Skip to main content
Log in

Determinants of Achieved LDL Cholesterol and “Non-HDL” Cholesterol in the Management of Dyslipidemias

  • Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The advent of combination therapy to provide LDL lowering beyond that achieved with statins necessitates the development of greater understanding of how drugs work together, what changes occur in key lipoprotein fractions, and what residual risk remains.

Recent Findings

Clinical trials of agents that, when added to statins, generate profound LDL lowering have been successful in reducing further the risk of cardiovascular disease. LDL cholesterol can be now decreased to unprecedented levels, so the focus of attention then shifts to other apolipoprotein B-containing, atherogenic lipoprotein classes such as lipoprotein(a) and remnants of the metabolism of triglyceride-rich particles. “Non-HDL cholesterol” is used increasingly (especially if measured in the non-fasting state) as a more comprehensive index of risk.

Summary

Metabolic studies reveal how current drugs act in combination to achieve profound lipid lowering. However, care is needed in interpreting achieved LDLc and non-HDLc levels in the emerging treatment paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S1–45.

    Article  PubMed  Google Scholar 

  2. Piepoli MF, Hoes AW, Agewall S, et al. European guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol. 2016;23:Np1-np96.

    PubMed  Google Scholar 

  3. •• Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459–72. A seminal overview that brings together evidence from multiple fields of investigation to support the causal role of LDL in atherogenesis. This is a very useful resource to counteract the claims of those who question the benefits of focusing on lipoproteins as targets for therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Varbo A, Nordestgaard BG. Remnant lipoproteins. Curr Opin Lipidol. 2017;28:300–7. An insightful review of methods of measuring remnant lipoproteins and their association with risk of CHD .

    Article  PubMed  CAS  Google Scholar 

  5. • Vitali C, Khetarpal SA, Rader DJ. HDL cholesterol metabolism and the risk of CHD: new insights from human genetics. Curr Cardiol Rep. 2017;19:132. This article offers an excellent overview of where we are in understanding HDL and its relationship to cardiovascular disease.

    Article  PubMed  Google Scholar 

  6. Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376:1933–42.

    Article  PubMed  Google Scholar 

  7. Hovingh GK, Boekholdt SM, Stroes ES. Very low LDL-cholesterol concentrations achieved: which target is next? Lancet. 2017;390:1930–1.

    Article  PubMed  Google Scholar 

  8. Yusuf S, Lonn E, Pais P, Bosch J, López-Jaramillo P, Zhu J, et al. Blood pressure and cholesterol lowering in persons without cardiovascular disease. N Engl J Med. 2016;374:2032–43.

    Article  PubMed  CAS  Google Scholar 

  9. •• Sabatine MS, Giugliano RP, Keech AC, FOURIER Steering Committee and Investigators, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22. The landmark first outcome trial of a PCSK9 inhibitor showing incremental risk reduction when evolocumab is added to statin therapy. LDLc levels on combination therapy were the lowest yet seen in an outcome trial.

    Article  PubMed  CAS  Google Scholar 

  10. •• Ference BA, Cannon CP, Landmesser U, et al. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur Heart J. 2017; https://doi.org/10.1093/eurheartj/ehx450. This analysis shows the importance of treatment duration in assessing the observed risk reduction. The headline relative risk reduction in short trials (e.g., 2 years follow-up) does not reveal the full effect.

  11. Varbo A, Benn M, Tybjaerg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61:427–36.

    Article  PubMed  CAS  Google Scholar 

  12. Dallinga-Thie GM, Kroon J, Boren J, et al. Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr Cardiol Rep. 2016;18:67. https://doi.org/10.1007/s11886-016-0745-6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nordestgaard B, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–35.

    Article  PubMed  CAS  Google Scholar 

  14. Joshi PH, Khokhar AA, Massaro JM, Lipoprotein Investigators Collaborative (LIC) Study Group, et al. Remnant lipoprotein cholesterol and incident coronary heart disease: the Jackson Heart and Framingham Offspring Cohort Studies. J Am Heart Assoc. 2016;5:e002765. https://doi.org/10.1161/JAHA.115.002765.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lamon-Fava S, Diffenderfer MR, Marcovina SM. Lipoprotein(a) metabolism. Curr Opin Lipidol. 2014;25:189–93.

    Article  PubMed  CAS  Google Scholar 

  16. Tsimikas S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J Am Coll Cardiol. 2017;69:692–711.

    Article  PubMed  CAS  Google Scholar 

  17. • Saleheen D, Haycock PC, Zhao W, et al. Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 2017;5:524–33. A comprehensive examination of the relationship of Lp(a) and its characteristic protein apo(a) to risk of CHD. Both apo(a) size and Lp(a) concentration are important.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Erqou S, Thompson A, Di Angelantonio E, et al. Apolipoprotein(a) isoforms and the risk of vascular disease: systematic review of 40 studies involving 58,000 participants. J Am Coll Cardiol. 2010;11(55):2160–7.

    Article  CAS  Google Scholar 

  19. •• Watts G, Chan D, Dent R, Somaratne R, Wasserman S, Scott R, et al. Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism. Circulation. 2016;135:338–51. Elegant study of the mechanism of action of a PCSK9 inhibitor when given as monotherapy or combined with statin.

    Article  PubMed  CAS  Google Scholar 

  20. •• Reyes-Soffer G, Pavlyha M, Ngai C, et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein secretion and production in healthy humans. Circulation. 2016;135:352–62. A contemporaneous, equally elegant study of the mechanism of action of a PCSK9 inhibitor in man using stable isotope tracers.

    Article  PubMed  CAS  Google Scholar 

  21. •• Raal FJ, Giugliano RP, Sabatine MS, et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor’s role. J Lipid Res. 2016;57:1086–96. As well as an excellent overview of the clinical trial findings on Lp(a) lowering, this paper investigates potential mechanisms of action of these powerful new agents.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chan DC, Barrett PH, Watts GF. Recent explanatory trials of the mode of action of drug therapies on lipoprotein metabolism. Curr Opin Lipidol. 2016;27:550–6.

    Article  PubMed  CAS  Google Scholar 

  23. Caslake MJ, Packard CJ. Phenotypes, genotypes and response to statin therapy. Curr Opin Lipidol. 2004;15:387–92.

    Article  PubMed  CAS  Google Scholar 

  24. Sudhop T, Lütjohann D, Kodal A, Igel M, Tribble DL, Shah S, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation. 2002;106:1943–8.

    Article  PubMed  CAS  Google Scholar 

  25. Tremblay AJ, Lamarche B, Cohn JS, Hogue JC, Couture P. Effect of ezetimibe on the in vivo kinetics of apoB-48 and apoB-100 in men with primary hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2006;26:1101–6.

    Article  PubMed  CAS  Google Scholar 

  26. Abifadel M, Elbitar S, El Khoury P, et al. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep. 2014;16:439.

    Article  PubMed  CAS  Google Scholar 

  27. Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016;112:429–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Packard CJ. Unpacking and understanding the impact of proprotein convertase subtilisin/kexin type 9 inhibitors on apolipoprotein B metabolism. Circulation. 2017;135:363–5.

    Article  PubMed  Google Scholar 

  29. Dadu RT, Ballantyne CM. Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol. 2014;11:563–75.

    Article  PubMed  CAS  Google Scholar 

  30. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.

    Article  PubMed  CAS  Google Scholar 

  31. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.

    Article  PubMed  CAS  Google Scholar 

  32. Robinson JG, Rosenson RS, Farnier M, Chaudhari U, Sasiela WJ, Merlet L, et al. Safety of very low low-density lipoprotein cholesterol levels with alirocumab: pooled data from randomized trials. J Am Coll Cardiol. 2017;69:471–82.

    Article  PubMed  CAS  Google Scholar 

  33. Raal FJ, Dent R, Stefanutti C, Descamps O, Masana L, Lira A, et al. Long-term safety, tolerability, and efficacy of evolocumab in patients with heterozygous familial hypercholesterolemia. J Clin Lipidol. 2017;11:1448–57.

    Article  PubMed  Google Scholar 

  34. Stein EA, Lane M, Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am J Cardiol. 1998;81(4A):66B–9B.

    Article  PubMed  CAS  Google Scholar 

  35. Stein EA, Somaratne R, Djedjos C, Liu T, Elliott M, Wasserman S, et al. PCSK9 inhibition-mediated reduction in triglyceride with evolocumab is related to baseline triglyceride levels: an analysis from 1791 patients. JACC. 2016;67:1866. (abstract)

    Article  Google Scholar 

  36. • Lawler PR, Akinkuolie AO, Harada P, Glynn RJ, Chasman DI, Ridker PM, et al. Residual risk of atherosclerotic cardiovascular events in relation to reductions in very-low-density lipoproteins. J Am Heart Assoc. 2017;6:e007402. https://doi.org/10.1161/JAHA.117.007402. An important investigation into lipoprotein-associated residual risk when LDLc is reduced to low levels.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Toth PP, Sattar N, Blom DJ, Martin SS, Jones SR, Monsalvo ML, et al. Effect of evolocumab on lipoprotein particles. Am J Cardiol. 2018;121:308–14.

    Article  PubMed  CAS  Google Scholar 

  38. •• Bowman L, Hopewell JC, Chen F, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. HPS3/TIMI55–REVEAL Collaborative Group. N Engl J Med. 2017;377:1217–27. This is the latest (last?) definitive outcome trial of cholesteryl ester transfer protein inhibition. It shows a moderate risk reduction that can be accounted for by the change in apoB-containing lipoproteins.

    Article  PubMed  Google Scholar 

  39. Thompson A, Di Angelantonio E, Sarwar N, et al. CETP genetics association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299:2777–88.

    Article  PubMed  CAS  Google Scholar 

  40. •• Ference BA, Kastelein JJP, Ginsberg HN, et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA. 2017;318:947–56. This report of Mendelian randomization studies reveals a level of complexity in examining the risk reduction attributable to LDLc change. An important distinction is made between situations where LDLc and apoB are reduced “concordantly” or in discordance.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Krauss RM, Wojnooski KJ, Orr J, et al. Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the cholesteryl ester transfer protein inhibitor anacetrapib. J Lipid Res. 2012;53:540–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Millar JS, Reyes-Soffer G, Jumes P, Dunbar RL, deGoma EM, Baer AL, et al. Anacetrapib lowers LDL by increasing ApoB clearance in mildly hypercholesterolemic subjects. J Clin Invest. 2016;126:1603–4.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ference BA, Majeed F, Penumetcha R, Flack JM, Brook RD. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian randomization study. J Am Coll Cardiol. 2015;65:1552–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  PubMed  CAS  Google Scholar 

  45. Landmesser U, Chapman MJ, Stock JK, Amarenco P, Belch JJF, Borén J, et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur Heart J. 2017;39:1131–43. https://doi.org/10.1093/eurheartj/ehx549.

    Article  Google Scholar 

  46. Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD Jr, DePalma S, et al. 2017 Focused Update of the 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on expert consensus decision pathways. J Am Coll Cardiol. 2017;70:1785–822.

    Article  PubMed  Google Scholar 

  47. • Nordestgaard BG, Langsted A, Mora S, European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points—a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37:1944–58. A joint report from experts in atherosclerosis and laboratory medicine stating that it is no longer required to have subjects fast before measuring a lipid profile.

    Article  PubMed  PubMed Central  Google Scholar 

  48. •• Sathiyakumar V, Park J, Golozar A, Lazo M, Quispe R, Guallar E, et al. Fasting versus nonfasting and low density lipoprotein cholesterol accuracy. Circulation. 2018;137:10–9. This paper is a leading example of a number of reports highlighting the shortcomings of traditional LDLc determination using the Friedewald equation. It offers a more accurate, customized-to-the-patient, method of calculation.

    Article  PubMed  CAS  Google Scholar 

  49. Whelton SP, Meeusen JW, Donato LJ, Jaffe AS, Saenger A, Sokoll LJ, et al. Evaluating the atherogenic burden of individuals with a Friedewald-estimated low-density lipoprotein cholesterol <70 mg/dL compared with a novel low-density lipoprotein estimation method. J Clin Lipidol. 2017;11:1065–72.

    Article  PubMed  Google Scholar 

  50. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1—full report. J Clin Lipidol. 2015;9:129–69.

    Article  PubMed  Google Scholar 

  51. UK National Institute for Health and Care Excellence. Cardiovascular disease: risk assessment and reduction, including lipid modification 2016: www.nice.org.uk/guidance/cg181 (last accessed Jan 2018).

  52. Packard C, Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol. 1997;17:3542–56.

    Article  PubMed  CAS  Google Scholar 

  53. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118:547–63.

    Article  PubMed  CAS  Google Scholar 

  54. Yeang C, Witztum JL, Tsimikas S. ‘LDL-C’ = LDL-C + Lp(a)-C: implications of achieved ultra-low LDL-C levels in the proprotein convertase subtilisin/kexin type 9 era of potent LDL-C lowering. Curr Opin Lipidol. 2015;26:169–78.

    Article  PubMed  CAS  Google Scholar 

  55. Knopp RH, Gitter H, Truitt T, Bays H, Manion CV, Lipka LJ, et al. Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J. 2003;24:729–41.

    Article  PubMed  CAS  Google Scholar 

  56. • Giugliano RP, Wiviott SD, Blazing MA, et al. Long-term safety and efficacy of achieving very low levels of low-density lipoprotein cholesterol: a pre-specified analysis of the IMPROVE-IT trial. JAMA Cardiol. 2017;2:547–55. Important findings regarding the safety of very low LDLc levels. No cause for concern in terms of treatment-emergent side effects was seen on ezetimibe.

    Article  PubMed  PubMed Central  Google Scholar 

  57. • Giugliano RP, Pedersen TR, Park JG, FOURIER Investigators, et al. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet. 2017;390:1962–71. Important findings regarding the safety of very low LDLc levels. No cause for concern in terms of treatment-emergent side effects was seen on evolocumab.

    Article  PubMed  CAS  Google Scholar 

  58. Kastelein JJ, Hovingh GK, Langslet G, Baccara-Dinet MT, Gipe DA, Chaudhari U, et al. J. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 monoclonal antibody alirocumab vs placebo in patients with heterozygous familial hypercholesterolemia. Clin Lipidol. 2017;11:195–203.

    Article  Google Scholar 

  59. Thedrez A, Blom DJ, Ramin-Mangata S, Blanchard V, Croyal M, Chemello K, et al. Homozygous familial hypercholesterolemia patients with identical mutations variably express the LDLR (low-density lipoprotein receptor): implications for the efficacy of evolocumab. Arterioscler Thromb Vasc Biol. 2017; https://doi.org/10.1161/ATVBAHA.117.310217.

  60. Jones PH, Davidson MH, Stein EA, Bays HE, McKenney J, Miller E, et al. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* trial). Am J Cardiol. 2003;92:152–60.

    Article  PubMed  CAS  Google Scholar 

  61. Ridker PM, Mora S, Rose L, on behalf of the JUPITER Study Group. Percent reduction in LDL cholesterol following high-intensity statin therapy: potential implications for guidelines and for the prescription of emerging lipid-lowering drugs. Eur Heart J. 2016;37:1373–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Albert MA, Glynn RJ, Fonseca FAH, et al. Race, ethnicity, and the efficacy of rosuvastatin in primary prevention: the justification for the use of statins in prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Am Heart J. 2011;162:106–14.

    Article  PubMed  CAS  Google Scholar 

  63. Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density-lipoprotein cholesterol reduction. The justification for the use of statins in prevention: an intervention trial evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012:257–64.

  64. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388:2532–61.

    Article  PubMed  CAS  Google Scholar 

  65. Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield MJ, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation. 2017;135:2091–101.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Parhofer KG. New approaches to address dyslipidemia. Curr Opin Lipidol. 2017;28:452–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Packard.

Ethics declarations

Conflict of Interest

Chris J. Packard reports grants/honoraria from the following pharmaceutical companies: Merck, Sharp & Dohme, Pfizer, Amgen, Sanofi, Regeneron, and Daiichi-Sankyo.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packard, C.J. Determinants of Achieved LDL Cholesterol and “Non-HDL” Cholesterol in the Management of Dyslipidemias. Curr Cardiol Rep 20, 60 (2018). https://doi.org/10.1007/s11886-018-1003-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-1003-x

Keywords

Navigation