Skip to main content

Advertisement

Log in

Use of Polygenic Risk Scores for Coronary Heart Disease in Ancestrally Diverse Populations

  • Cardiovascular Genomics (KG Aragam, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

A polygenic risk score (PRS) is a measure of genetic liability to a disease and is typically normally distributed in a population. Individuals in the upper tail of this distribution often have relative risk equivalent to that of monogenic form of the disease. The majority of currently available PRSs for coronary heart disease (CHD) have been generated from cohorts of European ancestry (EUR) and vary in their applicability to other ancestry groups. In this report, we review the performance of PRSs for CHD across different ancestries and efforts to reduce variability in performance including novel population and statistical genetics approaches.

Recent Findings

PRSs for CHD perform robustly in EUR populations but lag in performance in non-EUR groups, particularly individuals of African ancestry. Several large consortia have been established to enable genomic studies in diverse ancestry groups and develop methods to improve PRS performance in multi-ancestry contexts as well as admixed individuals. These include fine-mapping to ascertain causal variants, trans ancestry meta-analyses, and ancestry deconvolution in admixed individuals.

Summary

PRSs are being used in the clinical setting but enthusiasm has been tempered by the variable performance in non-EUR ancestry groups. Increasing diversity in genomic association studies and continued innovation in methodological approaches are needed to improve PRS performance in non-EUR individuals for equitable implementation of genomic medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roth GA, Abate D, Abate KH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88.

    Article  Google Scholar 

  2. Joseph P, Leong D, McKee M, Anand SS, Schwalm J-D, Teo K, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res. 2017;121:677–94.

    Article  CAS  PubMed  Google Scholar 

  3. Aragam KG, Pradeep N. Polygenic Scores to Assess Atherosclerotic Cardiovascular Disease Risk. Circ Res. 2020;126:1159–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ripatti S, Tikkanen E, Orho-Melander M, et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376:1393–400.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tada H, Melander O, Louie JZ, Catanese JJ, Rowland CM, Devlin JJ, et al. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur Heart J. 2016;37:561–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ding K, Bailey KR, Kullo IJ. Genotype-informed estimation of risk of coronary heart disease based on genome-wide association data linked to the electronic medical record. BMC Cardiovasc Disord. 2011;11:66.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Inouye M, Abraham G, Nelson CP, et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J Am Coll Cardiol. 2018;72:1883–93.

    Article  PubMed  PubMed Central  Google Scholar 

  8. •• Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018. https://doi.org/10.1038/s41588-018-0183-z. Findings from these two studies (Ref #7,8) suggest that incorporating millions of variants across the genome significantly enhances predictive performance of polygenic risk scores for a variety of traits including coronary heart disease.

  9. Abraham G, Havulinna AS, Bhalala OG, et al. Genomic prediction of coronary heart disease. Eur Heart J. 2016;37:3267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fahed AC, Wang M, Homburger JR, et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat Commun. 2020;11:3635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khera AV, Chaffin M, Zekavat SM, et al. Whole Genome Sequencing to Characterize Monogenic and Polygenic Contributions in Patients Hospitalized with Early-Onset Myocardial Infarction. Circulation. 2018.

  12. Klarin D, Natarajan P. Clinical utility of polygenic risk scores for coronary artery disease. Nat Rev Cardiol. 2021;1–11.

  13. Kullo IJ, Jouni H, Austin EE, et al. Incorporating a Genetic Risk Score Into Coronary Heart Disease Risk Estimates: Effect on Low-Density Lipoprotein Cholesterol Levels (the MI-GENES Clinical Trial). Circulation. 2016;133:1181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kathiresan S, Melander O, Anevski D, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358:1240–9.

    Article  CAS  PubMed  Google Scholar 

  15. Khera AV, Emdin CA, Drake I, et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N Engl J Med. 2016;375:2349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Natarajan P, Young R, Stitziel NO, et al. Polygenic Risk Score Identifies Subgroup With Higher Burden of Atherosclerosis and Greater Relative Benefit From Statin Therapy in the Primary Prevention Setting. Circulation. 2017;135:2091–101.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • Dikilitas O, Schaid DJ, Kosel ML, et al. Predictive Utility of Polygenic Risk Scores for Coronary Heart Disease in Three Major Racial and Ethnic Groups. Am J Hum Genet. 2020;106:707–716. This study demonstrates that the predictive performance of a genome wide PRS for CHD is attenuated when applied to non European ancestry groups, particularly African ancestry.

  18. Sun L, Pennells L, Kaptoge S, et al. Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling analyses. PLoS Med. 2021;18: e1003498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tikkanen E, Havulinna AS, Palotie A, Salomaa V, Ripatti S. Genetic risk prediction and a 2-stage risk screening strategy for coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33:2261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Musunuru K, Kathiresan S. Genetics of Common, Complex Coronary Artery Disease. Cell. 2019;177:132–45.

    Article  CAS  PubMed  Google Scholar 

  22. Manolio TA. Using the Data We Have: Improving Diversity in Genomic Research. Am J Hum Genet. 2019;105:233–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sirugo G, Williams SM, Tishkoff SA. The Missing Diversity in Human Genetic Studies. Cell. 2019;177:26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fahed AC, Aragam KG, Hindy G, et al. Transethnic Transferability of a Genome-Wide Polygenic Score for Coronary Artery Disease. Circ Genom Precis Med. 2021;14:e003092.

    Article  PubMed  Google Scholar 

  25. Assimes T, Tcheandjieu C, Zhu X, et al. A large-scale multi-ethnic genome-wide association study of coronary artery disease. 2021. https://doi.org/10.21203/rs.3.rs-275591/v1.

  26. Clarke SL, Assimes TL, Tcheandjieu C. The propagation of racial disparities in cardiovascular genomics research. Circ Genom Precis Med. 2021. https://doi.org/10.1161/circgen.121.003178.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am J Hum Genet. 2017;100:635–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Privé F, Aschard H, Carmi S, Folkersen L, Hoggart C, O’Reilly PF, et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am J Hum Genet. 2022;109:12–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Aragam KG, Dobbyn A, Judy R, et al. Limitations of Contemporary Guidelines for Managing Patients at High Genetic Risk of Coronary Artery Disease. J Am Coll Cardiol. 2020;75:2769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.

    Article  CAS  PubMed  Google Scholar 

  34. Graham SE, Clarke SL, Wu K-HH, et al. The power of genetic diversity in genome-wide association studies of lipids. Nature. 2021. https://doi.org/10.1038/s41586-021-04064-3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ruan Y, Lin Y-F, Feng Y-CA, et al. Improving polygenic prediction in ancestrally diverse populations. Nat Genet. 2002;54:573–80.

  36. Amariuta T, Ishigaki K, Sugishita H, et al. Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements. Nat Genet. 2020. https://doi.org/10.1038/s41588-020-00740-8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Weissbrod O, Kanai M, Shi H, et al. Leveraging fine-mapping and non-European training data to improve trans-ethnic polygenic risk scores. 2021. bioRxiv. https://doi.org/10.1101/2021.01.19.21249483

  38. Marnetto D, Pärna K, Läll K, Molinaro L, Montinaro F, Haller T, et al. Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals. Nat Commun. 2020;11:1628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: better, faster, stronger. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btaa1029.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013;93:278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Lewinger JP, Gilliland FD, Gauderman WJ, Conti DV. Confounding and heterogeneity in genetic association studies with admixed populations. Am J Epidemiol. 2013;177:351–60.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wünnemann F, Sin Lo K, Langford-Avelar A, Busseuil D, Dubé M-P, Tardif J-C, et al. Validation of Genome-Wide Polygenic Risk Scores for Coronary Artery Disease in French Canadians. Circ Genom Precis Med. 2019;12:e002481.

  43. Wang M, Menon R, Mishra S, et al. Validation of a Genome-Wide Polygenic Score for Coronary Artery Disease in South Asians. J Am Coll Cardiol. 2020;76:703–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koyama S, Ito K, Terao C, et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat Genet. 2020. https://doi.org/10.1038/s41588-020-0705-3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. CARDIoGRAMplusC4D - CARDIoGRAMplusC4D Consortium. http://www.cardiogramplusc4d.org/. Accessed 9 Jan 2022.

  46. Electronic Medical Records and Genomics (eMERGE) Network. https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE. Accessed 9 Jan 2022.

  47. Polygenic RIsk MEthods in Diverse populations (PRIMED) Consortium. https://www.genome.gov/Funded-Programs-Projects/PRIMED-Consortium. Accessed 9 Jan 2022.

  48. All of Us Research Program Investigators, Denny JC, Rutter JL, Goldstein DB, Philippakis A, Smoller JW, Jenkins G, Dishman E. The “All of Us” Research Program. N Engl J Med. 2019;381:668–676.

  49. Hunter-Zinck H, Shi Y, Li M, et al. Genotyping Array Design and Data Quality Control in the Million Veteran Program. Am J Hum Genet. 2020;106:535–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590:290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. The Emirati Genome Programme - The Official Portal of the UAE Government. https://u.ae/en/information-and-services/health-and-fitness/the-emirati-genome-programme. Accessed 14 Jan 2022.

  52. H3Africa. In: H3Africa. 2018. https://h3africa.org/. Accessed 14 Jan 2022.

  53. El-Menyar A, Al Suwaidi J, Badii R, Mir F, Dalenberg AK, Kullo IJ. Discovering Novel Biochemical and Genetic Markers for Coronary Heart Disease in Qatari Individuals: The Initiative Qatar Cardiovascular Biorepository. Heart Views. 2020;21:6–16.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nagai A, Hirata M, Kamatani Y, et al. Overview of the BioBank Japan Project: Study design and profile. J Epidemiol. 2017;27:S2–8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen Z, Chen J, Collins R, Guo Y, Peto R, Wu F, et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int J Epidemiol. 2011;40:1652–66.

  57. Wei C-Y, Yang J-H, Yeh E-C, et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med. 2021;6:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S49-73.

    Article  PubMed  Google Scholar 

  59. D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117:743–53.

    Article  PubMed  Google Scholar 

  60. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099.

    Article  PubMed  PubMed Central  Google Scholar 

  61. McClelland RL, Jorgensen NW, Budoff M, et al. 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66:1643–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021;42:2439–54.

    Article  CAS  Google Scholar 

  63. SCORE2-OP working group and ESC Cardiovascular risk collaboration, de Vries TI, Cooney MT, et al. SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab312.

  64. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74:e177–232.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:3227–337.

    Article  PubMed  Google Scholar 

  66. Virani SS, Alonso A, Aparicio HJ, et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation. 2021;143:e254–743.

    Article  PubMed  Google Scholar 

  67. Volgman AS, Palaniappan LS, Aggarwal NT, et al. Atherosclerotic Cardiovascular Disease in South Asians in the United States: Epidemiology, Risk Factors, and Treatments: A Scientific Statement From the American Heart Association. Circulation. 2018;138:e1–34.

    Article  PubMed  Google Scholar 

  68. Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Topic Group “Evaluating diagnostic tests and prediction models” of the STRATOS initiative. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17:230.

    Article  Google Scholar 

  69. Wand H, Lambert SA, Tamburro C, et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature. 2021;591:211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou E, Moons KGM, et al. Predictive Accuracy of a Polygenic Risk Score-Enhanced Prediction Model vs a Clinical Risk Score for Coronary Artery Disease. JAMA. 2020;323:636–45.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mosley JD, Gupta DK, Tan J, et al. Predictive Accuracy of a Polygenic Risk Score Compared With a Clinical Risk Score for Incident Coronary Heart Disease. JAMA. 2020;323:627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lambert SA, Gil L, Jupp S, et al. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat Genet. 2021. https://doi.org/10.1038/s41588-021-00783-5.

    Article  PubMed  Google Scholar 

  73. Kullo IJ, Dikilitas O. Polygenic Risk Scores for Diverse Ancestries: Making Genomic Medicine Equitable∗. J Am Coll Cardiol. 2020;76:715–8.

    Article  PubMed  Google Scholar 

  74. Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;17:392–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kullo IJ, Lewis CM, Inouye M, Martin AR, Ripatti S. Chatterjee N (2022) Polygenic scores in biomedical research. Nat Rev Genet. 2022. https://doi.org/10.1038/s41576-022-00470-z.

    Article  PubMed  Google Scholar 

Download references

Funding

I.J.K. was supported by NHGRI grant HG006379 and HG011710 as well as NHLBI grant K24 HL137010. D.J.S. was supported by the U.S. Public Health Service and NIH grant R35 GM140487. The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health. OD was supported by Mayo Clinic Clinician-Investigator Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar J. Kullo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikilitas, O., Schaid, D.J., Tcheandjieu, C. et al. Use of Polygenic Risk Scores for Coronary Heart Disease in Ancestrally Diverse Populations. Curr Cardiol Rep 24, 1169–1177 (2022). https://doi.org/10.1007/s11886-022-01734-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01734-0

Keywords

Navigation