Skip to main content
Log in

Lipid Biomarkers for Risk Assessment in Acute Coronary Syndromes

  • Management of Acute Coronary Syndromes (AS Jaffe, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The objective of this review was to summarize evidence gathered for the prognostic value of routine and novel blood lipids and lipoproteins measured in patients with acute coronary syndromes (ACS).

Recent Findings

Data supports clear association with risk and actionable value for non-high-density lipoprotein (Non-HDL) cholesterol and plasma ceramides in a setting of ACS. The prognostic value and clinical actionability of apolipoprotein B (apoB) and lipoprotein(a) [Lp(a)] in ACS have not been thoroughly tested, while the data for omega-3 fatty acids and oxidized low-density lipoprotein (Ox-LDL) are either untested or more varied.

Summary

Measuring basic lipids, which should include Non-HDL cholesterol, at the time of presentation for ACS is guideline mandated. Plasma ceramides also provide useful information to guide both treatment decisions and follow-up. Additional studies targeting ACS patients are necessary for apoB, Lp(a), omega-3 fatty acids, and Ox-LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N Engl J Med. 2007;356(23):2388–98. doi:10.1056/NEJMsa053935.

    Article  CAS  PubMed  Google Scholar 

  2. Amsterdam EA, Wenger NK, Brindis RG, Casey Jr DE, Ganiats TG, Holmes Jr DR, et al. 2014 AHA/ACC Guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64(24):e139–228. doi:10.1016/j.jacc.2014.09.017.

    Article  PubMed  Google Scholar 

  3. Dodds C, Mills GL. Influence of myocardial infarction on plasma-lipoprotein concentration. Lancet. 1959;1(7084):1160–3.

    Article  CAS  PubMed  Google Scholar 

  4. Fyfe T, Baxter RH, Cochran KM, Booth EM. Plasma-lipid changes after myocardial infarction. Lancet. 1971;2(7732):997–1001.

    Article  CAS  PubMed  Google Scholar 

  5. Ryder RE, Hayes TM, Mulligan IP, Kingswood JC, Williams S, Owens DR. How soon after myocardial infarction should plasma lipid values be assessed? Br Med J (Clin Res Ed). 1984;289(6459):1651–3.

    Article  CAS  Google Scholar 

  6. Balci B. The modification of serum lipids after acute coronary syndrome and importance in clinical practice. Curr Cardiol Rev. 2011;7(4):272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pitt B, Loscalzo J, Ycas J, Raichlen JS. Lipid levels after acute coronary syndromes. J Am Coll Cardiol. 2008;51(15):1440–5. doi:10.1016/j.jacc.2007.11.075.

    Article  CAS  PubMed  Google Scholar 

  8. Pfohl M, Schreiber I, Liebich HM, Haring HU, Hoffmeister HM. Upregulation of cholesterol synthesis after acute myocardial infarction—is cholesterol a positive acute phase reactant? Atherosclerosis. 1999;142(2):389–93.

    Article  CAS  PubMed  Google Scholar 

  9. Rauoof MA, Iqbal K, Mir MM, Tramboo NA. Measurement of plasma lipids in patients admitted with acute myocardial infarction or unstable angina pectoris. Am J Cardiol. 2001;88(2):165–7. A5

    Article  CAS  PubMed  Google Scholar 

  10. Henkin Y, Crystal E, Goldberg Y, Friger M, Lorber J, Zuili I, et al. Usefulness of lipoprotein changes during acute coronary syndromes for predicting postdischarge lipoprotein levels. Am J Cardiol. 2002;89(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  11. Vonbank A, Saely CH, Rein P, Drexel H. Lipid parameters in patients with acute coronary syndromes versus stable coronary artery disease. Eur J Clin Investig. 2015;45(10):1092–7. doi:10.1111/eci.12513.

    Article  CAS  Google Scholar 

  12. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA. 2001;285(13):1711–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. JAMA. 2007;297(2):177–86. doi:10.1001/jama.297.2.177.

    Article  CAS  PubMed  Google Scholar 

  14. Nordestgaard BG, Langsted A, Mora S, Kolovou G, Baum H, Bruckert E, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37(25):1944–58. doi:10.1093/eurheartj/ehw152.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meeusen JW, Snozek CL, Baumann NA, Jaffe AS, Saenger AK. Reliability of calculated low-density lipoprotein cholesterol. Am J Cardiol. 2015;116(4):538–40. doi:10.1016/j.amjcard.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  16. • Mora S, Buring JE, Ridker PM. Discordance of low-density lipoprotein (LDL) cholesterol with alternative LDL-related measures and future coronary events. Circulation. 2014;129(5):553–61. doi:10.1161/CIRCULATIONAHA.113.005873. Data from 27,000 patients showing superior risk prediction for Non-HDL cholesterol compared to LDL cholesterol

    Article  CAS  PubMed  Google Scholar 

  17. Giraldez RR, Giugliano RP, Mohanavelu S, Murphy SA, McCabe CH, Cannon CP, et al. Baseline low-density lipoprotein cholesterol is an important predictor of the benefit of intensive lipid-lowering therapy: a PROVE IT-TIMI 22 (Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction 22) analysis. J Am Coll Cardiol. 2008;52(11):914–20. doi:10.1016/j.jacc.2008.05.046.

    Article  CAS  PubMed  Google Scholar 

  18. Ray KK, Cannon CP, Cairns R, Morrow DA, Ridker PM, Braunwald E. Prognostic utility of apoB/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: results from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2009;29(3):424–30. doi:10.1161/ATVBAHA.108.181735.

    Article  CAS  PubMed  Google Scholar 

  19. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1—executive summary. J Clin Lipidol. 2014;8(5):473–88. doi:10.1016/j.jacl.2014.07.007.

    Article  PubMed  Google Scholar 

  20. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016 ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37(39):2999–3058. doi:10.1093/eurheartj/ehw272.

    Article  PubMed  Google Scholar 

  21. Ballantyne CM, Pitt B, Loscalzo J, Cain VA, Raichlen JS. Alteration of relation of atherogenic lipoprotein cholesterol to apolipoprotein B by intensive statin therapy in patients with acute coronary syndrome (from the Limiting UNdertreatment of lipids in ACS with Rosuvastatin [LUNAR] trial). Am J Cardiol. 2013;111(4):506–9. doi:10.1016/j.amjcard.2012.10.037.

    Article  CAS  PubMed  Google Scholar 

  22. Meeusen JW, Donato LJ, Jaffe AS. Should apolipoprotein B replace LDL cholesterol as therapeutic targets are lowered? Curr Opin Lipidol. 2016;27(4):359–66. doi:10.1097/MOL.0000000000000313.

    Article  CAS  PubMed  Google Scholar 

  23. Lablanche JM, Leone A, Merkely B, Morais J, Alonso J, Santini M, et al. Comparison of the efficacy of rosuvastatin versus atorvastatin in reducing apolipoprotein B/apolipoprotein A-1 ratio in patients with acute coronary syndrome: results of the CENTAURUS study. Arch Cardiovasc Dis. 2010;103(3):160–9. doi:10.1016/j.acvd.2010.01.005.

    Article  PubMed  Google Scholar 

  24. Aydin MU, Aygul N, Altunkeser BB, Unlu A, Taner A. Comparative effects of high-dose atorvastatin versus moderate-dose rosuvastatin on lipid parameters, oxidized-LDL and inflammatory markers in ST elevation myocardial infarction. Atherosclerosis. 2015;239(2):439–43. doi:10.1016/j.atherosclerosis.2015.02.003.

    Article  CAS  PubMed  Google Scholar 

  25. Berg K. A new serum type system in man—the Lp system. Acta Pathol Microbiol Scand. 1963;59:369–82.

    Article  CAS  PubMed  Google Scholar 

  26. Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016;57(11):1953–75. doi:10.1194/jlr.R071233.

    Article  CAS  PubMed  Google Scholar 

  27. Kraft HG, Kochl S, Menzel HJ, Sandholzer C, Utermann G. The apolipoprotein (a) gene: a transcribed hypervariable locus controlling plasma lipoprotein (a) concentration. Hum Genet. 1992;90(3):220–30.

    Article  CAS  PubMed  Google Scholar 

  28. • McConnell JP, Guadagno PA, Dayspring TD, Hoefner DM, Thiselton DL, Warnick GR, et al. Lipoprotein(a) mass: a massively misunderstood metric. J Clin Lipidol. 2014;8(6):550–3. doi:10.1016/j.jacl.2014.08.003. Thorough description of Lp(a) as a biomarker

    Article  PubMed  Google Scholar 

  29. Baudhuin LM, Hartman SJ, O'Brien JF, Meissner I, Galen RS, Ward JN, et al. Electrophoretic measurement of lipoprotein(a) cholesterol in plasma with and without ultracentrifugation: comparison with an immunoturbidimetric lipoprotein(a) method. Clin Biochem. 2004;37(6):481–8. doi:10.1016/j.clinbiochem.2004.02.001.

    Article  CAS  PubMed  Google Scholar 

  30. Leebmann J, Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D, et al. Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation. 2013;128(24):2567–76. doi:10.1161/CIRCULATIONAHA.113.002432.

    Article  CAS  PubMed  Google Scholar 

  31. Erqou S, Thompson A, Di Angelantonio E, Saleheen D, Kaptoge S, Marcovina S, et al. Apolipoprotein(a) isoforms and the risk of vascular disease: systematic review of 40 studies involving 58,000 participants. J Am Coll Cardiol. 2010;55(19):2160–7. doi:10.1016/j.jacc.2009.10.080.

    Article  CAS  PubMed  Google Scholar 

  32. Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368(6):503–12. doi:10.1056/NEJMoa1109034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D, Breitenberger P, et al. Lipoprotein apheresis for lipoprotein(a)-associated cardiovascular disease: prospective 5 years of follow-up and apolipoprotein(a) characterization. Arterioscler Thromb Vasc Biol. 2016;36(9):2019–27. doi:10.1161/ATVBAHA.116.307983.

    Article  CAS  PubMed  Google Scholar 

  34. Navarese EP, Kolodziejczak M, Schulze V, Gurbel PA, Tantry U, Lin Y, et al. Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann Intern Med. 2015;163(1):40–51. doi:10.7326/M14-2957.

    Article  PubMed  Google Scholar 

  35. Willeit P, Kiechl S, Kronenberg F, Witztum JL, Santer P, Mayr M, et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck Study. J Am Coll Cardiol. 2014;64(9):851–60. doi:10.1016/j.jacc.2014.03.061.

    Article  PubMed  Google Scholar 

  36. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Extreme lipoprotein(a) levels and improved cardiovascular risk prediction. J Am Coll Cardiol. 2013;61(11):1146–56. doi:10.1016/j.jacc.2012.12.023.

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Yang X, Xing S, Bian F, Yao W, Bai X, et al. Endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes its subendothelial retention in vascular wall. Oxidative Med Cell Longev. 2014;2014:823071. doi:10.1155/2014/823071.

    Google Scholar 

  38. Schissel SL, Tweedie-Hardman J, Rapp JH, Graham G, Williams KJ, Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest. 1996;98(6):1455–64. doi:10.1172/JCI118934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marathe S, Schissel SL, Yellin MJ, Beatini N, Mintzer R, Williams KJ, et al. Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem. 1998;273(7):4081–8.

    Article  CAS  PubMed  Google Scholar 

  40. Predescu S, Knezevic I, Bardita C, Neamu RF, Brovcovych V, Predescu D. Platelet activating factor-induced ceramide micro-domains drive endothelial NOS activation and contribute to barrier dysfunction. PLoS One. 2013;8(9):e75846. doi:10.1371/journal.pone.0075846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spijkers LJ, van den Akker RF, Janssen BJ, Debets JJ, De Mey JG, Stroes ES, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One. 2011;6(7):e21817. doi:10.1371/journal.pone.0021817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu J, Pan W, Shi R, Yang T, Li Y, Yu G, et al. Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can J Cardiol. 2015;31(3):357–63. doi:10.1016/j.cjca.2014.12.007.

    Article  PubMed  Google Scholar 

  43. Schroeter A, Kiselev MA, Hauss T, Dante S, Neubert RH. Evidence of free fatty acid interdigitation in stratum corneum model membranes based on ceramide [AP] by deuterium labelling. Biochim Biophys Acta. 2009;1788(10):2194–203. doi:10.1016/j.bbamem.2009.07.024.

    Article  CAS  PubMed  Google Scholar 

  44. • Tarasov K, Ekroos K, Suoniemi M, Kauhanen D, Sylvanne T, Hurme R, et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J Clin Endocrinol Metab. 2014;99(1):E45–52. doi:10.1210/jc.2013-2559. Identification of specific ceramides associated with cardiovascular risk and modulation of ceramide levels by simvastatin

    Article  PubMed  Google Scholar 

  45. Cheng JM, Suoniemi M, Kardys I, Vihervaara T, de Boer SP, Akkerhuis KM, et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Atherosclerosis. 2015;243(2):560–6. doi:10.1016/j.atherosclerosis.2015.10.022.

    Article  CAS  PubMed  Google Scholar 

  46. •• Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37(25):1967–76. doi:10.1093/eurheartj/ehw148. Data from three unique patient cohorts all supporting the use of plasma ceramides and a risk score in identifying patients at increased risk of subsequent events after ACS.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Huang H, Kasumov T, Gatmaitan P, Heneghan HM, Kashyap SR, Schauer PR, et al. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity (Silver Spring). 2011;19(11):2235–40. doi:10.1038/oby.2011.107.

    Article  CAS  Google Scholar 

  48. Bergman BC, Brozinick JT, Strauss A, Bacon S, Kerege A, Bui HH, et al. Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans. Am J Physiol Endocrinol Metab. 2015;309(4):E398–408. doi:10.1152/ajpendo.00134.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ng TW, Ooi EM, Watts GF, Chan DC, Weir JM, Meikle PJ, et al. Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome. J Clin Endocrinol Metab. 2014;99(11):E2335–40. doi:10.1210/jc.2014-1665.

    Article  CAS  PubMed  Google Scholar 

  50. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747–57.

    Article  PubMed  Google Scholar 

  51. Aarsetoey H, Ponitz V, Grundt H, Staines H, Harris WS, Nilsen DW. (n-3) fatty acid content of red blood cells does not predict risk of future cardiovascular events following an acute coronary syndrome. J Nutr. 2009;139(3):507–13. doi:10.3945/jn.108.096446.

    Article  CAS  PubMed  Google Scholar 

  52. Harris WS, Kennedy KF, O'Keefe Jr JH, Spertus JA. Red blood cell fatty acid levels improve GRACE score prediction of 2-yr mortality in patients with myocardial infarction. Int J Cardiol. 2013;168(1):53–9. doi:10.1016/j.ijcard.2012.09.076.

    Article  PubMed  Google Scholar 

  53. von Schacky C. Omega-3 fatty acids in cardiovascular disease—an uphill battle. Prostaglandins Leukot Essent Fatty Acids. 2015;92:41–7. doi:10.1016/j.plefa.2014.05.004.

    Article  Google Scholar 

  54. • Harris WS, Varvel SA, Pottala JV, Warnick GR, McConnell JP. Comparative effects of an acute dose of fish oil on omega-3 fatty acid levels in red blood cells versus plasma: implications for clinical utility. J Clin Lipidol. 2013;7(5):433–440. doi:10.1016/j.jacl.2013.05.001. Data in support of the transient nature of plasma omega-3 versus the more stable and informative measure of omega-3 in erythrocyte membranes.

  55. von Schacky C, Fischer S, Weber PC. Long-term effects of dietary marine omega-3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. J Clin Invest. 1985;76(4):1626–31. doi:10.1172/JCI112147.

    Article  Google Scholar 

  56. Harris WS, Sands SA, Windsor SL, Ali HA, Stevens TL, Magalski A, et al. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: correlation with erythrocytes and response to supplementation. Circulation. 2004;110(12):1645–9. doi:10.1161/01.CIR.0000142292.10048.B2.

    Article  CAS  PubMed  Google Scholar 

  57. Metcalf RG, Cleland LG, Gibson RA, Roberts-Thomson KC, Edwards JR, Sanders P, et al. Relation between blood and atrial fatty acids in patients undergoing cardiac bypass surgery. Am J Clin Nutr. 2010;91(3):528–34. doi:10.3945/ajcn.2009.28302.

    Article  CAS  PubMed  Google Scholar 

  58. Harris WS, Thomas RM. Biological variability of blood omega-3 biomarkers. Clin Biochem. 2010;43(3):338–40. doi:10.1016/j.clinbiochem.2009.08.016.

    Article  CAS  PubMed  Google Scholar 

  59. • Alexander DD, Miller PE, Van Elswyk ME, Kuratko CN, Bylsma LC. A meta-analysis of randomized controlled trials and prospective cohort studies of Eicosapentaenoic and docosahexaenoic long-chain omega-3 fatty Acids and coronary heart disease risk. Mayo Clin Proc. 2017;92(1):15–29. doi:10.1016/j.mayocp.2016.10.018. Summary of omega-3 supplementation clinical trials.

  60. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S76–99. doi:10.1161/01.cir.0000437740.48606.d1.

    Article  PubMed  Google Scholar 

  61. Jacobson TA, Maki KC, Orringer CE, Jones PH, Kris-Etherton P, Sikand G, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 2. J Clin Lipidol. 2015;9(6 Suppl):S1–122 e1. doi:10.1016/j.jacl.2015.09.002.

    Article  PubMed  Google Scholar 

  62. Tsimikas S, Witztum JL, Miller ER, Sasiela WJ, Szarek M, Olsson AG, et al. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation. 2004;110(11):1406–12. doi:10.1161/01.CIR.0000141728.23033.B5.

    Article  CAS  PubMed  Google Scholar 

  63. Fraley AE, Schwartz GG, Olsson AG, Kinlay S, Szarek M, Rifai N, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering) trial. J Am Coll Cardiol. 2009;53(23):2186–96. doi:10.1016/j.jacc.2009.02.041.

    Article  CAS  PubMed  Google Scholar 

  64. • Byun YS, Yang X, Bao W, DeMicco D, Laskey R, Witztum JL, et al. Oxidized phospholipids on apolipoprotein B-100 and recurrent ischemic events following stroke or transient ischemic attack. J Am Coll Cardiol. 2017;69(2):147–58. doi:10.1016/j.jacc.2016.10.057. Data in support of the prognostic utility of Ox-LDL.

    Article  CAS  PubMed  Google Scholar 

  65. Harris WS, Reid KJ, Sands SA, Spertus JA. Blood omega-3 and trans fatty acids in middle-aged acute coronary syndrome patients. Am J Cardiol. 2007;99(2):154–8. doi:10.1016/j.amjcard.2006.08.013.

    Article  CAS  PubMed  Google Scholar 

  66. Block RC, Harris WS, Reid KJ, Sands SA, Spertus JA. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis. 2008;197(2):821–8. doi:10.1016/j.atherosclerosis.2007.07.042.

    Article  CAS  PubMed  Google Scholar 

  67. Park Y, Lim J, Lee J, Kim SG. Erythrocyte fatty acid profiles can predict acute non-fatal myocardial infarction. Br J Nutr. 2009;102(9):1355–61. doi:10.1017/S0007114509990298.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Meeusen.

Ethics declarations

Conflict of Interest

Jeffrey W. Meeusen and Leslie J. Donato declare that they have no conflict of interest.

Allan S. Jaffe reports personal fees from Abbott, Alere, Beckman-Coulter, ET Healthcare, NeurogenomeX, Novartis, Roche, Siemens, Sphingotec, theheart.org, and Singulex.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Management of Acute Coronary Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meeusen, J.W., Donato, L.J. & Jaffe, A.S. Lipid Biomarkers for Risk Assessment in Acute Coronary Syndromes. Curr Cardiol Rep 19, 48 (2017). https://doi.org/10.1007/s11886-017-0863-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0863-9

Keywords

Navigation