Skip to main content

Advertisement

Log in

Management of Blood Pressure in Patients with Glaucoma

  • Hypertension (DS Geller and DL Cohen, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Ocular perfusion pressure (OPP) is defined as the difference between BP and intraocular pressure (IOP). With low BP comes low OPP and resultant ischemic damage to the optic nerve, leading to glaucoma progression. The purpose of this article is to review the literature on BP as it relates to glaucoma and to create a forum of discussion between ophthalmologists and internal medicine specialists.

Recent Findings

Both high and low BP has been linked glaucoma. Low BP is particularly associated with glaucoma progression in normal-tension glaucoma (NTG) patients. Patients who have low nighttime BP readings are at highest risk of progression of their glaucoma.

Summary

Internal medicine specialists and ophthalmologists should consider the relationship between BP and glaucoma when treating patients with concomitant disease. Too-low nighttime BP should be avoided. Ambulatory blood pressure monitoring is a useful tool to identify patients at greatest risk for progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017; https://doi.org/10.1016/S0140-6736(17)31469-1.

  2. Esporcatte BL, Tavares IM. Normal-tension glaucoma: an update. Arq Bras Oftalmol. 2016;79(4):270–6. https://doi.org/10.5935/0004-2749.20160077.

    Article  PubMed  Google Scholar 

  3. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11. https://doi.org/10.1001/jama.2014.3192.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Costa VP, Arcieri ES, Harris A. Blood pressure and glaucoma. Br J Ophthalmol. 2009;93(10):1276–82. https://doi.org/10.1136/bjo.2008.149047.

    Article  CAS  PubMed  Google Scholar 

  5. Mc LJ. Management of the primary glaucomas: the Arthur J. Bedell Lecture. Am J Ophthalmol. 1957;44(3):323–34.

    Article  Google Scholar 

  6. Group SR, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16. https://doi.org/10.1056/NEJMoa1511939.

    Article  Google Scholar 

  7. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013.

    Article  PubMed  Google Scholar 

  8. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective SC. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.

    Article  PubMed  Google Scholar 

  9. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72. https://doi.org/10.1001/jama.289.19.2560.

    Article  CAS  PubMed  Google Scholar 

  10. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20. https://doi.org/10.1001/jama.2013.284427.

    Article  CAS  PubMed  Google Scholar 

  11. Group AS, Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85. https://doi.org/10.1056/NEJMoa1001286.

    Article  Google Scholar 

  12. Heesterbeek TJ, van der Aa HPA, van Rens G, Twisk JWR, van Nispen RMA. The incidence and predictors of depressive and anxiety symptoms in older adults with vision impairment: a longitudinal prospective cohort study. Ophthalmic Physiol Opt. 2017; https://doi.org/10.1111/opo.12388.

  13. Medeiros FA, Gracitelli CP, Boer ER, Weinreb RN, Zangwill LM, Rosen PN. Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients. Ophthalmology. 2015;122(2):293–301. https://doi.org/10.1016/j.ophtha.2014.08.014.

    Article  PubMed  Google Scholar 

  14. Tielsch JM, Katz J, Singh K, Quigley HA, Gottsch JD, Javitt J, et al. A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. Am J Epidemiol. 1991;134(10):1102–10.

    Article  CAS  PubMed  Google Scholar 

  15. Mozaffarieh M, Fraenkl S, Konieczka K, Flammer J. Targeted preventive measures and advanced approaches in personalised treatment of glaucoma neuropathy. EPMA J. 2010;1(2):229–35. https://doi.org/10.1007/s13167-010-0018-1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol. 2009;20(2):73–8. https://doi.org/10.1097/ICU.0b013e32831eef82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Quigley HA, West SK, Rodriguez J, Munoz B, Klein R, Snyder R. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol. 2001;119(12):1819–26.

    Article  CAS  PubMed  Google Scholar 

  18. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–72. https://doi.org/10.1016/j.ophtha.2007.03.016.

    Article  PubMed  Google Scholar 

  19. Caprioli J, Coleman AL, Blood Flow in Glaucoma D. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. 2010;149(5):704–12. https://doi.org/10.1016/j.ajo.2010.01.018.

    Article  PubMed  Google Scholar 

  20. Mitchell P, Lee AJ, Rochtchina E, Wang JJ. Open-angle glaucoma and systemic hypertension: the blue mountains eye study. J Glaucoma. 2004;13(4):319–26.

    Article  PubMed  Google Scholar 

  21. Klein BE, Klein R, Knudtson MD. Intraocular pressure and systemic blood pressure: longitudinal perspective: the Beaver Dam Eye Study. Br J Ophthalmol. 2005;89(3):284–7. https://doi.org/10.1136/bjo.2004.048710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu L, Wang H, Wang Y, Jonas JB. Intraocular pressure correlated with arterial blood pressure: the Beijing Eye Study. Am J Ophthalmol. 2007;144(3):461–2. https://doi.org/10.1016/j.ajo.2007.05.013.

    Article  PubMed  Google Scholar 

  23. Gherghel D, Hosking SL, Orgul S. Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. Surv Ophthalmol. 2004;49(5):491–508. https://doi.org/10.1016/j.survophthal.2004.06.003.

    Article  PubMed  Google Scholar 

  24. Watkins RW, Baum T, Cedeno K, Smith EM, Yuen PH, Ahn HS, et al. Topical ocular hypotensive effects of the novel angiotensin converting enzyme inhibitor SCH 33861 in conscious rabbits. J Ocul Pharmacol. 1987;3(4):295–307.

    Article  CAS  PubMed  Google Scholar 

  25. Constad WH, Fiore P, Samson C, Cinotti AA. Use of an angiotensin converting enzyme inhibitor in ocular hypertension and primary open-angle glaucoma. Am J Ophthalmol. 1988;105(6):674–7.

    Article  CAS  PubMed  Google Scholar 

  26. Wang RF, Podos SM, Mittag TW, Yokoyoma T. Effect of CS-088, an angiotensin AT1 receptor antagonist, on intraocular pressure in glaucomatous monkey eyes. Exp Eye Res. 2005;80(5):629–32. https://doi.org/10.1016/j.exer.2004.11.012.

    Article  CAS  PubMed  Google Scholar 

  27. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107(7):1287–93.

    Article  CAS  PubMed  Google Scholar 

  28. Kaiser HJ, Flammer J. Systemic hypotension: a risk factor for glaucomatous damage? Ophthalmologica. 1991;203(3):105–8.

    Article  CAS  PubMed  Google Scholar 

  29. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B, Group BES. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008;115(1):85–93. https://doi.org/10.1016/j.ophtha.2007.03.017.

    Article  PubMed  Google Scholar 

  30. Topouzis F, Coleman AL, Harris A, Jonescu-Cuypers C, Yu F, Mavroudis L, et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol. 2006;142(1):60–7. https://doi.org/10.1016/j.ajo.2006.02.055.

    Article  PubMed  Google Scholar 

  31. Drance SM, Morgan RW, Sweeney VP. Shock-induced optic neuropathy: a cause of nonprogressive glaucoma. N Engl J Med. 1973;288(8):392–5. https://doi.org/10.1056/NEJM197302222880804.

    Article  CAS  PubMed  Google Scholar 

  32. Drance SM, Sweeney VP, Morgan RW, Feldman F. Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol. 1973;89(6):457–65.

    Article  CAS  PubMed  Google Scholar 

  33. Halberg E, Delmore P, Finch M, Cornelissen G, Halberg F. Chronobiologic assessment of deviant human blood pressure: an invitation for improvements. Prog Clin Biol Res. 1990;341A:305–18.

    CAS  PubMed  Google Scholar 

  34. Chauhan BC. Endothelin and its potential role in glaucoma. Can J Ophthalmol. 2008;43(3):356–60. https://doi.org/10.3129/i08-060.

    Article  PubMed  Google Scholar 

  35. Wang X, LeVatte TL, Archibald ML, Chauhan BC. Increase in endothelin B receptor expression in optic nerve astrocytes in endothelin-1 induced chronic experimental optic neuropathy. Exp Eye Res. 2009;88(3):378–85. https://doi.org/10.1016/j.exer.2008.09.009.

    Article  CAS  PubMed  Google Scholar 

  36. Nakazawa T. Ocular blood flow and influencing factors for glaucoma. Asia Pac J Ophthalmol (Phila). 2016;5(1):38–44. https://doi.org/10.1097/APO.0000000000000183.

    Article  CAS  Google Scholar 

  37. Elliott HL. 24-hour blood pressure control: its relevance to cardiovascular outcomes and the importance of long-acting antihypertensive drugs. J Hum Hypertens. 2004;18(8):539–43. https://doi.org/10.1038/sj.jhh.1001703.

    Article  CAS  PubMed  Google Scholar 

  38. Final Recommendation Statement: High Blood Pressure in Adults: Screening. U.S. Preventive Services Task Force. 2016.

  39. Muxfeldt ES, Bloch KV, Nogueira AR, Salles GF. Twenty-four hour ambulatory blood pressure monitoring pattern of resistant hypertension. Blood Press Monit. 2003;8(5):181–5. https://doi.org/10.1097/01.mbp.0000104980.54630.03.

    Article  PubMed  Google Scholar 

  40. Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension. 1994;24(6):793–801.

    Article  CAS  PubMed  Google Scholar 

  41. Chavanu K, Merkel J, Quan AM. Role of ambulatory blood pressure monitoring in the management of hypertension. Am J Health Syst Pharm. 2008;65(3):209–18. https://doi.org/10.2146/ajhp060663.

    Article  PubMed  Google Scholar 

  42. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603–24.

    Article  CAS  PubMed  Google Scholar 

  43. Choi J, Kim KH, Jeong J, Cho HS, Lee CH, Kook MS. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2007;48(1):104–11. https://doi.org/10.1167/iovs.06-0615.

    Article  PubMed  Google Scholar 

  44. Detry M, Boschi A, Ellinghaus G, De Plaen JF. Simultaneous 24-hour monitoring of intraocular pressure and arterial blood pressure in patients with progressive and non-progressive primary open-angle glaucoma. Eur J Ophthalmol. 1996;6(3):273–8.

    CAS  PubMed  Google Scholar 

  45. Collignon N, Dewe W, Guillaume S, Collignon-Brach J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol. 1998;22(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  46. Tokunaga T, Kashiwagi K, Tsumura T, Taguchi K, Tsukahara S. Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary open-angle glaucoma or normal-tension glaucoma. Jpn J Ophthalmol. 2004;48(4):380–5. https://doi.org/10.1007/s10384-003-0071-6.

    Article  PubMed  Google Scholar 

  47. Ngo S, Harris A, Siesky BA, Schroeder A, Eckert G, Holland S. Blood pressure, ocular perfusion pressure, and body mass index in glaucoma patients. Eur J Ophthalmol. 2013;23(5):664–9. https://doi.org/10.5301/ejo.5000257.

    Article  PubMed  PubMed Central  Google Scholar 

  48. White WB. Ambulatory blood pressure as a predictor of target organ disease and outcome in the hypertensive patient. Blood Press Monit. 1999;4(3–4):181–4.

    CAS  PubMed  Google Scholar 

  49. Bloomfield D, Park A. Night time blood pressure dip. World J Cardiol. 2015;7(7):373–6. https://doi.org/10.4330/wjc.v7.i7.373.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Friberg TR, Sanborn G, Weinreb RN. Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol. 1987;103(4):523–6.

    Article  CAS  PubMed  Google Scholar 

  51. Sultan M, Blondeau P. Episcleral venous pressure in younger and older subjects in the sitting and supine positions. J Glaucoma. 2003;12(4):370–3.

    Article  PubMed  Google Scholar 

  52. Jorge J, Ramoa-Marques R, Lourenco A, Silva S, Nascimento S, Queiros A, et al. IOP variations in the sitting and supine positions. J Glaucoma. 2010;19(9):609–12. https://doi.org/10.1097/IJG.0b013e3181ca7ca5.

    Article  PubMed  Google Scholar 

  53. Marjanovic I, Marjanovic M, Stojanov V, Hentova-Sencanic P, Markovic V, Bozic M, et al. The role of 24-hour ambulatory blood pressure monitoring in hypertensive patients with normal-tension glaucoma. Srp Arh Celok Lek. 2015;143(9–10):525–30.

    Article  PubMed  Google Scholar 

  54. Marjanovic I, Marjanovic M, Martinez A, Markovic V, Bozic M, Stojanov V. Relationship between blood pressure and retrobulbar blood flow in dipper and nondipper primary open-angle glaucoma patients. Eur J Ophthalmol. 2016;26(6):588–93. https://doi.org/10.5301/ejo.5000789.

    Article  PubMed  Google Scholar 

  55. Pillunat KR, Spoerl E, Jasper C, Furashova O, Hermann C, Borrmann A, et al. Nocturnal blood pressure in primary open-angle glaucoma. Acta Ophthalmol. 2015;93(8):e621–6. https://doi.org/10.1111/aos.12740.

    Article  PubMed  Google Scholar 

  56. • Kocaturk T, Akgullu C, Evlicoglu GE, Omurlu IK, Cakmak H, Eryilmaz U, et al. Diurnal blood pressure parameters in normal tension glaucoma, primary open angle glaucoma, and healthy subjects. Anatol J Cardiol. 2017; 10.14744/AnatolJCardiol.2017.7562. This is a prospective, randomized, case-control study that demonstrates low diurnal systemic blood pressure parameters in patients with normal tension glaucoma

  57. Kwon J, Lee J, Choi J, Jeong D, Kook MS. Association between nocturnal blood pressure dips and optic disc hemorrhage in patients with normal-tension glaucoma. Am J Ophthalmol. 2017; https://doi.org/10.1016/j.ajo.2017.01.002.

  58. Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  59. • Springelkamp H, Wolfs RC, Ramdas WD, Hofman A, Vingerling JR, Klaver CC, et al. Incidence of glaucomatous visual field loss after two decades of follow-up: the Rotterdam Study. Eur J Epidemiol. 2017; https://doi.org/10.1007/s10654-017-0270-y. This two decade follow-up on the Rotterdam study challenges the theory that glaucoma progression is related to low diastolic blood pressure. However, this study takes into account average baseline blood pressure measurement and does not consider the effect of circadian fluctuations in blood pressure

  60. Krasinska B, Karolczak-Kulesza M, Krasinski Z, Pawlaczyk-Gabriel K, Niklas A, Gluszek J, et al. A marked fall in nocturnal blood pressure is associated with the stage of primary open-angle glaucoma in patients with arterial hypertension. Blood Press. 2011;20(3):171–81. https://doi.org/10.3109/08037051.2010.538964.

    Article  PubMed  Google Scholar 

  61. Suic SP, Skegro I, Jandrokovic S, Kordic R, Kutija MB. Influence of diastolic blood pressure on glaucoma progression in glaucoma patients with systemic hypertension. Coll Antropol. 2015;39(3):719–22.

    CAS  PubMed  Google Scholar 

  62. Okumura Y, Yuki K, Tsubota K. Low diastolic blood pressure is associated with the progression of normal-tension glaucoma. Ophthalmologica. 2012;228(1):36–41. https://doi.org/10.1159/000335978.

    Article  PubMed  Google Scholar 

  63. • Jin SW, Noh SY. Long-term clinical course of normal-tension glaucoma: 20 years of experience. J Ophthalmol. 2017;2017:2651645. https://doi.org/10.1155/2017/2651645. This 20 year retrospective study demonstrated a relationship between ocular perfusion pressure and glaucoma progression. The investigators utilized 24-hour ambulatory blood pressure monitoring to collect their systemic blood pressure measurements

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jurgens C, Grossjohann R, Tost FH. Relationship of systemic blood pressure with ocular perfusion pressure and intraocular pressure of glaucoma patients in telemedical home monitoring. Med Sci Monit. 2012;18(11):MT85–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee NY, Jung Y, Han K, Park CK. Fluctuation in systolic blood pressure is a major systemic risk factor for development of primary open-angle glaucoma. Sci Rep. 2017;7:43734. https://doi.org/10.1038/srep43734.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Koch EC, Staab J, Fuest M, Witt K, Voss A, Plange N. Blood pressure and heart rate variability to detect vascular dysregulation in glaucoma. J Ophthalmol. 2015;2015:798958. https://doi.org/10.1155/2015/798958.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jin SW, Seo HR, Rho SS, Rho SH. The effects of nocturnal dip and blood pressure variability on paracentral scotoma in early open-angle glaucoma. Semin Ophthalmol. 2016:1–7. doi:https://doi.org/10.3109/08820538.2015.1123733.

  68. Hohn R, Mirshahi A, Nickels S, Schulz A, Wild PS, Blettner M, et al. Cardiovascular medication and intraocular pressure: results from the Gutenberg Health Study. Br J Ophthalmol. 2017; https://doi.org/10.1136/bjophthalmol-2016-309993.

  69. Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J. 2013;4(1):14. https://doi.org/10.1186/1878-5085-4-14.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gasser P, Flammer J, Mahler F. The use of calcium antagonists in the treatment of ocular circulation symptoms in the framework of a vasospastic syndrome. Schweiz Med Wochenschr. 1988;118(6):201–2.

    CAS  PubMed  Google Scholar 

  71. Gaspar AZ, Flammer J, Hendrickson P. Influence of nifedipine on the visual fields of patients with optic-nerve-head diseases. Eur J Ophthalmol. 1994;4(1):24–8.

    CAS  PubMed  Google Scholar 

  72. Koseki N, Araie M, Tomidokoro A, Nagahara M, Hasegawa T, Tamaki Y et al. A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. Ophthalmology 2008;115(11):2049-57. doi:https://doi.org/10.1016/j.ophtha.2008.05.015.

  73. Araie M, Mayama C. Use of calcium channel blockers for glaucoma. Prog Retin Eye Res. 2011;30(1):54–71. https://doi.org/10.1016/j.preteyeres.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell M. Levine.

Ethics declarations

Conflict of Interest

Russell M. Levine, Alina Yang, Venkatesh Brahma, and James F. Martone declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levine, R.M., Yang, A., Brahma, V. et al. Management of Blood Pressure in Patients with Glaucoma. Curr Cardiol Rep 19, 109 (2017). https://doi.org/10.1007/s11886-017-0927-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0927-x

Keywords

Navigation