Skip to main content
Log in

Functional Versus Anatomic Imaging of CAD: Lessons Learned from Recent Clinical Trials

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Recent clinical trials directed at imaging of coronary artery disease (CAD) have demonstrated a paradigm shift away from endpoints related to detection of CAD in favor of those related to clinical outcomes. The objective of such trials has been to determine whether physiological metrics are superior to anatomical ones for guiding therapy and improving outcomes in patients with known or suspected CAD. The present review focuses on selected trials in this area in particular DEFER, FAME 1 and 2, a meta-analysis comparing FFR to anatomically guided treatment outcomes and COURAGE SPECT MPI sub study. The rationale for using physiological as opposed to anatomical endpoints to optimize patient management, in particular coronary revascularization decisions, is emphasized. The results of the FFR-based trials are concordant and indicate physiological metrics are superior to anatomical ones for guiding therapy and improving clinical outcomes in patients with known or suspected CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging. 2009;2(8):1009–23.

    Article  PubMed  Google Scholar 

  2. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62(18):1639–53. A comprehensive state of the art paper which critically reviews both invasive and quantitative PET myocardial blood flow methods for assessing coronary stenosis severity. The authors also make the cases for a randomized clinical trial focusing on PET assessment of stenosis severity for guiding decision making for coronary revascularization and resulting clinical outcomes.

    Article  PubMed  Google Scholar 

  3. Johnson NP, Kirkeeide RL, Gould KL. Coronary anatomy to predict physiology: fundamental limits. Circ Cardiovasc Imaging. 2013;6(5):817–32. An essential, comprehensive review of basic coronary physiology which renders highly problematic efforts to deduce hemodynamic stenosis severity based on apparent angiographic severity.

    Article  PubMed  Google Scholar 

  4. Aarnoudse W, Van’t Veer M, Pijls NH, Ter Woorst J, Vercauteren S, Tonino P, et al. Direct volumetric blood flow measurement in coronary arteries by thermodilution. J Am Coll Cardiol. 2007;50(24):2294–304.

    Article  PubMed  Google Scholar 

  5. De Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94(8):1842–9.

    Article  PubMed  Google Scholar 

  6. Pijls NH, De Bruyne B. Coronary pressure measurement and fractional flow reserve. Heart. 1998;80(6):539–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122(6):603–13.

    Article  PubMed  CAS  Google Scholar 

  9. De Bruyne B, Baudhum T, Melin JA, Pijls NHJ, Sys SU, Bol A, et al. Coronary flow reserve calculated from pressure measurements in humans: validation with positron emission tomography. Circulation. 1994;89:1013–22.

    Article  PubMed  Google Scholar 

  10. Johnson NP, Gould KL. Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity. JACC Cardiovasc Imaging. 2012;5(4):430–40. This study reports important observations linking absolute level of PET determined myocardial blood flow with clinical evidence of myocardial ischemia during dipyridamole stress testing in humans.

    Article  PubMed  Google Scholar 

  11. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2(6):751–8.

    Article  PubMed  Google Scholar 

  12. Danad I, Raijmakers PG, Appelman YE, Harms HJ, de Haan S, van den Oever ML, et al. Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med. 2013;54(1):55–63. An important study confirming earlier work which indicates absolute maximal myocardial blood flow measurement by PET is superior to myocardial flow reserve ratio for detection of hemodynamically significant coronary stenoses.

    Article  PubMed  CAS  Google Scholar 

  13. Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with 15O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4(6):678–84.

    Article  PubMed  Google Scholar 

  14. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol. 2014;64(14):1464–75. This study extends earlier work by this group and others by providing guidelines for interpreting PET measurements of absolute myocardial blood flow for assessment of coronary stenosis hemodynamic severity.

    Article  PubMed  Google Scholar 

  15. Young DF, Tsai FY. Flow characteristics in models of arterial stenosis. I. Steady flow. J Biomech. 1973;6:396–410.

    Google Scholar 

  16. Young DF, Tsai FY. Flow characteristics in models of arterial stenosis. II, Unsteady flow. J Biomech. 1973;6:547–59.

    Article  PubMed  CAS  Google Scholar 

  17. Muller JM, Davis MJ, Chilian WM. Integrated regulation of pressure and flow in the coronary microcirculation. Cardiovasc Res. 1996;32(4):668–78.

    Article  PubMed  CAS  Google Scholar 

  18. Gewirtz H. Fractional flow reserve. Circulation. 1996;94(9):2306–7.

    PubMed  CAS  Google Scholar 

  19. Siebes M, Chamuleau SA, Meuwissen M, Piek JJ, Spaan JA. Influence of hemodynamic conditions on fractional flow reserve: parametric analysis of underlying model. Am J Physiol Heart Circ Physiol. 2002;283(4):H1462–70.

    Article  PubMed  CAS  Google Scholar 

  20. De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation. 2000;101(15):1840–7.

    Article  PubMed  Google Scholar 

  21. Gewirtz H. PET measurement of adenosine stimulated absolute myocardial blood flow for physiological assessment of the coronary circulation. J Nucl Cardiol. 2012;19(2):347–54.

    Article  PubMed  Google Scholar 

  22. Skopicki HA, Abraham SA, Picard MH, Alpert NM, Fischman AJ, Gewirtz H. Effects of dobutamine at maximally tolerated dose on myocardial blood flow in humans with ischemic heart disease. Circulation. 1997;96(10):3346–52.

    Article  PubMed  CAS  Google Scholar 

  23. Laaksonen MS, Kalliokoski KK, Luotolahti M, Kemppainen J, Teras M, Kyrolainen H, et al. Myocardial perfusion during exercise in endurance-trained and untrained humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R837–43.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5(2):193–202. A very helpful review of physiological reasons for discordance between FFR and CFR measurements and underscores important limitations of each as indicators of maximal coronary vasodilator capacity.

    Article  PubMed  Google Scholar 

  25. van de Hoef TP, van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SA, et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7(3):301–11.

    Article  PubMed  Google Scholar 

  26. Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103(24):2928–34.

    Article  PubMed  CAS  Google Scholar 

  27. Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49(21):2105–11.

    Article  PubMed  Google Scholar 

  28. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    Article  PubMed  CAS  Google Scholar 

  29. De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371(13):1208–17. An important report of the complete 2 year follow up results of FAME 2.

    Article  PubMed  Google Scholar 

  30. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991–1001.

    Article  PubMed  Google Scholar 

  31. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Article  PubMed  CAS  Google Scholar 

  32. Boden WE. Which is more enduring—FAME or COURAGE? N Engl J Med. 2012;367(11):1059–61. An interesting rebuttal editorial from the PI of COURAGE regarding results of FAME 2.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64(16):1641–54. An interesting meta-analysis of prior clinical trials in which FFR was used as a revascularization guide and clinical outcomes constituted the primary end point.

    Article  PubMed  Google Scholar 

  34. Mancini GB, Hartigan PM, Shaw LJ, Berman DS, Hayes SW, Bates ER, et al. Predicting outcome in the COURAGE trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation): coronary anatomy versus ischemia. JACC Cardiovasc Interv. 2014;7(2):195–201. An interesting SPECT MPI sub study of the COURAGE clinical trial in which SPECT MPI assessed ischemia failed to predict clinical outcomes whereas angiographic severity of CAD did.

    Article  PubMed  Google Scholar 

  35. Garg S, Sarno G, Garcia-Garcia HM, Girasis C, Wykrzykowska J, Dawkins KD, et al. A new tool for the risk stratification of patients with complex coronary artery disease: the clinical SYNTAX score. Circ Cardiovasc Interv. 2010;3(4):317–26.

    Article  PubMed  Google Scholar 

  36. Wykrzykowska JJ, Garg S, Girasis C, de Vries T, Morel MA, van Es GA, et al. Value of the SYNTAX score for risk assessment in the all-comers population of the randomized multicenter LEADERS (Limus Eluted from A Durable versus ERodable Stent coating) trial. J Am Coll Cardiol. 2010;56(4):272–7.

    Article  PubMed  Google Scholar 

  37. Farzaneh-Far A, Phillips HR, Shaw LK, Starr AZ, Fiuzat M, O’Connor CM, et al. Ischemia change in stable coronary artery disease is an independent predictor of death and myocardial infarction. JACC Cardiovasc Imaging. 2012;5(7):715–24.

    Article  PubMed  Google Scholar 

  38. Nakazato R, Berman DS, Gransar H, Hyun M, Miranda-Peats R, Kite FC, et al. Prognostic value of quantitative high-speed myocardial perfusion imaging. J Nucl Cardiol. 2012;19(6):1113–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Berman DS, Shaw LJ, Hachamovitch R, Friedman JD, Polk DM, Hayes SW, et al. Comparative use of radionuclide stress testing, coronary artery calcium scanning, and noninvasive coronary angiography for diagnostic and prognostic cardiac assessment. Semin Nucl Med. 2007;37(1):2–16.

    Article  PubMed  Google Scholar 

  40. Berman DS, Shaw LJ, Min JK, Hachamovitch R, Abidov A, Germano G, et al. SPECT/PET myocardial perfusion imaging versus coronary CT angiography in patients with known or suspected CAD. Q J Nucl Med Mol Imaging. 2010;54(2):177–200.

    PubMed  CAS  Google Scholar 

  41. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372(14):1291–300.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Kramer CM. Cardiovascular imaging and outcomes—PROMISEs to keep. N Engl J Med. 2015;372(14):1366–7.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson NP, Gould KL. Physiological basis for angina and ST-segment change PET-verified thresholds of quantitative stress myocardial perfusion and coronary flow reserve. JACC Cardiovasc Imaging. 2011;4(9):990–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Gewirtz.

Ethics declarations

Conflict of Interest

Henry Gewirtz declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gewirtz, H. Functional Versus Anatomic Imaging of CAD: Lessons Learned from Recent Clinical Trials. Curr Cardiol Rep 18, 4 (2016). https://doi.org/10.1007/s11886-015-0686-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0686-5

Keywords

Navigation