Skip to main content

Advertisement

Log in

Advanced Imaging of Cardiac Sarcoidosis

  • Cardiac PET, CT, and MRI (SE Petersen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Sarcoidosis with cardiac involvement is underdiagnosed and can put patients at risk of morbidity including conduction defects, arrhythmias and heart failure, as well as sudden cardiac death. In addition, cardiac sarcoidosis may have no clinical manifestations or non-specific presentation and diagnosis may be difficult on clinical criteria. Investigation for cardiac sarcoidosis should be considered in those with extra-cardiac sarcoidosis and cardiac findings as well as those under the age of 60 years presenting with atrioventricular block without a clear cause. Advanced imaging modalities including cardiac magnetic resonance and positron emission tomography may help in both the diagnosis and assessment of response to treatment for cardiac sarcoidosis. This ultimately may help to minimize associated adverse outcomes from this enigmatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–11.

    Article  CAS  PubMed  Google Scholar 

  2. Roberts WC, McAllister Jr HA, Ferrans VJ. Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11). Am J Med. 1977;63:86–108.

    Article  CAS  PubMed  Google Scholar 

  3. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med. 2007;357:2153–65.

    Article  CAS  PubMed  Google Scholar 

  4. Perry A, Vuitch F. Causes of death in patients with sarcoidosis. A morphologic study of 38 autopsies with clinicopathologic correlations. Arch Pathol Lab Med. 1995;119:167–72.

    CAS  PubMed  Google Scholar 

  5. Ohira H, Tsujino I, Ishimaru S, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35:933–41.

    Article  PubMed  Google Scholar 

  6. Smedema JP, Snoep G, van Kroonenburgh MP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol. 2005;45:1683–90.

    Article  PubMed  Google Scholar 

  7. Longcope WT, Freiman DG. A study of sarcoidosis; based on a combined investigation of 160 cases including 30 autopsies from The Johns Hopkins Hospital and Massachusetts General Hospital. Medicine. 1952;31:1–132.

    Article  CAS  PubMed  Google Scholar 

  8. Kim JS, Judson MA, Donnino R, et al. Cardiac sarcoidosis. Am Heart J. 2009;157:9–21.

    Article  CAS  PubMed  Google Scholar 

  9. Youssef G, Beanlands RS, Birnie DH, Nery PB. Cardiac sarcoidosis: applications of imaging in diagnosis and directing treatment. Heart. 2011;97:2078–87.

    Article  PubMed  Google Scholar 

  10. Rybicki BA, Major M, Popovich Jr J, Maliarik MJ, Iannuzzi MC. Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol. 1997;145:234–41.

    Article  CAS  PubMed  Google Scholar 

  11. Bresnitz EA, Strom BL. Epidemiology of sarcoidosis. Epidemiol Rev. 1983;5:124–56.

    CAS  PubMed  Google Scholar 

  12. Johns CJ, Michele TM. The clinical management of sarcoidosis. A 50-year experience at the Johns Hopkins Hospital. Medicine. 1999;78:65–111.

    Article  CAS  PubMed  Google Scholar 

  13. Iwai K, Sekiguti M, Hosoda Y, et al. Racial difference in cardiac sarcoidosis incidence observed at autopsy. Sarcoidosis. 1994;11:26–31.

    CAS  PubMed  Google Scholar 

  14. Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. J Am Coll Cardiol Img. 2013;6:501–11. Study of 155 consecutive patients with systemic sarcoid, finding that LGE was of prognositc value and the strongest predictor of adverse of adverse events and death.

    Article  Google Scholar 

  15. Patel AR, Klein MR, Chandra S, et al. Myocardial damage in patients with sarcoidosis and preserved left ventricular systolic function: an observational study. Eur J Heart Fail. 2011;13:1231–7. Prospective study using CMR-LGE in 81 consecutive patients with biopsy-proven extracardiac sarcoidosis, finding that CMR-LGE was more sensitive than clinical criteria and predictive of outcomes.

    Article  PubMed  Google Scholar 

  16. Patel MR, Cawley PJ, Heitner JF, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120:1969–77.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mehta D, Lubitz SA, Frankel Z, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest. 2008;133:1426–35.

    Article  PubMed  Google Scholar 

  18. Vignaux O, Dhote R, Duboc D, et al. Detection of myocardial involvement in patients with sarcoidosis applying T2-weighted, contrast-enhanced, and cine magnetic resonance imaging: initial results of a prospective study. J Comput Assist Tomogr. 2002;26:762–7.

    Article  PubMed  Google Scholar 

  19. Matsui Y, Iwai K, Tachibana T, et al. Clinicopathological study of fatal myocardial sarcoidosis. Ann N Y Acad Sci. 1976;278:455–69.

    Article  CAS  PubMed  Google Scholar 

  20. Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol. 2001;88:1006–10.

    Article  CAS  PubMed  Google Scholar 

  21. Sekiguchi M, Numao Y, Imai M, Furuie T, Mikami R. Clinical and histopathological profile of sarcoidosis of the heart and acute idiopathic myocarditis. Concepts through a study employing endomyocardial biopsy. I. Sarcoidosis. Jpn Circ J. 1980;44:249–63.

    Article  CAS  PubMed  Google Scholar 

  22. Sadek MM, Yung D, Birnie DH, Beanlands RS, Nery PB. Corticosteroid therapy for cardiac sarcoidosis: a systematic review. Can J Cardiol. 2013;29:1034–41. Systematic review that identified 10 publications reporting outcomes after corticosteroid therapy, with the best data related to atrioventricular conduction recovery, and use of corticosteroids in CS appeared to be beneficial.

    Article  PubMed  Google Scholar 

  23. Sharma OP, Maheshwari A, Thaker K. Myocardial sarcoidosis. Chest. 1993;103:253–8.

    Article  CAS  PubMed  Google Scholar 

  24. Nery PB, Beanlands RS, Nair GM et al. Atrioventricular Block as the Initial Manifestation of Cardiac Sarcoidosis in Middle-Aged Adults. J Cardiovasc Electrophysiol. 2014;25(8):875–81. Prospective study of 32 consecutive patients aged <60 years presenting with unexplained atrioventricular block, finding 34 % had had previously undiagnosed CS.

  25. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm Off J Heart Rhythm Soc. 2014;11:1305–23. Recent collaborative consensus statement from the Heart Rhythm Society and others. It recognizes the role of advanced imaging with PET and MRI in the diagnostic algorithm for CS and provides the most up to date recommendations regarding diagnosis and management of CS.

    Article  Google Scholar 

  26. Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol. 2011;4:303–9. Finish series of 72 patients showing CS is common in patients with unexplained AV block, occurring in 19 % of cases.

    Article  PubMed  Google Scholar 

  27. Betensky BP, Tschabrunn CM, Zado ES, et al. Long-term follow-up of patients with cardiac sarcoidosis and implantable cardioverter-defibrillators. Heart Rhythm Off J Heart Rhythm Soc. 2012;9:884–91. Study with long term follow up of 45 patients with CS observing an incidence of 15 % per year of ventricular tachycardia and ventricular fibrillation.

    Article  Google Scholar 

  28. Lorell B, Alderman EL, Mason JW. Cardiac sarcoidosis. Diagnosis with endomyocardial biopsy and treatment with corticosteroids. Am J Cardiol. 1978;42:143–6.

    Article  CAS  PubMed  Google Scholar 

  29. Epstein AE, Dimarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: executive summary. Heart Rhythm Off J Heart Rhythm Soc. 2008;5:934–55.

    Article  Google Scholar 

  30. Uemura A, Morimoto S, Hiramitsu S, Kato Y, Ito T, Hishida H. Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. Am Heart J. 1999;138:299–302.

    Article  CAS  PubMed  Google Scholar 

  31. Nery PB, Keren A, Healey J, Leug E, Beanlands RS, Birnie DH. Isolated cardiac sarcoidosis: establishing the diagnosis with electroanatomic mapping-guided endomyocardial biopsy. Can J Cardiol. 2013;29(8):1015 e1–3.

    Article  Google Scholar 

  32. Tsuda T. [Diagnostic standards for sarcoidosis]. Nihon Naika Gakkai zasshi. J Jpn Soc Intern Med. 2006;95:1025–9.

    Article  Google Scholar 

  33. Nagai T, Kohsaka S, Okuda S, Anzai T, Asano K, Fukuda K. Incidence and prognostic significance of myocardial late gadolinium-enhancement in sarcoidosis patients without cardiac manifestation. Chest. 2014;146(4):1064–72

  34. Burstow DJ, Tajik AJ, Bailey KR, DeRemee RA, Taliercio CP. Two-dimensional echocardiographic findings in systemic sarcoidosis. Am J Cardiol. 1989;63:478–82.

    Article  CAS  PubMed  Google Scholar 

  35. Lewin RF, Mor R, Spitzer S, Arditti A, Hellman C, Agmon J. Echocardiographic evaluation of patients with systemic sarcoidosis. Am Heart J. 1985;110:116–22.

    Article  CAS  PubMed  Google Scholar 

  36. Kul S, Ozcelik HK, Uyarel H, et al. Diagnostic value of strain echocardiography, galectin-3, and tenascin-C levels for the identification of patients with pulmonary and cardiac sarcoidosis. Lung. 2014;192:533–42.

    Article  CAS  PubMed  Google Scholar 

  37. Shah BN, De Villa M, Khattar RS, Senior R. Imaging cardiac sarcoidosis: the incremental benefit of speckle tracking echocardiography. Echocardiography. 2013;30:E213–4.

    Article  PubMed  Google Scholar 

  38. Bulkley BH, Rouleau JR, Whitaker JQ, Strauss HW, Pitt B. The use of 201thallium for myocardial perfusion imaging in sarcoid heart disease. Chest. 1977;72:27–32.

    Article  CAS  PubMed  Google Scholar 

  39. Le Guludec D, Menad F, Faraggi M, Weinmann P, Battesti JP, Valeyre D. Myocardial sarcoidosis. Clinical value of technetium-99m sestamibi tomoscintigraphy. Chest. 1994;106:1675–82.

    Article  PubMed  Google Scholar 

  40. Kaminaga T, Takeshita T, Yamauchi T, Kawamura H, Yasuda M. The role of iodine-123-labeled 15-(p-iodophenyl)-3R, S-methylpentadecanoic acid scintigraphy in the detection of local myocardial involvement of sarcoidosis. Int J Cardiol. 2004;94:99–103.

    Article  PubMed  Google Scholar 

  41. Kinney EL, Caldwell JW. Do thallium myocardial perfusion scan abnormalities predict survival in sarcoid patients without cardiac symptoms? Angiology. 1990;41:573–6.

    Article  CAS  PubMed  Google Scholar 

  42. Fields CL, Ossorio MA, Roy TM, Denny DM, Varga DW. Thallium-201 scintigraphy in the diagnosis and management of myocardial sarcoidosis. South Med J. 1990;83:339–42.

    Article  CAS  PubMed  Google Scholar 

  43. Haywood LJ, Sharma OP, Siegel ME, et al. Detection of myocardial sarcoidosis by thallium 201 imaging. J Natl Med Assoc. 1982;74:959–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hirose Y, Ishida Y, Hayashida K, et al. Myocardial involvement in patients with sarcoidosis. An analysis of 75 patients. Clin Nucl Med. 1994;19:522–6.

    Article  CAS  PubMed  Google Scholar 

  45. Okayama K, Kurata C, Tawarahara K, Wakabayashi Y, Chida K, Sato A. Diagnostic and prognostic value of myocardial scintigraphy with thallium-201 and gallium-67 in cardiac sarcoidosis. Chest. 1995;107:330–4.

    Article  CAS  PubMed  Google Scholar 

  46. Kiuchi S, Teraoka K, Koizumi K, Takazawa K, Yamashina A. Usefulness of late gadolinium enhancement combined with MRI and 67-Ga scintigraphy in the diagnosis of cardiac sarcoidosis and disease activity evaluation. Int J Cardiovasc Imaging. 2007;23:237–41.

    Article  PubMed  Google Scholar 

  47. Tadamura E, Yamamuro M, Kubo S, et al. Effectiveness of delayed enhanced MRI for identification of cardiac sarcoidosis: comparison with radionuclide imaging. AJR Am J Roentgenol. 2005;185:110–5.

    Article  PubMed  Google Scholar 

  48. Yamagishi H, Shirai N, Takagi M, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med Off Publ Soc Nucl Med. 2003;44:1030–6.

    Google Scholar 

  49. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2009;16:801–10.

    Article  Google Scholar 

  50. Ishimaru S, Tsujino I, Sakaue S, et al. Combination of 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in assessing cardiac sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG World Assoc Sarcoidosis Other Granulomatous Disord. 2005;22:234–5.

    Google Scholar 

  51. Smedema JP, Truter R, de Klerk PA, Zaaiman L, White L, Doubell AF. Cardiac sarcoidosis evaluated with gadolinium-enhanced magnetic resonance and contrast-enhanced 64-slice computed tomography. Int J Cardiol. 2006;112:261–3.

    Article  PubMed  Google Scholar 

  52. Kanao S, Tadamura E, Yamamuro M, et al. Demonstration of cardiac involvement of sarcoidosis by contrast-enhanced multislice computed tomography and delayed-enhanced magnetic resonance imaging. J Comput Assist Tomogr. 2005;29:745–8.

    Article  PubMed  Google Scholar 

  53. Freeman AM, Curran-Everett D, Weinberger HD, et al. Predictors of cardiac sarcoidosis using commonly available cardiac studies. Am J Cardiol. 2013;112:280–5.

    Article  PubMed  Google Scholar 

  54. Schatka I, Bengel FM. Advanced imaging of cardiac sarcoidosis. J Nucl Med Off Publ Soc Nucl Med. 2014;55:99–106.

    Google Scholar 

  55. Yang Y, Safka K, Graham JJ, et al. Correlation of late gadolinium enhancement MRI and quantitative T2 measurement in cardiac sarcoidosis. J Magn Reson Imaging JMRI. 2014;39:609–16. Study assessing myocardial tissue characterization in systemic sarcoidosis finding CMR-LGE sensitive at detecting subtle myocardial lesions, and decreased T2 may reflect inactive phase of CS, providing a potential new method for monitoring disease activity or therapy.

    Article  Google Scholar 

  56. Vignaux O. Cardiac sarcoidosis: spectrum of MRI features. AJR Am J Roentgenol. 2005;184:249–54.

    Article  PubMed  Google Scholar 

  57. Crouser ED, Ono C, Tran T, He X, Raman SV. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med. 2014;189:109–12.

    PubMed Central  PubMed  Google Scholar 

  58. Eitel I, Friedrich MG. T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2011;13:13.

    Google Scholar 

  59. Hamzeh NY, Wamboldt FS, Weinberger HD. Management of cardiac sarcoidosis in the United States: a Delphi study. Chest. 2012;141:154–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Smedema JP, Snoep G, van Kroonenburgh MP, et al. Cardiac involvement in patients with pulmonary sarcoidosis assessed at two university medical centers in the Netherlands. Chest. 2005;128:30–5.

    Article  PubMed  Google Scholar 

  61. Sharma S. Cardiac imaging in myocardial sarcoidosis and other cardiomyopathies. Curr Opin Pulm Med. 2009;15:507–12.

    Article  PubMed  Google Scholar 

  62. Steckman DA, Schneider PM, Schuller JL, et al. Utility of cardiac magnetic resonance imaging to differentiate cardiac sarcoidosis from arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2012;110:575–9. Clinically useful paper that compares and contrasts the charactersistic findings of ARVC and CS on CMR.

    Article  PubMed  Google Scholar 

  63. Vignaux O, Dhote R, Duboc D, et al. Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1-year follow-up study. Chest. 2002;122:1895–901.

    Article  PubMed  Google Scholar 

  64. Shimada T, Shimada K, Sakane T, et al. Diagnosis of cardiac sarcoidosis and evaluation of the effects of steroid therapy by gadolinium-DTPA-enhanced magnetic resonance imaging. Am J Med. 2001;110:520–7.

    Article  CAS  PubMed  Google Scholar 

  65. Dhote R, Vignaux O, Blanche P, et al. Value of MRI for the diagnosis of cardiac involvement in sarcoidosis. Revue Med Interne / fondee par la Societe Nationale Francaise de Med Interne. 2003;24:151–7.

    CAS  Google Scholar 

  66. Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med Off Publ Soc Nucl Med. 2012;53:241–8. High diagnostic accuracy for (18)F-FDG PET seen in metaanalysis of 7 studies with total of 164 patients, suggesting potential value for diagnosis of CS, with pooled estimates for (18)F-FDG PET of 89 % sensitivity and 78 % specificity.

    CAS  Google Scholar 

  67. Okumura W, Iwasaki T, Toyama T, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med Off Publ Soc Nucl Med. 2004;45:1989–98.

    Google Scholar 

  68. Mc Ardle BA, Birnie DH, Klein R, et al. Is there an association between clinical presentation and the location and extent of myocardial involvement of cardiac sarcoidosis as assessed by (1)(8)F-fluorodoexyglucose positron emission tomography? Circ Cardiovasc Imaging. 2013;6:617–26. Study of 27 consecutive patients demonstrated that CS patients with VT displayed significantly higher FDG uptake when compared with those with AVB and asymptomatic controls.

    Article  PubMed  Google Scholar 

  69. Tahara N, Tahara A, Nitta Y, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. J Am Coll Cardiol Img. 2010;3:1219–28.

    Article  Google Scholar 

  70. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63:329–36. Study of 118 patients demonstrating the prognostic value of FDG-PET in CS; the presence of focal PD and FDG uptake on cardiac PET identified patients at higher risk of death or VT.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ishida Y, Yoshinaga K, Miyagawa M, et al. Recommendations for (18)F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med. 2014;28:393–403. Excellent review paper with current recmmendations on technical aspects of FDG-PET scanning and interpretation.

    Article  PubMed  Google Scholar 

  72. Kaneta T, Hakamatsuka T, Takanami K, et al. Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization. Ann Nucl Med. 2006;20:203–8.

    Article  PubMed  Google Scholar 

  73. Fukuchi K, Ohta H, Matsumura K, Ishida Y. Benign variations and incidental abnormalities of myocardial FDG uptake in the fasting state as encountered during routine oncology positron emission tomography studies. Br J Radiol. 2007;80:3–11.

    Article  CAS  PubMed  Google Scholar 

  74. Morooka M, Moroi M, Uno K, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;4:1.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Asmal AC, Leary WP, Thandroyen F, Botha J, Wattrus S. A dose–response study of the anticoagulant and lipolytic activities of heparin in normal subjects. Br J Clin Pharmacol. 1979;7:531–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol. 2014;21(5):925–39. Prospective study that assessed methods to quantify FDG uptake in CS; these were found to correlate with impaired LV systolic function, clinical events, and immunosuppression treatment.

  77. Manabe O, Yoshinaga K, Ohira H, et al. Right ventricular (18)F-FDG uptake is an important indicator for cardiac involvement in patients with suspected cardiac sarcoidosis. Ann Nucl Med. 2014;28(7):656–63. Study of 59 patients showing that although FDG-PET RV uptake was less frequent in patients with CS, RV uptake was associated with greater number of LV-involved segments and met the JMHW diagnostic criteria more frequently, suggesting it may be useful in diagnosing cardiac involvement in sarcoidosis.

  78. Osborne MT, Hulten EA, Singh A, et al. Reduction in (1)(8)F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2014;21:166–74. Longitudinal study of 23 patients with serial FDG-PET that suggests this may help guide titration of immunosuppressive therapy to improve or prevent heart failure in CS.

    Article  Google Scholar 

  79. White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography–magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013;127:e639–41.

    Article  PubMed  Google Scholar 

  80. Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J. 2014;35:312.

    Article  PubMed  Google Scholar 

  81. Wicks E, Menezes L, Pantazis A, et al. 135 Novel hybrid positron emission tomography—magnetic resonance (PET-MR) multi-modality inflammatory imaging has improved diagnostic accuracy for detecting cardiac sarcoidosis. Heart. 2014;100 Suppl 3:A80.

    Article  Google Scholar 

Download references

Acknowledgments

Rob S.B. Beanlands is a Career Investigator supported by the Heart and Stroke Foundation of Ontario (HFSO), the University of Ottawa Heart Institute (UOHI) Vered Chair in Cardiology and a Tier 1 University of Ottawa Chair in Cardiovascular Research. David Birnie is a Mid-career Investigator supported by the HSFO. Hiroshi Ohira was supported by the Molecular Function and Imaging HSFO Program Grant (#PRG6242); the University of Ottawa, Department of Medicine, the Hokkaido Heart Association Grant for Research and The University of Ottawa Heart Institute’s Whit & Heather Tucker Endowed Research Fellowship. The work has been supported in part by a research trial grant from the Ministry of Health and Long Term Care Research (Grant # 06374) for The Cardiac Sarcoidosis Cohort Study (CHASMCS). The project is in collaboration with the Canadian Cardiovascular Network of Ontario Working Group for Cardiac PET in collaboration with the PET Steering Committee of Ontario. This work has also been partially supported by IMAGE-HF (Imaging Modalities to Assist with Guiding Therapy and the Evaluation of Patients with Heart Failure; Canadian Institute of Health Research team grant no. CIF 99470).

Compliance with Ethics Guidelines

Conflict of Interest

Chadi Ayoub, Hiroshi Ohira, Alexander Dick, Eugene Leung, Pablo B. Nery, and David Birnie declare that they have no conflict of interest. Elena Pena has received lecture fees from GE Healthcare Canada. Rob S.B. Beanlands is a consultant and has received grant funding from Lantheus Medical Imaging, Jubilant DRAXImage (JDI) and GE Healthcare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob S. B. Beanlands.

Additional information

This article is part of the Topical Collection on Cardiac PET, CT, and MRI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoub, C., Pena, E., Ohira, H. et al. Advanced Imaging of Cardiac Sarcoidosis. Curr Cardiol Rep 17, 17 (2015). https://doi.org/10.1007/s11886-015-0572-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0572-1

Keywords

Navigation