Skip to main content

Advertisement

Log in

Atrial Fibrillation and Cancer Patients: Mechanisms and Management

  • Cardio-Oncology (LA Baldassarre, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cancer-related mortality has significantly declined over the past several decades as a result of improved screening, diagnostics, and therapeutics. Although cancer patients and survivors are living longer, there is increased risk of both short-term and long-term cardiovascular complications, including arrhythmia. In this review, we highlight the current evidence detailing the connections between atrial fibrillation and cancer, provide insight into the mechanisms driving this relationship, and share practical considerations for the management of atrial fibrillation in cancer patients and cancer survivors.

Recent Findings

Atrial fibrillation is an increasingly recognized condition among cancer patients, with epidemiological data showing increased incidence and worse outcomes in patients with cancer. Studies also describe a bidirectional relationship between cancer and atrial fibrillation, attributable in part to shared risk factors but also potentially due to shared biology. Cancer treatment–associated arrhythmia is an active area of investigation, with ongoing research to identify the mechanisms and pathophysiology behind this phenomenon. Furthermore, management of atrial fibrillation in patients with cancer presents unique challenges, particularly in management of anti-coagulation.

Summary

Cancer patients have increased risk of developing atrial fibrillation due to the shared risk factors and biology of the two conditions. Moreover, various cancer therapeutics are known to be arrhythmogenic; however, mechanisms remain unclear. Further research is needed to better understand the pathophysiology of atrial fibrillation in cancer patient in order to establish prevention and treatment strategies specific to this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. Santucci C, Carioli G, Bertuccio P, et al. Progress in cancer mortality, incidence, and survival: a global overview. Eur J Cancer Prev. 2020;29(5):367–81. https://doi.org/10.1097/CEJ.0000000000000594.

    Article  PubMed  Google Scholar 

  2. Okwuosa TM, Anzevino S, Rao R. Cardiovascular disease in cancer survivors. Postgrad Med J. 2017;93(1096):82–90. https://doi.org/10.1136/postgradmedj-2016-134417.

    Article  PubMed  Google Scholar 

  3. Sturgeon KM, Deng L, Bluethmann SM, et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J. 2019;40(48):3889–97. https://doi.org/10.1093/eurheartj/ehz766.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lau ES, Paniagua SM, Liu E, et al. Cardiovascular risk factors are associated with future cancer. JACC CardioOncology. 2021;3(1):48–58. https://doi.org/10.1016/j.jaccao.2020.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–14. https://doi.org/10.1161/CIRCULATIONAHA.115.020406.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tanaka Y, Shah NS, Passman R, Greenland P, Lloyd-Jones DM, Khan SS. Trends in cardiovascular mortality related to atrial fibrillation in the United States, 2011 to 2018. J Am Heart Assoc. 2021;10(15):e020163. https://doi.org/10.1161/JAHA.120.020163.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386(9989):154–62. https://doi.org/10.1016/S0140-6736(14)61774-8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Neal WT, Lakoski SG, Qureshi W, et al. Relation between cancer and atrial fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). Am J Cardiol. 2015;115(8):1090–4. https://doi.org/10.1016/j.amjcard.2015.01.540.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Murtaza M, Baig MMA, Ahmed J, Serbanoiu LI, Busnatu SS. Higher mortality associated with new-onset atrial fibrillation in cancer patients: a systematic review and meta-analysis. Front Cardiovasc Med. 2022;9:867002. https://doi.org/10.3389/fcvm.2022.867002.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Benjamin EJ. Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham Heart Study. JAMA. 1994;271(11):840. https://doi.org/10.1001/jama.1994.03510350050036.

    Article  PubMed  CAS  Google Scholar 

  11. •• Guha A, Fradley MG, Dent SF, et al. Incidence, risk factors, and mortality of atrial fibrillation in breast cancer: a SEER-Medicare analysis. Eur Heart J. 2022;43(4):300–12. https://doi.org/10.1093/eurheartj/ehab745. Epidemiological study evaluating over 85,000 breast cancer patients to establish the incidence of atrial fibrillation in this population.

    Article  PubMed  Google Scholar 

  12. Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiology. J Am Coll Cardiol. 2014;63(10):945–53. https://doi.org/10.1016/j.jacc.2013.11.026.

    Article  PubMed  Google Scholar 

  13. Yun JP, Choi EK, Han KD, et al. Risk of atrial fibrillation according to cancer type. JACC CardioOncology. 2021;3(2):221–32. https://doi.org/10.1016/j.jaccao.2021.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ostenfeld EB, Erichsen R, Pedersen L, Farkas DK, Weiss NS, Sørensen HT. Atrial fibrillation as a marker of occult cancer. Obukhov AG, ed. PLoS ONE. 2014;9(8):e102861. https://doi.org/10.1371/journal.pone.0102861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. •• Conen D, Wong JA, Sandhu RK, et al. Risk of malignant cancer among women with new-onset atrial fibrillation. JAMA Cardiol. 2016;1(4):389. https://doi.org/10.1001/jamacardio.2016.0280. Study suggesting the bidirectional risk of cancer and atrial fibrillation due to shared risk factors.

  16. Vinter N, Christesen AMS, Fenger-Grøn M, Tjønneland A, Frost L. Atrial fibrillation and risk of cancer: a Danish population-based cohort study. J Am Heart Assoc. 2018;7(17):e009543. https://doi.org/10.1161/JAHA.118.009543.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Clemens A, Strack A, Noack H, Konstantinides S, Brueckmann M, Lip GYH. Anticoagulant-related gastrointestinal bleeding—could this facilitate early detection of benign or malignant gastrointestinal lesions? Ann Med. 2014;46(8):672–8. https://doi.org/10.3109/07853890.2014.952327.

    Article  PubMed  CAS  Google Scholar 

  18. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15(11):e493–503. https://doi.org/10.1016/S1470-2045(14)70263-3.

    Article  PubMed  Google Scholar 

  19. Aviles RJ, Martin DO, Apperson-Hansen C, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108(24):3006–10. https://doi.org/10.1161/01.CIR.0000103131.70301.4F.

    Article  PubMed  Google Scholar 

  20. More GS, Thomas AB, Chitlange SS, Nanda RK, Gajbhiye RL. Nitrogen mustards as alkylating agents: a review on chemistry, mechanism of action and current USFDA status of drugs. Anticancer Agents Med Chem. 2019;19(9):1080–102. https://doi.org/10.2174/1871520619666190305141458.

    Article  PubMed  CAS  Google Scholar 

  21. Singla A, Hogan WJ, Ansell SM, et al. Incidence of supraventricular arrhythmias during autologous peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(8):1233–7. https://doi.org/10.1016/j.bbmt.2013.05.019.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hidalgo JD, Krone R, Rich MW, et al. Supraventricular tachyarrhythmias after hematopoietic stem cell transplantation: incidence, risk factors and outcomes. Bone Marrow Transplant. 2004;34(7):615–9. https://doi.org/10.1038/sj.bmt.1704623.

    Article  PubMed  CAS  Google Scholar 

  23. Muchtar E, Dingli D, Kumar S, et al. Autologous stem cell transplant for multiple myeloma patients 70 years or older. Bone Marrow Transplant. 2016;51(11):1449–55. https://doi.org/10.1038/bmt.2016.174.

    Article  PubMed  CAS  Google Scholar 

  24. Feliz V, Saiyad S, Ramarao SM, Khan H, Leonelli F, Guglin M. Melphalan-induced supraventricular tachycardia: incidence and risk factors. Clin Cardiol. 2011;34(6):356–9. https://doi.org/10.1002/clc.20904.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buza V, Rajagopalan B, Curtis AB. Cancer treatment–induced arrhythmias: focus on chemotherapy and targeted therapies. Circ Arrhythm Electrophysiol. 2017;10(8):e005443. https://doi.org/10.1161/CIRCEP.117.005443.

    Article  PubMed  Google Scholar 

  26. Chang EK, Chanson D, Teh JB, et al. Atrial fibrillation in patients undergoing allogeneic hematopoietic cell transplantation. J Clin Oncol. 2021;39(8):902–10. https://doi.org/10.1200/JCO.20.02401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Tonorezos ES, Stillwell EE, Calloway JJ, et al. Arrhythmias in the setting of hematopoietic cell transplants. Bone Marrow Transplant. 2015;50(9):1212–6. https://doi.org/10.1038/bmt.2015.127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liu R, Li D, Sun F, et al. Melphalan induces cardiotoxicity through oxidative stress in cardiomyocytes derived from human induced pluripotent stem cells. Stem Cell Res Ther. 2020;11(1):470. https://doi.org/10.1186/s13287-020-01984-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Palaskas N, Lopez-Mattei J, Durand JB, Iliescu C, Deswal A. Immune Checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J Am Heart Assoc. 2020;9(2):e013757. https://doi.org/10.1161/JAHA.119.013757.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34. https://doi.org/10.1056/NEJMoa2109970.

    Article  PubMed  CAS  Google Scholar 

  31. Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64. https://doi.org/10.1016/j.jacc.2018.02.037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lakkireddy D. Incidence of cancer treatment induced arrhythmia associated with immune checkpoint inhibitors. J Atr Fibrillation. 2021;13(5):2461. https://doi.org/10.4022/jafib.2461.

    Article  Google Scholar 

  33. Escudier M, Cautela J, Malissen N, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor–related cardiotoxicity. Circulation. 2017;136(21):2085–7. https://doi.org/10.1161/CIRCULATIONAHA.117.030571.

    Article  PubMed  Google Scholar 

  34. Baik AH, Oluwole OO, Johnson DB, et al. Mechanisms of cardiovascular toxicities associated with immunotherapies. Circ Res. 2021;128(11):1780–801. https://doi.org/10.1161/CIRCRESAHA.120.315894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu L, Zheng Q, Lee J, Ma Z, Zhu Q, Wang Z. PD -1/ PD -L1 expression on CD 4+ T cells and myeloid DC s correlates with the immune pathogenesis of atrial fibrillation. J Cell Mol Med. 2015;19(6):1223–33. https://doi.org/10.1111/jcmm.12467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Saleh Y, Abdelkarim O, Herzallah K, Abela GS. Anthracycline-induced cardiotoxicity: mechanisms of action, incidence, risk factors, prevention, and treatment. Heart Fail Rev. 2021;26(5):1159–73. https://doi.org/10.1007/s10741-020-09968-2.

    Article  PubMed  CAS  Google Scholar 

  37. Kilickap S, Barista I, Akgul E, Aytemir K, Aksoy S, Tekuzman G. Early and late arrhythmogenic effects of doxorubicin. South Med J. 2007;100(3):262–5. https://doi.org/10.1097/01.smj.0000257382.89910.fe.

    Article  PubMed  Google Scholar 

  38. Amioka M, Sairaku A, Ochi T, et al. Prognostic significance of new-onset atrial fibrillation in patients with non-Hodgkin’s lymphoma treated with anthracyclines. Am J Cardiol. 2016;118(9):1386–9. https://doi.org/10.1016/j.amjcard.2016.07.049.

    Article  PubMed  CAS  Google Scholar 

  39. Mazur M, Wang F, Hodge DO, et al. Burden of cardiac arrhythmias in patients with anthracycline-related cardiomyopathy. JACC Clin Electrophysiol. 2017;3(2):139–50. https://doi.org/10.1016/j.jacep.2016.08.009.

    Article  PubMed  Google Scholar 

  40. Ponader S, Chen SS, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9. https://doi.org/10.1182/blood-2011-10-386417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. https://doi.org/10.1056/NEJMoa1400376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Farooqui M, Valdez J, Soto S, Bray A, Tian X, Wiestner A. Atrial fibrillation in CLL/SLL patients on ibrutinib. Blood. 2015;126(23):2933–2933. https://doi.org/10.1182/blood.V126.23.2933.2933.

    Article  Google Scholar 

  43. Brown JR, Moslehi J, O’Brien S, et al. Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica. 2017;102(10):1796–805. https://doi.org/10.3324/haematol.2017.171041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ganatra S, Sharma A, Shah S, et al. Ibrutinib-associated atrial fibrillation. JACC Clin Electrophysiol. 2018;4(12):1491–500. https://doi.org/10.1016/j.jacep.2018.06.004.

    Article  PubMed  Google Scholar 

  45. Fradley MG, Gliksman M, Emole J, et al. Rates and risk of atrial arrhythmias in patients treated with ibrutinib compared with cytotoxic chemotherapy. Am J Cardiol. 2019;124(4):539–44. https://doi.org/10.1016/j.amjcard.2019.05.029.

    Article  PubMed  Google Scholar 

  46. Abbas HA, Wierda WG. Acalabrutinib: a selective bruton tyrosine kinase inhibitor for the treatment of B-cell malignancies. Front Oncol. 2021;11:668162. https://doi.org/10.3389/fonc.2021.668162.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ghia P, Pluta A, Wach M, et al. ASCEND: phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2020;38(25):2849–61. https://doi.org/10.1200/JCO.19.03355.

    Article  PubMed  CAS  Google Scholar 

  48. Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzumab for treatment-naive chronic lymphocytic leukaemia (ELEVATE-TN): a randomised, controlled, phase 3 trial. Lancet. 2020;395(10232):1278–91. https://doi.org/10.1016/S0140-6736(20)30262-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. • Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441–52. https://doi.org/10.1200/JCO.21.01210. Clinical trial reporting incidence of atrial fibrillation with the two most commonly utilized BTK inhibitors.

    Article  PubMed  CAS  Google Scholar 

  50. Xiao L, Salem JE, Clauss S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of C-terminal Src kinase. Circulation. 2020;142(25):2443–55. https://doi.org/10.1161/CIRCULATIONAHA.120.049210.

    Article  PubMed  CAS  Google Scholar 

  51. Song EY, Venkat P, Fradley M, et al. Clinical factors associated with the development of postoperative atrial fibrillation in esophageal cancer patients receiving multimodality therapy before surgery. J Gastrointest Oncol. 2020;11(1):68–75. https://doi.org/10.21037/jgo.2019.12.05.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Onaitis M, D’Amico T, Zhao Y, O’Brien S, Harpole D. Risk factors for atrial fibrillation after lung cancer surgery: analysis of the Society of Thoracic Surgeons General Thoracic Surgery Database. Ann Thorac Surg. 2010;90(2):368–74. https://doi.org/10.1016/j.athoracsur.2010.03.100.

    Article  PubMed  Google Scholar 

  53. Semeraro GC, Meroni CA, Cipolla CM, Cardinale DM. Atrial fibrillation after lung cancer surgery: prediction, prevention and anticoagulation management. Cancers. 2021;13(16):4012. https://doi.org/10.3390/cancers13164012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wang H, Wang Z, Zhou M, et al. Postoperative atrial fibrillation in pneumonectomy for primary lung cancer. J Thorac Dis. 2021;13(2):789–802. https://doi.org/10.21037/jtd-20-1717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ng EP, Velez-Cubian FO, Rodriguez KL, et al. Surgical outcomes associated with postoperative atrial fibrillation after robotic-assisted pulmonary lobectomy: retrospective review of 208 consecutive cases. J Thorac Dis. 2016;8(8):2079–85. https://doi.org/10.21037/jtd.2016.07.68.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Heywood EG, Drake TM, Bradburn M, Lee J, Wilson MJ, Lee MJ. Atrial fibrillation after gastrointestinal surgery: incidence and associated risk factors. J Surg Res. 2019;238:23–8. https://doi.org/10.1016/j.jss.2019.01.017.

    Article  PubMed  Google Scholar 

  57. Bergom C, Bradley JA, Ng AK, et al. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC CardioOncology. 2021;3(3):343–59. https://doi.org/10.1016/j.jaccao.2021.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Belzile-Dugas E, Eisenberg MJ. Radiation-induced cardiovascular disease: review of an underrecognized pathology. J Am Heart Assoc. 2021;10(18):e021686. https://doi.org/10.1161/JAHA.121.021686.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Carlson LE, Watt GP, Tonorezos ES, et al. Coronary artery disease in young women after radiation therapy for breast cancer. JACC CardioOncology. 2021;3(3):381–92. https://doi.org/10.1016/j.jaccao.2021.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Apte N, Dherange P, Mustafa U, et al. Cancer radiation therapy may be associated with atrial fibrillation. Front Cardiovasc Med. 2021;8:610915. https://doi.org/10.3389/fcvm.2021.610915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Grewal US, Patel HP, Sheth AR, Beedupalli K, Dominic P. Impact of radiation on inpatient outcomes in patients with breast cancer and atrial fibrillation: a nationwide analysis. Heart Rhythm. 2022. https://doi.org/10.1016/j.hrthm.2022.03.014.

    Article  PubMed  Google Scholar 

  62. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration with the Society of Thoracic Surgeons. Circulation. 2019. https://doi.org/10.1161/CIR.0000000000000665.

    Article  PubMed  Google Scholar 

  63. Friberg L, Rosenqvist M, Lip GYH. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur Heart J. 2012;33(12):1500–10. https://doi.org/10.1093/eurheartj/ehr488.

    Article  PubMed  Google Scholar 

  64. Navi BB, Reiner AS, Kamel H, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70(8):926–38. https://doi.org/10.1016/j.jacc.2017.06.047.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Selvik HA, Thomassen L, Logallo N, Næss H. Prior cancer in patients with ischemic stroke: the Bergen NORSTROKE Study. J Stroke Cerebrovasc Dis. 2014;23(5):919–25. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.041.

    Article  PubMed  Google Scholar 

  66. Key NS, Khorana AA, Kuderer NM, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO Clinical practice guideline Update. J Clin Oncol. 2020;38(5):496–520. https://doi.org/10.1200/JCO.19.01461.

    Article  PubMed  Google Scholar 

  67. •• D’Souza M, Carlson N, Fosbøl E, et al. CHA 2 DS 2 -VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. Eur J Prev Cardiol. 2018;25(6):651–8. https://doi.org/10.1177/2047487318759858. Epidemiologic study suggesting the CHADS-VASc score may not adequately assess thromboembolism risk in cancer patients.

    Article  PubMed  Google Scholar 

  68. Lip GYH, Frison L, Halperin JL, Lane DA. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation. J Am Coll Cardiol. 2011;57(2):173–80. https://doi.org/10.1016/j.jacc.2010.09.024.

    Article  PubMed  CAS  Google Scholar 

  69. Steffel J, Verhamme P, Potpara TS, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39(16):1330–93. https://doi.org/10.1093/eurheartj/ehy136.

    Article  PubMed  CAS  Google Scholar 

  70. Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92. https://doi.org/10.1056/NEJMoa1107039.

    Article  PubMed  CAS  Google Scholar 

  71. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91. https://doi.org/10.1056/NEJMoa1009638.

    Article  PubMed  CAS  Google Scholar 

  72. Rhea IB, Lyon AR, Fradley MG. Anticoagulation of cardiovascular conditions in the cancer patient: review of old and new therapies. Curr Oncol Rep. 2019;21(5):45. https://doi.org/10.1007/s11912-019-0797-z.

    Article  PubMed  Google Scholar 

  73. Fradley MG, Ellenberg K, Alomar M, et al. Patterns of anticoagulation use in patients with cancer with atrial fibrillation and/or atrial flutter. JACC CardioOncology. 2020;2(5):747–54. https://doi.org/10.1016/j.jaccao.2020.09.008.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boriani G, Lee G, Parrini I, et al. Anticoagulation in patients with atrial fibrillation and active cancer: an international survey on patient management. Eur J Prev Cardiol. 2021;28(6):611–21. https://doi.org/10.1093/eurjpc/zwaa054.

    Article  PubMed  Google Scholar 

  75. Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G. Pharmacology and management of the vitamin K antagonists. Chest. 2008;133(6):160S-198S. https://doi.org/10.1378/chest.08-0670.

    Article  PubMed  CAS  Google Scholar 

  76. Lee AYY, Levine MN, Baker RI, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349(2):146–53. https://doi.org/10.1056/NEJMoa025313.

    Article  PubMed  CAS  Google Scholar 

  77. Agnelli G, Becattini C, Meyer G, et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N Engl J Med. 2020;382(17):1599–607. https://doi.org/10.1056/NEJMoa1915103.

    Article  PubMed  CAS  Google Scholar 

  78. Raskob GE, van Es N, Verhamme P, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378(7):615–24. https://doi.org/10.1056/NEJMoa1711948.

    Article  PubMed  CAS  Google Scholar 

  79. Nasser NJ, Na’amad M, Weinberg I, Gabizon AA. Pharmacokinetics of low molecular weight heparin in patients with malignant tumors. Anticancer Drugs. 2015;26(1):106–11. https://doi.org/10.1097/CAD.0000000000000176.

    Article  PubMed  CAS  Google Scholar 

  80. Chen ST, Hellkamp AS, Becker RC, et al. Efficacy and safety of rivaroxaban vs. warfarin in patients with non-valvular atrial fibrillation and a history of cancer: observations from ROCKET AF. Eur Heart J - Qual Care Clin Outcomes. 2019;5(2):145–52. https://doi.org/10.1093/ehjqcco/qcy040.

    Article  PubMed  Google Scholar 

  81. Melloni C, Dunning A, Granger CB, et al. Efficacy and safety of apixaban versus warfarin in patients with atrial fibrillation and a history of cancer: insights from the ARISTOTLE Trial. Am J Med. 2017;130(12):1440-1448.e1. https://doi.org/10.1016/j.amjmed.2017.06.026.

    Article  PubMed  CAS  Google Scholar 

  82. Fanola CL, Ruff CT, Murphy SA, et al. Efficacy and safety of edoxaban in patients with active malignancy and atrial fibrillation: analysis of the ENGAGE AF-TIMI 48 Trial. J Am Heart Assoc. 2018;7(16):e008987. https://doi.org/10.1161/JAHA.118.008987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zirlik A, Bode C. Vitamin K antagonists: relative strengths and weaknesses vs. direct oral anticoagulants for stroke prevention in patients with atrial fibrillation. J Thromb Thrombolysis. 2017;43(3):365–79. https://doi.org/10.1007/s11239-016-1446-0.

    Article  PubMed  CAS  Google Scholar 

  84. Chen A, Stecker E, Warden BA. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc. 2020;9(13):e017559. https://doi.org/10.1161/JAHA.120.017559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mosarla RC, Vaduganathan M, Qamar A, Moslehi J, Piazza G, Giugliano RP. Anticoagulation strategies in patients with cancer. J Am Coll Cardiol. 2019;73(11):1336–49. https://doi.org/10.1016/j.jacc.2019.01.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Mulligan SP, Ward CM, Whalley D, Hilmer SN. Atrial fibrillation, anticoagulant stroke prophylaxis and bleeding risk with ibrutinib therapy for chronic lymphocytic leukaemia and lymphoproliferative disorders. Br J Haematol. 2016;175(3):359–64. https://doi.org/10.1111/bjh.14321.

    Article  PubMed  CAS  Google Scholar 

  87. Wang J, Zhao A, Zhou H, Zhu J, Niu T. Risk of bleeding associated with ibrutinib in patients with B-cell malignancies: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol. 2020;11:580622. https://doi.org/10.3389/fphar.2020.580622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Xarelto [Package Insert]. Janssen Pharmaceuticals, Inc; 2012.

  89. Eliquis [Package Insert]. Bristol-Meyers Squibb, Inc; 2012.

  90. Holmes DR, Reddy VY, Turi ZG, et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009;374(9689):534–42. https://doi.org/10.1016/S0140-6736(09)61343-X.

    Article  PubMed  CAS  Google Scholar 

  91. Holmes DR, Kar S, Price MJ, et al. Prospective randomized evaluation of the watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy. J Am Coll Cardiol. 2014;64(1):1–12. https://doi.org/10.1016/j.jacc.2014.04.029.

    Article  PubMed  Google Scholar 

  92. Sequeira AR, Bhandari A, Kilpatrick B, Fradley MG, Mohanty BD. Managing thromboembolic risk from atrial fibrillation in patients with cancer: a role for nonpharmacologic approaches. Future Cardiol. 2020;16(6):687–94. https://doi.org/10.2217/fca-2020-0005.

    Article  PubMed  CAS  Google Scholar 

  93. O’Neal WT, Claxton JS, Sandesara PB, et al. Provider specialty, anticoagulation, and stroke risk in patients with atrial fibrillation and cancer. J Am Coll Cardiol. 2018;72(16):1913–22. https://doi.org/10.1016/j.jacc.2018.07.077.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Van Gelder IC, Groenveld HF, Crijns HJGM, et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med. 2010;362(15):1363–73. https://doi.org/10.1056/NEJMoa1001337.

    Article  PubMed  Google Scholar 

  95. Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol. 2020;17(8):474–502. https://doi.org/10.1038/s41569-020-0348-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wiggins BS, Dixon DL, Neyens RR, Page RL, Gluckman TJ. Select drug-drug interactions with direct oral anticoagulants. J Am Coll Cardiol. 2020;75(11):1341–50. https://doi.org/10.1016/j.jacc.2019.12.068.

    Article  PubMed  CAS  Google Scholar 

  97. •• Fradley MG, Beckie TM, Brown SA, et al. Recognition, prevention, and management of arrhythmias and autonomic disorders in cardio-oncology: a scientific statement from the American Heart Association. Circulation. 2021;144(3). https://doi.org/10.1161/CIR.0000000000000986. Scientific statement on the current knowledge and recommendations for the identification and management of arrhythmias.

  98. Kirchhof P, Camm AJ, Goette A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383(14):1305–16. https://doi.org/10.1056/NEJMoa2019422.

    Article  PubMed  Google Scholar 

  99. Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378(5):417–27. https://doi.org/10.1056/NEJMoa1707855.

    Article  PubMed  Google Scholar 

  100. Packer DL, Mark DB, Robb RA, et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;321(13):1261. https://doi.org/10.1001/jama.2019.0693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. McDonald MG, Au NT, Rettie AE. P450-based drug-drug interactions of amiodarone and its metabolites: diversity of inhibitory mechanisms. Drug Metab Dispos. 2015;43(11):1661–9. https://doi.org/10.1124/dmd.115.065623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rao VU, Reeves DJ, Chugh AR, et al. Clinical approach to cardiovascular toxicity of oral antineoplastic agents. J Am Coll Cardiol. 2021;77(21):2693–716. https://doi.org/10.1016/j.jacc.2021.04.009.

    Article  PubMed  CAS  Google Scholar 

  103. Ganatra S, Abraham S, Parikh R, et al. Efficacy and safety of catheter ablation for atrial fibrillation in patients with cancer. Eur Heart J. 2020;41(Supplement_2):ehaa946.3278. https://doi.org/10.1093/ehjci/ehaa946.3278.

    Article  Google Scholar 

Download references

Funding

MGF is supported by NIH R01HL151659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Fradley.

Ethics declarations

Conflict of Interest

MGF reports the following financial disclosures: research grants—Medtronic and AstraZeneca; consulting—Abbott Inc., Zoll, AstraZeneca, and Takeda. DLM has no disclosures to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-Oncology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madnick, D.L., Fradley, M.G. Atrial Fibrillation and Cancer Patients: Mechanisms and Management. Curr Cardiol Rep 24, 1517–1527 (2022). https://doi.org/10.1007/s11886-022-01769-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01769-3

Keywords

Navigation