Skip to main content
Log in

Intracardiac Echocardiography for Structural Heart and Electrophysiological Interventions

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With an increasing number of interventional procedures performed for structural heart disease and cardiac arrhythmias each year, echocardiographic guidance is necessary for safe and efficient results. The purpose of this review article is to overview the principles of intracardiac echocardiography (ICE) and describes the peri-interventional role of ICE in a variety of structural heart disease and electrophysiological interventions.

Recent Findings

Both transthoracic (TTE) and transesophageal echocardiography have limitations. ICE provides the advantage of imaging from within the heart, providing shorter image distances and higher resolution. ICE may be performed without sedation and avoids esophageal intubation as with transesophageal echocardiography (TEE). Limitations of ICE include the need for additional venous access with possibility of vascular complications, potentially higher costs, and a learning curve for new operators. Data supports the use of ICE in guiding device closure of interatrial shunts, transseptal puncture, and electrophysiologic procedures.

Summary

This paper reviews the more recent reports that ICE may be used for primary guidance or as a supplement to TEE in patients undergoing left atrial appendage (LAA) closure, interatrial shunt closure, transaortic valve implantation (TAVI), percutaneous mitral valve repair (PMVR), paravalvular leak (PVL) closure, aortic interventions, transcatheter pulmonary valve replacement (tPVR), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) closure. ICE imaging technology will continue to expand and help improve structural heart and electrophysiology interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASD:

Atrial septal defect

CMC:

Circular marking catheter

ICE:

Intracardiac echocardiography

IPAI:

Intraluminal phased-array imaging

LAA:

left atrial appendage

PDA:

Patent Ductus Arteriousus

PMBV:

percutaneous mitral balloon valvuloplasty

PMVR:

percutaneous mitral valve repair

PVL:

paravalvular leak

tPVR:

transcatheter pulmonary valve replacement

RT-3D:

Real-time three dimensional

TAVI:

Transaortic valve implantation

TEE:

Transesophageal echocardiography

TTE:

Transthoracic echocardiography

TS:

Transseptal

VSD:

Ventricular Septal Defect

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lung B, Vahanian A. Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol. 2011;8:162–72.

    Article  Google Scholar 

  2. D’Arcy JL, Prendergast BD, Chambers JB, Ray SG, Bridgewater B. Valvular heart disease: the next cardiac epidemic. Heart. 2011;97:91–3.

    Article  PubMed  Google Scholar 

  3. Kronzon I, Glassman E, Cohen M, Winer H. Use of two-dimensional echocardiography during transseptal cardiac catheterization. J Am Coll Cardiol. 1984;4:425–8.

    Article  CAS  PubMed  Google Scholar 

  4. Faletra FF, Pedrazzini G, Pasotti E, Muzzarelli S, Dequarti MC, Murzilli R, et al. 3D TEE during catheter-based interventions. JACC Cardiovasc Imaging. 2014;7(3):292–308.

    Article  PubMed  Google Scholar 

  5. Mathur SK, Singh P. Transoesophageal echocardiography related complications. Indian J Anaesth. 2009;53(5):567–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. • Kliger C, Ignacio Cruz-Gonzalez B, Ruiz CE. The present and future of Intracardiac echocardiography for guiding structural heart disease interventions. Rev Esp Cardiol. 2012;65(9):791–4. Excellent review on intracardiac echocardiography for structural heart disease interventions

    Article  PubMed  Google Scholar 

  7. Eggleton RC, Townsend C, Kossoff G. Program and abstracts of the eighth ICBME, session 10–3., computerized ultrasonic visualization of dynamic ventricular configuration. Chicago: Palmer House; 1969.

    Google Scholar 

  8. Glassman E, Kronzon I. Transvenous intracardiac echocardiography. Am J Cardiol. 1981;47:1255–9.

    Article  CAS  PubMed  Google Scholar 

  9. •• Bartel T, Muller S, et al. Why is intracardiac echocardiography helpful? Benefits, costs, and how to learn. Eur Heart J. 2014;35(2):69–76. Excellent review on intracardiac echocardiography

    Article  PubMed  Google Scholar 

  10. Rashkind WJ, Miller WW. Creation of an atrial septal defect without thoracotomy. A palliative approach to complete transposition of the great arteries. JAMA. 1966;196:991–2.

    Article  CAS  PubMed  Google Scholar 

  11. Hahn K, Gal R, Sarnoski J, Kubota J, Schmidt DH, Bajwa TK. Transesophageal echocardiographically guided atrial transseptal catheterization in patients with normal-sized atria: incidence of complications. Clin Cardiol. 1995;18:217–20.

    Article  CAS  PubMed  Google Scholar 

  12. Ren JF, Marchlinski FE. Superiority of simulator-based training compared with conventional training methodologies in the performance of transseptal catheterization. J Am Coll Cardiol. 2012;59(3):291–2.

    Article  PubMed  Google Scholar 

  13. Laura DM, et al. Lipomatous atrial septal hypertrophy: a review of its anatomy, pathophysiology, multimodality imaging, and relevance to percutaneous interventions. J Am Soc Echocardiogr. 2016;29(8):717–23.

    Article  PubMed  Google Scholar 

  14. Bayrak CG-B, Namdar M, et al. Added value of transoesophageal echocardiography during transseptal puncture performed by inexperienced operators. Europace. 2012;14:661–5.

    Article  PubMed  Google Scholar 

  15. Daoud EG, Kalbfleisch SJ, Hummel JD. Intracardiac echocardiography to guide transseptal left heart catheterization for radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 1999;10(3):358–63.

    Article  CAS  PubMed  Google Scholar 

  16. Epstein LM, Smith T, TenHoff H. Nonfluoroscopic transseptal catheterization: safety and efficacy of intracardiac echocardiographic guidance. J Cardiovasc Electrophysiol. 1998;9(6):625–30.

    Article  CAS  PubMed  Google Scholar 

  17. Calò L, Lamberti F, Loricchio ML, D’Alto M, Castro A, Boggi A, et al. Intracardiac echocardiography: from electroanatomic correlation to clinical application in interventional electrophysiology. Ital Heart J. 2002;3(7):387–98.

    PubMed  Google Scholar 

  18. Bazaz R, Schwartzman D. Site-selective atrial septal puncture. J Cardiovasc Electrophysiol. 2003;14:196–9.

    Article  PubMed  Google Scholar 

  19. Akkaya E, Vuruskan E, Zorlu A, Sincer I, Kucukosmanoglu M, Ardic I, et al. Aortic intracardiac echocardiography-guided septal puncture during mitral valvuloplasty. Eur Heart J Cardiovasc Imaging. 2014;15(1):70–6.

    Article  PubMed  Google Scholar 

  20. Mullen MJ, Dias BF, Walker F, Siu SC, Benson LN, McLaughlin PR. Intracardiac echocardiography guided device closure of atrial septal defects. J Am Coll Cardiol. 2003;41:285–92.

    Article  PubMed  Google Scholar 

  21. Hijazi Z, Wang Z, Cao Q, Koenig P, Waight D, Lang R. Transcatheter closure of atrial septal defects and patent foramen ovale under intracardiac echocardiographic guidance: feasibility and comparison with transesophageal echocardiography. Catheter Cardiovasc Interv. 2001;52(2):194–9.

    Article  CAS  PubMed  Google Scholar 

  22. Medford BA, Taggart NW, Cabalka AK, Cetta F, Reeder GS, Hagler DJ, et al. Intracardiac echocardiography during atrial septal defect and patent foramen ovale device closure in pediatric and adolescent patients. J Am Soc Echocardiogr. 2014;27(9):984–90.

    Article  PubMed  Google Scholar 

  23. ASE’s comprehensive echocardiography 2nd Edition. Lang RM, Goldstein SA, Kronzon I, Khandheria BK, Mor-Avi V. Elsevier Publishing. Philadelphia, PA 19103.

  24. Zhoa J et al. Safe and effective guidance by intracardiac echocardiography for transcatheter closure in atrial septal defects. International Journal Clinical Exp Med. 2015.

  25. Rigatelli G, Dell’Avvocata F, Cardaioli P, Giordan M, Braggion G, Aggio S, et al. Five-year follow-up of transcatheter intracardiac echocardiography-assisted closure of interatrial shunts. Cardiovasc Revasc Med. 2011;12(6):355–61.

    Article  PubMed  Google Scholar 

  26. Assaidi A, Sumian M, Mauri L, Mancini J, Ovaert C, Salaun E, et al. Transcatheter closure of complex atrial septal defects is efficient under intracardiac echocardiographic guidance. Arch Cardiovasc Dis. 2014 Dec;107(12):646–53.

    Article  PubMed  Google Scholar 

  27. Boccalandro F, Baptista E, Muench A, Carter C, Smalling RW. Comparison of intracardiac echocardiography versus transesophageal echocardiography guidance for percutaneous transcatheter closure of atrial septal defect. Am J Cardiol. 2004;93:437–40.

    Article  PubMed  Google Scholar 

  28. Alboliras ET, Hijazi ZM. Comparison of costs ofintracardiac echocardiography and transesophageal echocardiography in monitoring percutaneous device closure of atrial septal defect in children and adults. Am J Cardiol. 2004;94:690–2.

    Article  PubMed  Google Scholar 

  29. Bartel T, Bonaros N, Edlinger M, Velik-Salchner C, Feuchtner G, Rudnicki M, et al. Intracardiac echo and reduced radiocontrast requirements during TAVR. JACC Cardiovasc Imaging. 2014;7(3):319–20.

    Article  PubMed  Google Scholar 

  30. Bartel T, Konorza T, Arjumand J, Ebradlidze T, Eggebrecht H, Caspari G, et al. Intracardiac echocardiography is superior to conventional monitoring for guiding closure of interatrial communications. Circulation. 2003;107:795–7.

    Article  PubMed  Google Scholar 

  31. Saliba W, Thomas J. Intracardiac echocardiography during catheter ablation of atrial fibrillation. Europace. 2008;10(Suppl 3):iii42–7.

    PubMed  Google Scholar 

  32. Kalman JM, Fitzpatrick AP, Olgin JE, et al. Biophysical characteristics of radiofrequency lesion formation in vivo : dynamics of catheter tip–tissue contact evaluated by intracardiac echocardiography. Am Heart J. 1997;133:8–18.

    Article  CAS  PubMed  Google Scholar 

  33. Kanj M, Wazni O, Natale A. Pulmonary vein antrum isolation. Heart Rhythm. 2007;4:S73–9.

    Article  PubMed  Google Scholar 

  34. Bhatia NL, Humphries J, Chandrasekaran K, Srivathsan K. Atrial fibrillation ablation in cor triatriatum: value of intracardiac echocardiography. J Interv Card Electrophysiol. 2010;28(2):153–5.

    Article  PubMed  Google Scholar 

  35. Barker PC. Intracardiac echocardiography in congenital heart disease. J Cardiovasc Transl Res. 2009;2(1):19–23.

    Article  PubMed  Google Scholar 

  36. Horowitz BN, Vaseghi M, Mahajan A, Cesario DA, Buch E, Valderrabano M, et al. Percutaneous intrapericardial echocardiography during catheter ablation: a feasibility study. Heart Rhythm. 2006.

  37. Filgueiras-Rama D, de Torres-Alba F, Castrejón-Castrejón S, Estrada A, Figueroa J, Salvador-Montañés Ó, et al. Utility of intracardiac echocardiography for catheter ablation of complex cardiac arrhythmias in a medium-volume training center. Echocardiography. 2015;32(4):660–70.

    Article  PubMed  Google Scholar 

  38. Shah SJ, Bardo DM, Sugeng L, Weinert L, Lodato JA, Knight BP, et al. Real-time three-dimensional transesophageal echocardiography of the left atrial appendage: initial experience in the clinical setting. J Am Soc Echocardiogr. 2008;21(12):1362–8. https://doi.org/10.1016/j.echo.2008.09.024.

    Article  PubMed  Google Scholar 

  39. Rao, et al. ICE-CHIP study. J Interv Card Electrophysiol. 2005;13(Suppl 1):31–6.

    Article  PubMed  Google Scholar 

  40. Ren JF, Marchlinsky FE, Supple GE, Hutchinson MD, Garcia FC, Riley MP, et al. Intracardiac echocardiographic diagnosis of thrombus formation in the left atrial appendage: a complementary role to transesophageal echocardiography. Echocardiography. 2013;30:72–80.

    Article  PubMed  Google Scholar 

  41. Anter E, Silverstein J, Tschabrunn CM, Shvilkin A, Haffajee CI, Zimetbaum PJ, et al. Comparison of intracardiac echocardiography and transesophageal echocardiography for imaging of the right and left atrial appendages. Heart Rhythm. 2014;11(11):1890–7.

    Article  PubMed  Google Scholar 

  42. Berti S, Paradossi U, Meucci F, Trianni G, Tzikas A, Rezzaghi M, et al. Periprocedural intracardiac echocardiography for left atrial appendage closure: a dual-center experience. JACC Cardiovasc Interv. 2014;7:1036–44.

    Article  PubMed  Google Scholar 

  43. Matsuo Y, Neuzil P, Petru J, Chovanec M, Janotka M, Choudry S, et al. Left atrial appendage closure under intracardiac echocardiographic guidance: feasibility and comparison with transesophageal echocardiography. J Am Heart Assoc. 2016;28:5(10).

    Google Scholar 

  44. • Kronzon I, Jelnin V, Ruiz CE, et al. Optimal imaging for guiding TAVR: transesophageal or transthoracic echocardiography, or just fluoroscopy? J Am Coll Cardiol Img. 2015:361–70. Paper describes different imaging options for TAVR guidance. The paper includes benefits and drawbacks to several imaging modalities

  45. Bartel T, Bonaros N, Müller L, Friedrich G, Grimm M, Velik-Salchner C, et al. Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement. J Am Soc Echocardiogr. 2011;24(9):966–75.

    Article  PubMed  Google Scholar 

  46. Bartel T, Edris A, Velik-Salchner C, Müller S. Intracardiac echocardiography for guidance of transcatheter aortic valve implantation under monitored sedation: a solution to a dilemma? Eur Heart J Cardiovasc Imaging. 2016;17(1):1–8.

    PubMed  Google Scholar 

  47. Bartel T, Bonaros N, Edlinger M, Velik-Salchner C, Feuchtner G, Rudnicki M, et al. Lower risk of severe acute kidney injury in transcatheter aortic valve replacement: intracardiac echocardiography yields reduction of radio-contrast medium requirements. JACC Cardiovasc Imaging. 2014 Mar;7(3):319–20.

    Article  PubMed  Google Scholar 

  48. Müller S, Velik-Salchner C, Edlinger M, Bonaros N, Heinz A, Feuchtner G, et al. Intracardiac Doppler echocardiography for monitoring of pulmonary artery pressures in high-risk patients undergoing transcatheter aortic valve replacement. J Am Soc Echocardiogr. 2016;29(1):83–91.

    Article  PubMed  Google Scholar 

  49. Rendon A, Hamid T et al.. Annular sizing using real-time three-dimensional intracardiac echocardiography-guided trans-catheter aortic valve replacement. Open Heart. 2016;3(1).

  50. Principles of Echocardiography and Intracardiac Echocardiography. Stuart J. Hutchison MD. Elsevier. 2012.

  51. Altiok E, Becker M, Hamada S, Grabskaya E, Reith S, Marx N, et al. Real-time 3D TEE allows optimized guidance of percutaneous edge-to-edge repair of the mitral valve. JACC Cardiovasc Imaging. 2010;11:1196–8.

    Article  Google Scholar 

  52. Altiok E, Hamada S, Brehmer K, Kuhr K, Reith S, Becker M, et al. Analysis of procedural effects of percutaneous edge-to-edge mitral valve repair by 2D and 3D echocardiography. Circ Cardiovasc Imaging. 2012;6:748–55.

    Article  Google Scholar 

  53. Patzelt J, Seizer P, Zhang YY, Walker T, Schreieck J, Gawaz M, et al. Percutaneous mitral valve edge-to-edge repair with simultaneous Biatrial Intracardiac echocardiography: first-in-human experience. Circulation. 2016;133:1517–9.

    Article  PubMed  Google Scholar 

  54. Grassi G, Barbierato M, Pascotto A, Ronco F, Postorino S, Millosevich P, et al. Role of intracardiac echocardiography during percutaneous edge-to-edge mitral valve repair with the MitraClip system: a single center experience. Eur Secur. 2011;7(supplement M):395.

    Google Scholar 

  55. Henning A, Mueller II, Mueller K, Zuern C, Walker T, Gawaz M, et al. Percutaneous edge-to-edge mitral valve repair escorted by left atrial intracardiac echocardiography (ICE). Circulation. 2014;130(Issue 20):e173–4.

    Article  PubMed  Google Scholar 

  56. Saji M, Rossi AM, Ailawadi G, Dent J, Ragosta M, Lim DS. Adjunctive intracardiac echocardiography imaging from the left ventricle to guide percutaneous mitral valve repair with the MitraClip in patients with failed prior surgical rings. Catheter Cardiovasc Interv. 2016;87(2):E75–82.

    Article  PubMed  Google Scholar 

  57. Green NE, Hansgen AR, Carroll JD. Initial clinical experience with intracardiac echocardiography in guiding balloon mitral valvuloplasty: technique, safety, utility, and limitations. Catheter Cardiovasc Interv. 2004;63(3):385–94.

    Article  PubMed  Google Scholar 

  58. Ahmari SA, Amro A, Otabi MA, Abdullah MA, Kasab SA, Amri HA. Initial experience of using intracardiac echocardiography (ICE) for guiding balloon mitral valvuloplasty (BMV). J Saudi Heart Assoc. 2012;24(1):23–7.

    Article  PubMed  Google Scholar 

  59. Marmagkiolis K, Cilingiroglu M. Intracardiac echocardiography guided percutaneous mitral balloon valvuloplasty. Rev Port Cardiol. 2013;32:337–9.

    PubMed  Google Scholar 

  60. Kronzon I, Sugeng L, Perk G, et al. Real-time 3-dimensional transesophageal echocardiography in the evaluation of post-operative mitral annuloplasty ring and prosthetic valve dehiscence. J Am Coll Cardiol. 2009;53:1543–7.

    Article  PubMed  Google Scholar 

  61. Bavikati VV, Babaliaros VC, Lerakis S. Utility of threedimensional echocardiography in percutaneous closure of paravalvular leak. Echocardiography. 2009;26:852–4.

    Article  PubMed  Google Scholar 

  62. Deftereos S, Giannopoulos G, Raisakis K, et al. Intracardiac echocardiography imaging of periprosthetic valvular regurgitation. Eur J Echocardiogr. 2010;11:E20.

    PubMed  Google Scholar 

  63. Rihal CS, Sorajja P, Booker JD, Hagler DJ, Cabalka AK. Principles of percutaneous paravalvular leak closure. JACC Cardiovasc Interv. 2012;5:121–30.

    Article  PubMed  Google Scholar 

  64. Cappelli F, Del Bene MR, Santoro G, Meucci F, Attanà P, Barletta G. The challenge of integrated echocardiographic approach in percutaneous closure of paravalvular leak. Echocardiography. 2011;28(8):E168–71.

    Article  PubMed  Google Scholar 

  65. Osman F, Steeds R. Use of intra-cardiac ultrasound in the diagnosis of prosthetic valve malfunction. Eur J Echocardiogr. 2007;8:392–4.

    Article  PubMed  Google Scholar 

  66. Sharma M, Tseng E, Schiller N, Moore P, Shunk KA. Closure of aortic paravalvular leak under intravascular ultrasound and intracardiac echocardiography guidance. J Invasive Cardiol. 2011;23(1):E250.

    PubMed  Google Scholar 

  67. Chessa M, Butera G, Carminati M. Intracardiac echocardiography during percutaneous pulmonary valve replacement. Eur Heart J. 2008;29:2908.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Awad SM, Masood SA, Gonzalez I, Cao QL, Abdulla RI, Heitschmidt MG, et al. The use of intracardiac echocardiography during percutaneous pulmonary valve replacement. Pediatr Cardiol. 2015;36(1):76–83.

    Article  PubMed  Google Scholar 

  69. Whiteside W, Pasquali SK, Yu S, Bocks ML, Zampi JD, Armstrong AK. The utility of Intracardiac echocardiography following Melody™ transcatheter pulmonary valve implantation. Pediatr Cardiol. 2015;36(8):1754–60.

    Article  PubMed  Google Scholar 

  70. Evangelista A, et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr. 2010;11(8):645–58.

    Article  PubMed  Google Scholar 

  71. Kronzon I, Chen C, Chinitz LA, Bernstein NE, Slater JN, Varkey M, et al. Evaluation of the abdominal aorta and the renal arteries with an intracardiac echocardiography probe placed in the inferior vena cava: a feasibility study. J Am Soc Echocardiogr. 2007;20(2):119–25.

    Article  PubMed  Google Scholar 

  72. Bartel T, Eggebrecht H, Müller S, Gutersohn A, Bonatti J, Pachinger O, et al. Comparison of diagnostic and therapeutic value of transesophageal echocardiography, intravascular ultrasound imaging, and intraluminal phased-array imaging in aortic dissection with tear in the descending thoracic aorta (type B). Am J Cardiol. 2007;99:270–4.

    Article  PubMed  Google Scholar 

  73. Grabenwöger M, Alfonso F, Bachet J, Bonser R, Czerny M, Eggebrecht H, et al. Thoracic endovascular aortic repair (TEVAR) for the treatment of aortic diseases: a position statement from the European Association for Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2012;33(13):1558–63.

    Article  PubMed  Google Scholar 

  74. Teramachi Y, Suda K, Yoshimoto H, et al. Trans-pulmonary echocardiography to guide stent implantation into coarctation of the aorta. Echocardiography. 2015;32:872–4.

    Article  PubMed  Google Scholar 

  75. George JC, Varghese V, Mogtader A. Intracardiac echocardiography: evolving use in interventional cardiology. J Ultrasound Med. 2014 Mar;33(3):387–95.

    Article  PubMed  Google Scholar 

  76. Cao QL, Zabal C, Koenig P, Sandhu S, Hijazi ZM. Initial clinical experience with intracardiac echocardiography in guiding transcatheter closure of perimembranous ventricular septal defects: feasibility and comparison with transesophageal echocardiography. Catheter Cardiovasc Interv. 2005;66(2):258–67.

    Article  PubMed  Google Scholar 

  77. Kudo Y, Suda K, Yoshimoto H, Teramachi Y, Kishimoto S, Lemura M, et al. Trans-pulmonary echocardiography as a guide for device closure of patent ductus arteriosus. Catheter Cardiovasc Interv. 2015;86(2):264–70.

    Article  PubMed  Google Scholar 

  78. Bartel T, Gliech V, Müller S. Device closure of patent ductus arteriosus: optimal guidance by transaortic phased-array imaging. Eur J Echocardiogr. 2011;12:E9.

    Article  PubMed  Google Scholar 

  79. Wildes D, Lee W, Haider B et al.. 4D ICE: a 2D array transducer with integrated ASIC in a 10 Fr catheter for real-time 3D intracardiac echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzhak Kronzon.

Ethics declarations

Conflict of Interest

Craig Basman, Yuvrajsinh J. Parmar, and Itzhak Kronzon declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basman, C., Parmar, Y.J. & Kronzon, I. Intracardiac Echocardiography for Structural Heart and Electrophysiological Interventions. Curr Cardiol Rep 19, 102 (2017). https://doi.org/10.1007/s11886-017-0902-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0902-6

Keywords

Navigation