Skip to main content
Log in

PET Assessment of Immune Cell Activity and Therapeutic Monitoring Following Myocardial Infarction

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Local inflammation after myocardial infarction (MI) plays a role in subsequent ventricular remodeling, influences cardiac outcome, and has emerged as a therapeutic target. Preclinical and clinical PET imaging studies have employed a variety of radiotracers to target inflammatory leukocytes in the early stages after MI.

Recent Findings

Imaging of enhanced metabolism in activated macrophages with 18F-FDG is feasible and has been associated with cardiac outcome in a small prospective study. Novel targeted PET agents show higher specificity for inflammatory leukocytes and can identify therapeutic response with limited background.

Summary

While PET imaging of acute inflammation after MI has grown in recent years, significant challenges remain to widespread clinical application, including the complex cellular composition of the imaging signal and unclear association with functional outcome. Future studies must address the prognostic value of post-MI inflammation imaging and the ability to discern response to targeted, expensive, and personalized therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17(5):581–8. https://doi.org/10.1038/nm.2354.

    Article  CAS  PubMed  Google Scholar 

  2. Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, et al. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res. 2013;112(6):891–9. https://doi.org/10.1161/CIRCRESAHA.111.300484.

    Article  CAS  PubMed  Google Scholar 

  3. Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation. 2013;127(20):2038–46. https://doi.org/10.1161/CIRCULATIONAHA.112.000116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161–6. https://doi.org/10.1126/science.1230719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64. https://doi.org/10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  6. Anzai T. Post-infarction inflammation and left ventricular remodeling- a double-edged sword. Circ J. 2013;77(3):580–7. https://doi.org/10.1253/circj.CJ-13-0013.

    Article  CAS  PubMed  Google Scholar 

  7. Gao XM, Xu Q, Kiriazis H, Dart AM, Du XJ. Mouse model of post-infarct ventricular rupture: time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovasc Res. 2005;65(2):469–77. https://doi.org/10.1016/j.cardiores.2004.10.014.

    Article  CAS  PubMed  Google Scholar 

  8. Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E, et al. Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol. 2009;54(19):1770–7. https://doi.org/10.1016/j.jacc.2009.07.027.

    Article  PubMed  Google Scholar 

  9. Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol. 2010;55(15):1629–38. https://doi.org/10.1016/j.jacc.2009.08.089.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65. https://doi.org/10.1038/nrcardio.2014.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barron HV, Harr SD, Radford MJ, Wang Y, Krumholz HM. The association between white blood cell count and acute myocardial infarction mortality in patients > or =65 years of age: findings from the cooperative cardiovascular project. J Am Coll Cardiol. 2001;38(6):1654–61. https://doi.org/10.1016/S0735-1097(01)01613-8.

    Article  CAS  PubMed  Google Scholar 

  12. Maekawa Y, Anzai T, Yoshikawa T, Asakura Y, Takahashi T, Ishikawa S, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J Am Coll Cardiol. 2002;39(2):241–6. https://doi.org/10.1016/S0735-1097(01)01721-1.

    Article  PubMed  Google Scholar 

  13. Ruparelia N, Digby JE, Jefferson A, Medway DJ, Neubauer S, Lygate CA, et al. Myocardial infarction causes inflammation and leukocyte recruitment at remote sites in the myocardium and in the renal glomerulus. Inflamm Res. 2013;62(5):515–25. https://doi.org/10.1007/s00011-013-0605-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ammirati E, Cannistraci CV, Cristell NA, Vecchio V, Palini AG, Tornvall P, et al. Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6- interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circ Res. 2012;111(10):1336–48. https://doi.org/10.1161/CIRCRESAHA.111.262477.

    Article  CAS  PubMed  Google Scholar 

  15. Vanderheyden M, Kersschot E, Paulus WJ. Pro-inflammatory cytokines and endothelium-dependent vasodilation in the forearm. Serial assessment in patients with congestive heart failure. Eur Heart J. 1998;19(5):747–52. https://doi.org/10.1053/euhj.1997.0828.

    Article  CAS  PubMed  Google Scholar 

  16. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153–63. https://doi.org/10.1016/j.jacc.2011.08.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thackeray JT, Bankstahl JP, Wang Y, Korf-Klingebiel M, Walte A, Wittneben A, et al. Targeting post-infarct inflammation by PET imaging: comparison of (68)Ga-citrate and (68)Ga-DOTATATE with (18)F-FDG in a mouse model. Eur J Nucl Med Mol Imaging. 2015;42(2):317–27. https://doi.org/10.1007/s00259-014-2884-6.

    Article  CAS  PubMed  Google Scholar 

  18. Wollenweber T, Roentgen P, Schafer A, Schatka I, Zwadlo C, Brunkhorst T, et al. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ Cardiovasc Imaging. 2014;7(5):811–8. https://doi.org/10.1161/CIRCIMAGING.114.001689.

    Article  PubMed  Google Scholar 

  19. Morooka M, Moroi M, Uno K, Ito K, Wu J, Nakagawa T, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;4(1):1. https://doi.org/10.1186/2191-219X-4-1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Minamimoto R, Morooka M, Kubota K, Ito K, Masuda-Miyata Y, Mitsumoto T, et al. Value of FDG-PET/CT using unfractionated heparin for managing primary cardiac lymphoma and several key findings. J Nucl Cardiol. 2011;18(3):516–20. https://doi.org/10.1007/s12350-011-9358-z.

    Article  PubMed  Google Scholar 

  21. Harisankar CN, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol. 2011;18(5):926–36. https://doi.org/10.1007/s12350-011-9422-8.

    Article  PubMed  Google Scholar 

  22. Prato FS, Butler J, Sykes J, Keenliside L, Blackwood KJ, Thompson RT, et al. Can the inflammatory response be evaluated using 18F-FDG within zones of microvascular obstruction after myocardial infarction? J Nucl Med. 2015;56(2):299–304. https://doi.org/10.2967/jnumed.114.147835.

    Article  PubMed  Google Scholar 

  23. Taki J, Wakabayashi H, Inaki A, Imanaka-Yoshida K, Hiroe M, Ogawa K, et al. 14C-methionine uptake as a potential marker of inflammatory processes after myocardial ischemia and reperfusion. J Nucl Med. 2013;54(3):431–6. https://doi.org/10.2967/jnumed.112.112060.

    Article  CAS  PubMed  Google Scholar 

  24. Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Targeting amino acid metabolism for molecular imaging of inflammation early after myocardial infarction. Theranostics. 2016;6(11):1768–79. https://doi.org/10.7150/thno.15929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maya Y, Werner RA, Schutz C, Wakabayashi H, Samnick S, Lapa C, et al. 11C-methionine PET of myocardial inflammation in a rat model of experimental autoimmune myocarditis. J Nucl Med. 2016;57(12):1985–90. https://doi.org/10.2967/jnumed.116.174045.

    Article  CAS  PubMed  Google Scholar 

  26. Morooka M, Kubota K, Kadowaki H, Ito K, Okazaki O, Kashida M, et al. 11C-methionine PET of acute myocardial infarction. J Nucl Med. 2009;50(8):1283–7. https://doi.org/10.2967/jnumed.108.061341.

    Article  PubMed  Google Scholar 

  27. Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–91. https://doi.org/10.1016/j.jacc.2017.01.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Bauer W, Kreissl MC, Weirather J, Bauer E, Israel I, et al. Specific somatostatin receptor II expression in arterial plaque: (68)Ga-DOTATATE autoradiographic, immunohistochemical and flow cytometric studies in apoE-deficient mice. Atherosclerosis. 2013;230(1):33–9. https://doi.org/10.1016/j.atherosclerosis.2013.06.018.

    Article  CAS  PubMed  Google Scholar 

  29. Lapa C, Reiter T, Li X, Werner RA, Samnick S, Jahns R, et al. Imaging of myocardial inflammation with somatostatin receptor based PET/CT - a comparison to cardiac MRI. Int J Cardiol. 2015;194:44–9. https://doi.org/10.1016/j.ijcard.2015.05.073.

    Article  PubMed  Google Scholar 

  30. Schatka I, Wollenweber T, Haense C, Brunz F, Gratz KF, Bengel FM. Peptide receptor targeted radionuclide therapy alters inflammation in atherosclerotic plaques. J Am Coll Cardiol. 2013;62(24):2344–5. https://doi.org/10.1016/j.jacc.2013.08.1624.

    Article  CAS  PubMed  Google Scholar 

  31. Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T, et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci U S A. 2010;107(24):11008–13. https://doi.org/10.1073/pnas.0914248107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herrmann K, Lapa C, Wester HJ, Schottelius M, Schiepers C, Eberlein U, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med. 2015;56(3):410–6. https://doi.org/10.2967/jnumed.114.151647.

    Article  CAS  PubMed  Google Scholar 

  33. • Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, et al. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC Cardiovasc Imaging. 2015;8(12):1417–26. This translational study was the first to demonstrate selective accumulation of 68Ga-pentixafor by CXCR4-rich cells in the infarct territory in mice and humans. These results point to CXCR4 as a viable imaging target for a broad base of leukocytes to interrogate myocardial inflammation.

    Article  PubMed  Google Scholar 

  34. Lapa C, Reiter T, Werner RA, Ertl G, Wester HJ, Buck AK, et al. [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression after myocardial infarction. JACC Cardiovasc Imaging. 2015;8(12):1466–8. https://doi.org/10.1016/j.jcmg.2015.09.007.

    Article  PubMed  Google Scholar 

  35. Gaemperli O, Shalhoub J, Owen DR, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33(15):1902–10. https://doi.org/10.1093/eurheartj/ehr367.

    Article  CAS  PubMed  Google Scholar 

  36. Hellberg S, Silvola JMU, Kiugel M, Liljenback H, Savisto N, Li XG, et al. 18-kDa translocator protein ligand 18F-FEMPA: biodistribution and uptake into atherosclerotic plaques in mice. J Nucl Cardiol. 2017;24(3):862–71. https://doi.org/10.1007/s12350-016-0527-y.

    Article  PubMed  Google Scholar 

  37. Kashiyama N, Miyagawa S, Fukushima S, Kawamura T, Kawamura A, Yoshida S, et al. Development of PET imaging to visualize activated macrophages accumulated in the transplanted iPSc-derived cardiac myocytes of allogeneic origin for detecting the immune rejection of allogeneic cell transplants in mice. PLoS One. 2016;11(12):e0165748. https://doi.org/10.1371/journal.pone.0165748.

    Article  PubMed  PubMed Central  Google Scholar 

  38. • Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Molecular imaging of the heart-brain axis: Post-infarct myocardial inflammation predicts subsequent remodelinig and triggers neuroinflammation. J Am Coll Cardiol. 2018;71:263–75. This study demonstrated that imaging of mitochondrial translocator protein early after infarction could positively predict the decline of contractile function in mice 8 weeks later. Moreover, it described the forward connection between heart and brain, whereby myocardial infarction leads to acute and chronic neuroinflammation.

  39. Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging. 2009;2(4):331–8. https://doi.org/10.1161/CIRCIMAGING.108.846865.

    Article  PubMed  Google Scholar 

  40. Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, et al. PET/CT imaging of integrin alphavbeta3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging. 2014;7(2):178–87. https://doi.org/10.1016/j.jcmg.2013.12.003.

    Article  PubMed  Google Scholar 

  41. van den Borne SW, Isobe S, Verjans JW, Petrov A, Lovhaug D, Li P, et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol. 2008;52(24):2017–28. https://doi.org/10.1016/j.jacc.2008.07.067.

    Article  PubMed  Google Scholar 

  42. Wu C, Yue X, Lang L, Kiesewetter DO, Li F, Zhu Z, et al. Longitudinal PET imaging of muscular inflammation using 18F-DPA-714 and 18F-Alfatide II and differentiation with tumors. Theranostics. 2014;4(5):546–55. https://doi.org/10.7150/thno.8159.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Higuchi T, Bengel FM, Seidl S, Watzlowik P, Kessler H, Hegenloh R, et al. Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res. 2008;78(2):395–403. https://doi.org/10.1093/cvr/cvn033.

    Article  CAS  PubMed  Google Scholar 

  44. Jenkins WS, Vesey AT, Stirrat C, Connell M, Lucatelli C, Neale A, et al. Cardiac alphaVbeta3 integrin expression following acute myocardial infarction in humans. Heart. 2017;103(8):607–15. https://doi.org/10.1136/heartjnl-2016-310115.

    Article  PubMed  Google Scholar 

  45. Keliher EJ, Ye YX, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun. 2017;8:14064. https://doi.org/10.1038/ncomms14064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luehmann HP, Pressly ED, Detering L, Wang C, Pierce R, Woodard PK, et al. PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. J Nucl Med. 2014;55(4):629–34. https://doi.org/10.2967/jnumed.113.132001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caobelli F, Wollenweber T, Bavendiek U, Kuhn C, Schutze C, Geworski L, et al. Simultaneous dual-isotope solid-state detector SPECT for improved tracking of white blood cells in suspected endocarditis. Eur Heart J. 2017;38(6):436–43. https://doi.org/10.1093/eurheartj/ehw231.

    PubMed  Google Scholar 

  48. Terrovitis J, Lautamaki R, Bonios M, Fox J, Engles JM, Yu J, et al. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol. 2009;54(17):1619–26. https://doi.org/10.1016/j.jacc.2009.04.097.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kovacic JC, Fuster V. Cell therapy for patients with acute myocardial infarction: ACCRUEd evidence to date. Circ Res. 2015;116(8):1287–90. https://doi.org/10.1161/CIRCRESAHA.115.306323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thunemann M, Schorg BF, Feil S, Lin Y, Voelkl J, Golla M, et al. Cre/lox-assisted non-invasive in vivo tracking of specific cell populations by positron emission tomography. Nat Commun. 2017;8(1):444. https://doi.org/10.1038/s41467-017-00482-y.

    Article  PubMed  PubMed Central  Google Scholar 

  51. •• Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective Evaluation of 18F–Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome. Circ Cardiovasc Imaging. 2016;9(4):e004316. This study established that the size and intensity of 18 F–FDG uptake in the hypoperfused cardiac territory at <5d after first myocardial infarction was predictive of subsequent decline in contractile function. This finding establishes the principle for further studies using more specific imaging markers to determine the value of inflammation imaging to predict functional outcome.

    PubMed  PubMed Central  Google Scholar 

  52. Kim EJ, Kim S, Kang DO, Seo HS. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18f-fluorodeoxyglucose positron emission tomograpic imaging. Circ Cardiovasc Imaging. 2014;7(3):454–60. https://doi.org/10.1161/CIRCIMAGING.113.001093.

    Article  PubMed  Google Scholar 

  53. Nahrendorf M, Frantz S, Swirski FK, Mulder WJ, Randolph G, Ertl G, et al. Imaging systemic inflammatory networks in ischemic heart disease. J Am Coll Cardiol. 2015;65(15):1583–91. https://doi.org/10.1016/j.jacc.2015.02.034.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Thackeray.

Ethics declarations

Conflict of Interest

James T. Thackeray declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thackeray, J.T. PET Assessment of Immune Cell Activity and Therapeutic Monitoring Following Myocardial Infarction. Curr Cardiol Rep 20, 13 (2018). https://doi.org/10.1007/s11886-018-0955-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-0955-1

Keywords

Navigation