Skip to main content
Log in

Emerging F-18-Labelled PET Myocardial Perfusion Tracers

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

PET myocardial perfusion imaging (MPI) is an established modality for the evaluation of ischemic heart disease and quantitation of myocardial blood flow (MBF). New F-18-labelled radiopharmaceuticals have been recently developed to overcome some of the limitations of currently used tracers such as the need of an on-site cyclotron. The characteristics of the new tracers and the clinical results obtained so far will be reviewed.

Recent Findings

Most of the interest in the field of 18F-labelled radiotracers for PET MPI has been concentrated on MC-1 inhibitors, the prototype of which is 18F-flurpiridaz. It was shown in experimental and clinical reports that these radiotracers allow good quality rest/stress MPI studies and a reliable quantitation of MBF.

Summary

Recent evidence suggests that PET MPI with 18F-flurpiridaz may provide a superior diagnostic accuracy for obstructive CAD even if a large comparative clinical trial with SPECT is still ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31:261–91. https://doi.org/10.1007/s00259-003-1344-5.

    Article  CAS  PubMed  Google Scholar 

  2. Neglia D, Rovai D, Caselli C, Pietila M, Teresinska A, Aguadé-Bruix S, et al. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardiovasc Imaging. 2015;8:e002179. https://doi.org/10.1161/CIRCIMAGING.114.002179.

    Article  PubMed  Google Scholar 

  3. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol. 2017;2:1100–7. https://doi.org/10.1001/jamacardio.2017.2471.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Med. 2018;59:273–93. https://doi.org/10.2967/jnumed.117.201368.

    Article  CAS  PubMed  Google Scholar 

  5. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23:1187–226. https://doi.org/10.1007/s12350-016-0522-3.

    Article  PubMed  Google Scholar 

  6. Liga R, Vontobel J, Rovai D, Marinelli M, Caselli C, Pietila M, et al. Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population. Eur Heart J Cardiovasc Imaging. 2016;17:951–60. https://doi.org/10.1093/ehjci/jew038.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liga R, Marini C, Coceani M, Filidei E, Schlueter M, Bianchi M, et al. Structural abnormalities of the coronary arterial wall--in addition to luminal narrowing--affect myocardial blood flow reserve. J Nucl Med. 2011;52:1704–12. https://doi.org/10.2967/jnumed.111.091009.

    Article  PubMed  Google Scholar 

  8. • Knuuti J, Ballo H, Juarez-Orozco LE, Saraste A, Kolh P, Rutjes AWS, et al. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability. Eur Heart J. 2018;39:3322–30. https://doi.org/10.1093/eurheartj/ehy267The study demonstrates that the various diagnostic modalities have different optimal performance ranges for the detection of either anatomically or functionally significant CAD. Out of the functional imaging tests, PET and stress CMR demonstrated good performance, while SPECT and stress echo performance numbers appeared moderate.

    Article  PubMed  Google Scholar 

  9. Smulders MW, Jaarsma C, Nelemans PJ, Bekkers SCAM, Bucerius J, Leiner T, et al. Comparison of the prognostic value of negative non-invasive cardiac investigations in patients with suspected or known coronary artery disease-a meta-analysis. Eur Heart J Cardiovasc Imaging. 2017;18:980–7. https://doi.org/10.1093/ehjci/jex014.

    Article  PubMed  Google Scholar 

  10. Werner RA, Chen X, Rowe SP, Lapa C, Javadi MS, Higuchi T. Moving into the next era of PET myocardial perfusion imaging: introduction of novel 18 F-labeled tracers. Int J Cardiovasc Imaging. 2019;35:569–77. https://doi.org/10.1007/s10554-018-1469-z.

    Article  PubMed  Google Scholar 

  11. Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44:333–43. https://doi.org/10.1053/j.semnuclmed.2014.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Senthamizhchelvan S, Bravo PE, Esaias C, Lodge MA, Merrill J, Hobbs RF, et al. Human biodistribution and radiation dosimetry of 82Rb. J Nucl Med. 2010;51:1592–9. https://doi.org/10.2967/jnumed.110.077669.

    Article  PubMed  Google Scholar 

  13. Berti V, Sciagrà R, Neglia D, Pietilä M, Scholte AJ, Nekolla S, et al. Segmental quantitative myocardial perfusion with PET for the detection of significant coronary artery disease in patients with stable angina. Eur J Nucl Med Mol Imaging. 2016;43:1522–9. https://doi.org/10.1007/s00259-016-3362-0.

    Article  PubMed  Google Scholar 

  14. Bellina CR, Parodi O, Camici P, Salvadori PA, Taddei L, Fusani L, et al. Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. J Nucl Med. 1990;31:1335–43.

    CAS  PubMed  Google Scholar 

  15. Muzik O, Duvernoy C, Beanlands RS, Sawada S, Dayanikli F, Wolfe ER, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol. 1998;31:534–40.

    Article  CAS  PubMed  Google Scholar 

  16. Nekolla SG, Reder S, Saraste A, Higuchi T, Dzewas G, Preissel A, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation. 2009;119:2333–42. https://doi.org/10.1161/CIRCULATIONAHA.108.797761.

    Article  CAS  PubMed  Google Scholar 

  17. Dilsizian V, Taillefer R. Journey in evolution of nuclear cardiology: will there be another quantum leap with the F-18-labeled myocardial perfusion tracers? JACC Cardiovasc Imaging. 2012;5:1269–84. https://doi.org/10.1016/j.jcmg.2012.10.006.

    Article  PubMed  Google Scholar 

  18. Madar I, Ravert HT, Du Y, Hilton J, Volokh L, Dannals RF, et al. Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med. 2006;47:1359–66.

    CAS  PubMed  Google Scholar 

  19. Marshall RC, Powers-Risius P, Reutter BW, O’Neil JP, La Belle M, Huesman RH, et al. Kinetic analysis of 18F-fluorodihydrorotenone as a deposited myocardial flow tracer: comparison to 201Tl. J Nucl Med. 2004;45:1950–9.

    CAS  PubMed  Google Scholar 

  20. Bartholomä MD, He H, Pacak CA, Dunning P, Fahey FH, McGowan FX, et al. Biological characterization of F-18-labeled Rhodamine B, a potential positron emission tomography perfusion tracer. Nucl Med Biol. 2013;40:1043–8. https://doi.org/10.1016/j.nucmedbio.2013.07.006.

    Article  CAS  PubMed  Google Scholar 

  21. Madar I, Ravert H, Dipaula A, Du Y, Dannals RF, Becker L. Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med. 2006;47:1359–66.

    CAS  PubMed  Google Scholar 

  22. Werner RA, Wakabayashi H, Bauer J, Schütz C, Zechmeister C, Hayakawa N, et al. Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. Eur Heart J Cardiovasc Imaging. 2019;20:467–74. https://doi.org/10.1093/ehjci/jey119.

    Article  PubMed  Google Scholar 

  23. Madar I, Ravert H, Dipaula A, Du Y, Dannals RF, Becker L. Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J Nucl Med. 2007;48:1021–30. https://doi.org/10.2967/jnumed.106.038778.

    Article  CAS  PubMed  Google Scholar 

  24. Higuchi T, Fukushima K, Rischpler C, Isoda T, Javadi MS, Ravert H, et al. Stable delineation of the ischemic area by the PET perfusion tracer 18F-fluorobenzyl triphenyl phosphonium after transient coronary occlusion. J Nucl Med. 2011;52:965–9. https://doi.org/10.2967/jnumed.110.085993.

    Article  CAS  PubMed  Google Scholar 

  25. Yalamanchili P, Wexler E, Hayes M, Yu M, Bozek J, Kagan M, et al. Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol. 2007;14:782–8. https://doi.org/10.1016/j.nuclcard.2007.07.009.

    Article  PubMed  Google Scholar 

  26. Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, et al. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol. 2007;14:789–98. https://doi.org/10.1016/j.nuclcard.2007.07.008.

    Article  CAS  PubMed  Google Scholar 

  27. Higuchi T, Nekolla SG, Huisman MM, Reder S, Poethko T, Yu M, et al. A new 18F-labeled myocardial PET tracer: myocardial uptake after permanent and transient coronary occlusion in rats. J Nucl Med. 2008;49:1715–22.

    Article  PubMed  Google Scholar 

  28. Sherif HM, Saraste A, Weidl E, Weber AW, Higuchi T, Reder S, et al. Evaluation of a novel (18) F-labeled positron-emission tomography perfusion tracer for the assessment of myocardial infarct size in rats. Circ Cardiovasc Imaging. 2009;2:77–84.

    Article  PubMed  Google Scholar 

  29. Maddahi J, Bengel F, Czernin J, Crane P, Dahlbom M, Schelbert H, et al. Dosimetry, biodistribution, and safety of flurpiridaz F 18 in healthy subjects undergoing rest and exercise or pharmacological stress PET myocardial perfusion imaging. J Nucl Cardiol. 2019;26:2018–30. https://doi.org/10.1007/s12350-018-01484-z.

    Article  PubMed  Google Scholar 

  30. •• Moody JB, Poitrasson-Rivière A, Hagio T, Buckley C, Weinberg RL, Corbett JR, et al. Added value of myocardial blood flow using 18 F-flurpiridaz PET to diagnose coronary artery disease: The flurpiridaz 301 Trial. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02034-2First demonstration that global and regional 18F-flurpiridaz absolute MBF and MFR may provide incremental diagnostic value for detecting obstructive CAD, beyond patient characteristics and relative perfusion analysis.

  31. Fathy M, Khalil MM, Elshemey WM, Mohamed HS. Occupational radiation dose to nuclear medicine staff due to 99mTc, 18F-FDG PET and therapeutic 131I based examinations. Radiat Prot Dosim. 2019;186:443–51. https://doi.org/10.1093/rpd/ncz046.

    Article  Google Scholar 

  32. Kajander SA, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4:678–84. https://doi.org/10.1161/CIRCIMAGING.110.960732.

    Article  PubMed  Google Scholar 

  33. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27. https://doi.org/10.1161/CIRCULATIONAHA.114.011939.

    Article  PubMed  Google Scholar 

  34. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440–449. doi: https://doi.org/10.1016/j.nuclcard.2004.04.005.

  35. Neglia D, Parodi O, Gallopin M, Sambuceti G, Giorgetti A, Pratali L, et al. Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation. 1995;92:796–804. https://doi.org/10.1161/01.cir.92.4.796.

    Article  CAS  PubMed  Google Scholar 

  36. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–40. https://doi.org/10.1056/NEJMra061889.

    Article  CAS  PubMed  Google Scholar 

  37. Neglia D, Sampietro T, Vecoli C, Liga R, Rossi G, Filidei E, et al. Abnormal glucose and lipid control in non-ischemic left ventricular dysfunction. J Nucl Cardiol. 2012;19:1182–9. https://doi.org/10.1007/s12350-012-9609-7.

    Article  PubMed  Google Scholar 

  38. Packard RR, Huang SC, Dahlbom M, Czernin J, Maddahi J. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. J Nucl Med. 2014;55:1438–44. https://doi.org/10.2967/jnumed.114.141093.

    Article  PubMed  Google Scholar 

  39. Maddahi J, Czernin J, Lazewatsky J, Huang SC, Dahlbom M, Schelbert H, et al. Phase I, first-in-human study of BMS747158, a novel 18F-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med. 2011;52:1490–8.

    Article  CAS  PubMed  Google Scholar 

  40. Berman DS, Maddahi J, Tamarappoo BK, Czernin J, Taillefer R, Udelson JE, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61:469–77. https://doi.org/10.1016/j.jacc.2012.11.022.

    Article  CAS  PubMed  Google Scholar 

  41. https://www.clinicaltrials.gov/ct2/show/NCT03354273. An international study to evaluate diagnostic efficacy of flurpiridaz (18F) injection PET MPI in the detection of coronary artery disease (CAD). Last consulted on the 3rd of June 2020.

  42. Gimelli A, Liga R, Bertasi M, Kusch A, Marzullo P. Head-to-head comparison of a CZT-based all-purpose SPECT camera and a dedicated CZT cardiac device for myocardial perfusion and functional analysis. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01835-4.

  43. Zavadovsky KV, Mochula AV, Boshchenko AA, Vrublevsky AV, Baev AE, Krylov AL, et al. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: correlation and accuracy. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01678-z.

  44. Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O'Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382:1395–407. https://doi.org/10.1056/NEJMoa1915922.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Neglia D, Liga R, Caselli C, Carpeggiani C, Lorenzoni V, Sicari R, et al. Anatomical and functional coronary imaging to predict long-term outcome in patients with suspected coronary artery disease: the EVINCI-Outcome Study. Eur Heart J Cardiovasc Imaging. 2019:jez248. https://doi.org/10.1093/ehjci/jez248.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Neglia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liga, R., Neglia, D. Emerging F-18-Labelled PET Myocardial Perfusion Tracers. Curr Cardiol Rep 22, 116 (2020). https://doi.org/10.1007/s11886-020-01368-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01368-0

Keywords

Navigation