8(11):903–13. https://doi.org/10.1016/j.jchf.2020.08.012.

    Article  PubMed  Google Scholar 

  7. Hanson ID, Tagami T, Mando R, Kara Balla A, Dixon SR, Timmis S, et al. SCAI shock classification in acute myocardial infarction: insights from the National Cardiogenic Shock Initiative. Catheter Cardiovasc Interv. 2020;96(6):1137–42. https://doi.org/10.1002/ccd.29139.

    Article  PubMed  Google Scholar 

  8. Schrage B, Dabboura S, Yan I, Hilal R, Neumann JT, Sorensen NA, et al. Application of the SCAI classification in a cohort of patients with cardiogenic shock. Catheter Cardiovasc Interv. 2020;96(3):E213–9. https://doi.org/10.1002/ccd.28707.

    Article  PubMed  Google Scholar 

  9. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117(5):686–97. https://doi.org/10.1161/CIRCULATIONAHA.106.613596.

    Article  PubMed  Google Scholar 

  10. •• Thiele H, Ohman EM, de Waha-Thiele S, Zeymer U, Desch S. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J. 2019;40(32):2671–83. https://doi.org/10.1093/eurheartj/ehz363. This is an important paper highlighting the current therapeutic options including both MCS and medical therapies for patients with myocardial infarction cardiogenic shock.

    Article  CAS  PubMed  Google Scholar 

  11. Prondzinsky R, Unverzagt S, Lemm H, Wegener NA, Schlitt A, Heinroth KM, et al. Interleukin-6, -7, -8 and -10 predict outcome in acute myocardial infarction complicated by cardiogenic shock. Clin Res Cardiol. 2012;101(5):375–84. https://doi.org/10.1007/s00392-011-0403-3.

    Article  CAS  PubMed  Google Scholar 

  12. Chioncel O, Parissis J, Mebazaa A, Thiele H, Desch S, Bauersachs J, et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22(8):1315–41. https://doi.org/10.1002/ejhf.1922.

    Article  PubMed  Google Scholar 

  13. Hajjar LA, Teboul JL. Mechanical circulatory support devices for cardiogenic shock: state of the art. Crit Care. 2019;23(1):76. https://doi.org/10.1186/s13054-019-2368-y.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Werdan K, Gielen S, Ebelt H, Hochman JS. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35(3):156–67. https://doi.org/10.1093/eurheartj/eht248.

    Article  CAS  PubMed  Google Scholar 

  15. Ntalianis A, Kapelios CJ, Kanakakis J, Repasos E, Pantsios C, Nana E, et al. Prolonged intra-aortic balloon pump support in biventricular heart failure induces right ventricular reverse remodeling. Int J Cardiol. 2015;192:3–8. https://doi.org/10.1016/j.ijcard.2015.05.014.

    Article  PubMed  Google Scholar 

  16. Prondzinsky R, Unverzagt S, Russ M, Lemm H, Swyter M, Wegener N, et al. Hemodynamic effects of intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: the prospective, randomized IABP shock trial. Shock. 2012;37(4):378–84. https://doi.org/10.1097/SHK.0b013e31824a67af.

    Article  PubMed  Google Scholar 

  17. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77. https://doi.org/10.1093/eurheartj/ehx393.

    Article  PubMed  Google Scholar 

  18. Nordan T, Hironaka CE, Kawabori M. Temporary mechanical circulatory support as a bridge to transplant: return of the intra-aortic balloon pump. JACC Heart Fail. 2020;8(9):785–6. https://doi.org/10.1016/j.jchf.2020.06.014.

    Article  PubMed  Google Scholar 

  19. Sintek MA, Gdowski M, Lindman BR, Nassif M, Lavine KJ, Novak E, et al. Intra-aortic balloon counterpulsation in patients with chronic heart failure and cardiogenic shock: clinical response and predictors of stabilization. J Card Fail. 2015;21(11):868–76. https://doi.org/10.1016/j.cardfail.2015.06.383.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Malick W, Fried JA, Masoumi A, Nair A, Zuver A, Huang A, et al. Comparison of the hemodynamic response to intra-aortic balloon counterpulsation in patients with cardiogenic shock resulting from acute myocardial infarction versus acute decompensated heart failure. Am J Cardiol. 2019;124(12):1947–53. https://doi.org/10.1016/j.amjcard.2019.09.016.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Batsides G, Massaro J, Cheung A, Soltesz E, Ramzy D, Anderson MB. Outcomes of Impella 5.0 in cardiogenic shock: a systematic review and meta-analysis. Innovations (Phila). 2018;13(4):254–60. https://doi.org/10.1097/IMI.0000000000000535.

    Article  PubMed  Google Scholar 

  22. Hritani AW, Wani AS, Olet S, Lauterbach CJ, Allaqaband SQ, Bajwa T, et al. Secular trend in the use and implementation of impella in high-risk percutaneous coronary intervention and cardiogenic shock: a real-world experience. J Invasive Cardiol. 2019;31(9):E265–70.

    PubMed  Google Scholar 

  23. Ouweneel DM, Eriksen E, Seyfarth M, Henriques JP. Percutaneous mechanical circulatory support versus intra-aortic balloon pump for treating cardiogenic shock: meta-analysis. J Am Coll Cardiol. 2017;69(3):358–60. https://doi.org/10.1016/j.jacc.2016.10.026.

    Article  PubMed  Google Scholar 

  24. Seyfarth M, Sibbing D, Bauer I, Frohlich G, Bott-Flugel L, Byrne R, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52(19):1584–8. https://doi.org/10.1016/j.jacc.2008.05.065.

    Article  PubMed  Google Scholar 

  25. Basir MB, Kapur NK, Patel K, Salam MA, Schreiber T, Kaki A, et al. Improved outcomes associated with the use of shock protocols: updates from the national cardiogenic shock initiative. Catheter Cardiovasc Interv. 2019;93(7):1173–83. https://doi.org/10.1002/ccd.28307.

    Article  PubMed  Google Scholar 

  26. Griffith BP, Anderson MB, Samuels LE, Pae WE Jr, Naka Y, Frazier OH. The RECOVER I: a multicenter prospective study of Impella 5.0/LD for postcardiotomy circulatory support. J Thorac Cardiovasc Surg. 2013;145(2):548–54. https://doi.org/10.1016/j.jtcvs.2012.01.067.

    Article  PubMed  Google Scholar 

  27. Lemaire A, Anderson MB, Lee LY, Scholz P, Prendergast T, Goodman A, et al. The Impella device for acute mechanical circulatory support in patients in cardiogenic shock. Ann Thorac Surg. 2014;97(1):133–8. https://doi.org/10.1016/j.athoracsur.2013.07.053.

    Article  PubMed  Google Scholar 

  28. O’Neill WW, Schreiber T, Wohns DH, Rihal C, Naidu SS, Civitello AB, et al. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: results from the USpella Registry. J Interv Cardiol. 2014;27(1):1–11. https://doi.org/10.1111/joic.12080.

    Article  PubMed  Google Scholar 

  29. Ouweneel DM, Eriksen E, Sjauw KD, van Dongen IM, Hirsch A, Packer EJ, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2017;69(3):278–87. https://doi.org/10.1016/j.jacc.2016.10.022.

    Article  PubMed  Google Scholar 

  30. Burkhoff D, Sayer G, Doshi D, Uriel N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol. 2015;66(23):2663–74. https://doi.org/10.1016/j.jacc.2015.10.017.

    Article  PubMed  Google Scholar 

  31. Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW, TandemHeart Investigators Group. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152(3):469.e1-8. https://doi.org/10.1016/j.ahj.2006.05.031.

    Article  PubMed  Google Scholar 

  32. Pahuja M, Ranka S, Chauhan K, Patel A, Chehab O, Elmoghrabi A, et al. Rupture of papillary muscle and chordae tendinae complicating STEMI: a call for action. ASAIO J. 2021;67(8):907–16. https://doi.org/10.1097/mat.0000000000001299.

    Article  PubMed  Google Scholar 

  33. Taylor A, Guruswamy J, Itani A. Transcatheter aortic valve replacement with TandemHeart support in a patient with cardiogenic shock. J Cardiothorac Vasc Anesth. 2018;32(3):e60–1. https://doi.org/10.1053/j.jvca.2017.07.023.

    Article  PubMed  Google Scholar 

  34. Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34(12):1549–60. https://doi.org/10.1016/j.healun.2015.08.018.

    Article  PubMed  Google Scholar 

  35. Kuchibhotla S, Esposito ML, Breton C, Pedicini R, Mullin A, O’Kelly R, et al. Acute biventricular mechanical circulatory support for cardiogenic shock. J Am Heart Assoc. 2017;6(10):e006670. https://doi.org/10.1161/JAHA.117.006670.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pappalardo F, Schulte C, Pieri M, Schrage B, Contri R, Soeffker G, et al. Concomitant implantation of Impella((R)) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur J Heart Fail. 2017;19(3):404–12. https://doi.org/10.1002/ejhf.668.

    Article  PubMed  Google Scholar 

  37. Increased rate of mortality in patients receiving abiomed impella RP system - letter to Health Care Providers. Available from: https://www.fda.gov/medical-devices/letters-health-care-providers/increased-rate-mortality-patients-receiving-abiomed-impella-rp-system-letter-health-care-providers. Accessed 12 Aug 2021.

  38. Kapur NK, Paruchuri V, Jagannathan A, Steinberg D, Chakrabarti AK, Pinto D, et al. Mechanical circulatory support for right ventricular failure. JACC Heart Fail. 2013;1(2):127–34. https://doi.org/10.1016/j.jchf.2013.01.007.

    Article  PubMed  Google Scholar 

  39. Ravichandran AK, Baran DA, Stelling K, Cowger JA, Salerno CT. Outcomes with the tandem protek duo dual-lumen percutaneous right ventricular assist device. ASAIO J. 2018;64(4):570–2. https://doi.org/10.1097/MAT.0000000000000709.

    Article  PubMed  Google Scholar 

  40. Bartos JA, Grunau B, Carlson C, Duval S, Ripeckyj A, Kalra R, et al. Improved survival with extracorporeal cardiopulmonary resuscitation despite progressive metabolic derangement associated with prolonged resuscitation. Circulation. 2020;141(11):877–86. https://doi.org/10.1161/CIRCULATIONAHA.119.042173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tehrani BN, Truesdell AG, Psotka MA, Rosner C, Singh R, Sinha SS, et al. A standardized and comprehensive approach to the management of cardiogenic shock. JACC Heart Fail. 2020;8(11):879–91. https://doi.org/10.1016/j.jchf.2020.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • Saxena A, Garan AR, Kapur NK, O’Neill WW, Lindenfeld J, Pinney SP, et al. Value of hemodynamic monitoring in patients with cardiogenic shock undergoing mechanical circulatory support. Circulation. 2020;141(14):1184–97. https://doi.org/10.1161/CIRCULATIONAHA.119.043080. This paper highlights the role of utilizing pulmonary artery catheter in identifying univentricular vs biventricular cardiogenic shock and using hemodynamics for better management.

    Article  PubMed  Google Scholar 

  43. Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625–33. https://doi.org/10.1001/jama.294.13.1625.

    Article  PubMed  Google Scholar 

  44. Jacobs AK, Leopold JA, Bates E, Mendes LA, Sleeper LA, White H, et al. Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry. J Am Coll Cardiol. 2003;41(8):1273–9. https://doi.org/10.1016/s0735-1097(03)00120-7.

    Article  PubMed  Google Scholar 

  45. Thayer KL, Zweck E, Ayouty M, Garan AR, Hernandez-Montfort J, Mahr C, et al. Invasive hemodynamic assessment and classification of in-hospital mortality risk among patients with cardiogenic shock. Circ Heart Fail. 2020;13(9):e007099. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007099.

    Article  PubMed  Google Scholar 

  46. Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol. 2004;44(2):340–8. https://doi.org/10.1016/j.jacc.2004.03.060.

    Article  PubMed  Google Scholar 

  47. Lim HS. Cardiac power output revisited. Circ Heart Fail. 2020;13(10):e007393. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007393.

    Article  PubMed  Google Scholar 

  48. Korabathina R, Heffernan KS, Paruchuri V, Patel AR, Mudd JO, Prutkin JM, et al. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv. 2012;80(4):593–600. https://doi.org/10.1002/ccd.23309.

    Article  PubMed  Google Scholar 

  49. Lala A, Guo Y, Xu J, Esposito M, Morine K, Karas R, et al. Right ventricular dysfunction in acute myocardial infarction complicated by cardiogenic shock: a hemodynamic analysis of the should we emergently revascularize occluded coronaries for cardiogenic shock (SHOCK) Trial and Registry. J Card Fail. 2018;24(3):148–56. https://doi.org/10.1016/j.cardfail.2017.10.009.

    Article  PubMed  Google Scholar 

  50. Kapur NK, Esposito ML, Bader Y, Morine KJ, Kiernan MS, Pham DT, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017;136(3):314–26. https://doi.org/10.1161/CIRCULATIONAHA.116.025290.

    Article  PubMed  Google Scholar 

  51. Pahuja M, Schrage B, Westermann D, Basir MB, Garan AR, Burkhoff D. Hemodynamic effects of mechanical circulatory support devices in ventricular septal defect. Circ Heart Fail. 2019;12(7):e005981. https://doi.org/10.1161/CIRCHEARTFAILURE.119.005981.

    Article  PubMed  Google Scholar 

  52. Nguyen VP, Qin A, Kirkpatrick JN. Three-dimensional echocardiography of mechanical circulatory support devices. Echocardiography. 2018;35(12):2071–8. https://doi.org/10.1111/echo.14186.

    Article  PubMed  Google Scholar 

  53. Sandhu A, McCoy LA, Negi SI, Hameed I, Atri P, Al’Aref SJ, et al. Use of mechanical circulatory support in patients undergoing percutaneous coronary intervention: insights from the National Cardiovascular Data Registry. Circulation. 2015;132(13):1243–51. https://doi.org/10.1161/CIRCULATIONAHA.114.014451.

    Article  PubMed  Google Scholar 

  54. Shaefi S, O’Gara B, Kociol RD, Joynt K, Mueller A, Nizamuddin J, et al. Effect of cardiogenic shock hospital volume on mortality in patients with cardiogenic shock. J Am Heart Assoc. 2015;4(1):e001462. https://doi.org/10.1161/JAHA.114.001462.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Taleb I, Koliopoulou AG, Tandar A, McKellar SH, Tonna JE, Nativi-Nicolau J, et al. Shock team approach in refractory cardiogenic shock requiring short-term mechanical circulatory support: a proof of concept. Circulation. 2019;140(1):98–100. https://doi.org/10.1161/CIRCULATIONAHA.119.040654.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tehrani BN, Truesdell AG, Sherwood MW, Desai S, Tran HA, Epps KC, et al. Standardized team-based care for cardiogenic shock. J Am Coll Cardiol. 2019;73(13):1659–69. https://doi.org/10.1016/j.jacc.2018.12.084.

    Article  PubMed  Google Scholar 

  57. Jentzer JC, Burstein B, Van Diepen S, Murphy J, Holmes DR Jr, Bell MR, et al. Defining shock and preshock for mortality risk stratification in cardiac intensive care unit patients. Circ Heart Fail. 2021;14(1):e007678. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007678.

    Article  PubMed  Google Scholar 

  58. Gaudard P, Mourad M, Eliet J, Zeroual N, Culas G, Rouviere P, et al. Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit Care. 2015;19:363. https://doi.org/10.1186/s13054-015-1073-8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mastroianni C, Bouabdallaoui N, Leprince P, Lebreton G. Short-term mechanical circulatory support with the Impella 5.0 device for cardiogenic shock at La Pitie-Salpetriere. Eur Heart J Acute Cardiovasc Care. 2017;6(1):87–92. https://doi.org/10.1177/2048872616633877.

    Article  PubMed  Google Scholar 

  60. Mishra S. Upscaling cardiac assist devices in decompensated heart failure: choice of device and its timing. Indian Heart J. 2016;68(Suppl 1):S1-4. https://doi.org/10.1016/j.ihj.2015.12.012.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lima B, Kale P, Gonzalez-Stawinski GV, Kuiper JJ, Carey S, Hall SA. Effectiveness and safety of the Impella 5.0 as a bridge to cardiac transplantation or durable left ventricular assist device. Am J Cardiol. 2016;117(10):1622–8. https://doi.org/10.1016/j.amjcard.2016.02.038.

    Article  PubMed  Google Scholar 

  62. Henry TD, Tomey MI, Tamis-Holland JE, Thiele H, Rao SV, Menon V, et al. Invasive management of acute myocardial infarction complicated by cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2021;143(15):e815–29. https://doi.org/10.1161/cir.0000000000000959.

    Article  PubMed  Google Scholar 

  63. Hernandez-Montfort J, Sinha SS, Thayer KL, Whitehead EH, Pahuja M, Garan AR, et al. Clinical outcomes associated with acute mechanical circulatory support utilization in heart failure related cardiogenic shock. Circ Heart Fail. 2021;14(5):e007924. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007924.

    Article  PubMed  Google Scholar 

  64. Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail. 2018;11(9):e004905. https://doi.org/10.1161/CIRCHEARTFAILURE.118.004905.

    Article  PubMed  Google Scholar 

  65. Russo JJ, Aleksova N, Pitcher I, Couture E, Parlow S, Faraz M, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol. 2019;73(6):654–62. https://doi.org/10.1016/j.jacc.2018.10.085.

    Article  PubMed  Google Scholar 

  66. Patel SM, Lipinski J, Al-Kindi SG, Patel T, Saric P, Li J, et al. Simultaneous venoarterial extracorporeal membrane oxygenation and percutaneous left ventricular decompression therapy with Impella is associated with improved outcomes in refractory cardiogenic shock. ASAIO J. 2019;65(1):21–8. https://doi.org/10.1097/MAT.0000000000000767.

    Article  PubMed  Google Scholar 

  67. Schrage B, Becher PM, Bernhardt A, Bezerra H, Blankenberg S, Brunner S, et al. Left ventricular unloading is associated with lower mortality in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: results from an international, multicenter cohort study. Circulation. 2020;142(22):2095–106. https://doi.org/10.1161/CIRCULATIONAHA.120.048792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kapur NK, Whitehead EH, Thayer KL, Pahuja M. The science of safety: complications associated with the use of mechanical circulatory support in cardiogenic shock and best practices to maximize safety. F1000Res. 2020;9:F1000 Faculty Rev-794. https://doi.org/10.12688/f1000research.25518.1.

  69. Pahuja M, Chehab O, Ranka S, Mishra T, Ando T, Yassin AS, et al. Incidence and clinical outcomes of stroke in ST-elevation myocardial infarction and cardiogenic shock. Catheter Cardiovasc Interv. 2021;97(2):217–25. https://doi.org/10.1002/ccd.28919.

    Article  PubMed  Google Scholar 

  70. Pahuja M, Ranka S, Chehab O, Mishra T, Akintoye E, Adegbala O, et al. Incidence and clinical outcomes of bleeding complications and acute limb ischemia in STEMI and cardiogenic shock. Catheter Cardiovasc Interv. 2021;97(6):1129–38. https://doi.org/10.1002/ccd.29003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Jason Wermers for his aid in preparing this manuscript.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Waksman.

Ethics declarations

Ethics Approval

This manuscript is a review of the literature and, as such, is exempt from institutional review board oversight.

Conflict of Interest

Hayder Hashim reports serving as a consultant for and receiving speaker fees from Abbott, Cardiovascular Systems, Inc., and Boston Scientific. Samer S. Najjar reports receiving grant support from Abbott and Medtronic and receiving support for attending meetings from Abbott. Ron Waksman reports serving on the advisory boards of Abbott Vascular, Boston Scientific, Medtronic, Philips IGT, and Pi-Cardia Ltd.; being a consultant for Abbott Vascular, Biotronik, Boston Scientific, Cordis, Medtronic, Philips IGT, Pi-Cardia Ltd., Swiss Interventional Systems/SIS Medical AG, Transmural Systems Inc., and Venous MedTech; receiving institutional grant support from Amgen, Biotronik, Boston Scientific, Chiesi, Medtronic, and Philips IGT; and being an investor in MedAlliance and Transmural Systems Inc. All other authors have no competing interests to declare that are relevant to the content of this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahuja, M., Yerasi, C., Lam, P.H. et al. Review of Pathophysiology of Cardiogenic Shock and Escalation of Mechanical Circulatory Support Devices. Curr Cardiol Rep 25, 213–227 (2023). https://doi.org/10.1007/s11886-023-01843-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01843-4

Keywords

Navigation