Skip to main content

Advertisement

Log in

Exome Sequencing: New Insights into Lipoprotein Disorders

  • Cardiovascular Genomics (R McPherson, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Several next generation sequencing platforms allow for a DNA-to-diagnosis protocol to identify the molecular basis of monogenic dyslipidemias. However, recent reports of the application of whole genome or whole exome sequencing in families with severe dyslipidemias have largely identified genetic variants in known lipid genes. To date, high-throughput DNA sequencing in families with previously uncharacterized monogenic dyslipidemias, have failed to reveal new genes for regulation of plasma lipids. This suggests that rather than sequencing whole genomes or exomes, most patients with monogenic dyslipidemias could be diagnosed using a more dedicated approach that focuses primarily on genes already known to act within lipoprotein metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  2. Ng SB, Nickerson DA, Bamshad MJ, et al. Massively parallel sequencing and rare disease. Hum Mol Genet. 2010;19:R119–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Boycott KM, Vanstone MR, Bulman DE, et al. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013;14:681–91. An excellent overview of the impact of next-generation sequencing as applied to rare single disorders across a wide range of medicial specialities and affected organ systems.

    Article  CAS  PubMed  Google Scholar 

  4. Do R, Kathiresan S, Abecasis GR. Exome sequencing and complex disease: practical aspects of rare variant association studies. Hum Mol Genet. 2012;21:R1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics. 2011;187:367–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jiang YH, Yuen RK, Jin X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93:249–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jonsson T, Atwal JK, Steinberg S, et al. A mutation in app protects against alzheimer's disease and age-related cognitive decline. Nature. 2012;488:96–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rivas MA, Beaudoin M, Gardet A, et al. Deep resequencing of gwas loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43:1066–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wheeler DA, Wang L. From human genome to cancer genome: the first decade. Genome Res. 2013;23:1054–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Harismendy O, Ng PC, Strausberg RL, et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol. 2009;10:R32.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  CAS  PubMed  Google Scholar 

  12. Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55:641–58.

    Article  CAS  PubMed  Google Scholar 

  13. Voelkerding KV, Dames S, Durtschi JD. Next generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 william beaumont hospital symposium on molecular pathology. J Mol Diagn. 2010;12:539–51.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Majewski J, Schwartzentruber J, Lalonde E, et al. What can exome sequencing do for you? J Med Genet. 2011;48:580–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lemke JR, Riesch E, Scheurenbrand T, et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia. 2012;53:1387–98.

    Article  CAS  PubMed  Google Scholar 

  16. Kaur H, Mao S, Shah S, et al. Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Rev Mol Diagn. 2013;13:151–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang F, Wang H, Tuan HF, et al. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: Identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet. 2013

  18. Rios J, Stein E, Shendure J, et al. Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum Mol Genet. 2010;19:4313–8. First instance of whole genome sequencing applied to diagnose a patient with severe dyslipidemia.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fu J, Kwok S, Sinai L, et al. Western database of lipid variants (wdlv): a catalogue of genetic variants in monogenic dyslipidemias. Can J Cardiol. 2013;29:934–9.

    Article  PubMed  Google Scholar 

  20. Lee MH, Lu K, Hazard S, et al. Identification of a gene, abcg5, important in the regulation of dietary cholesterol absorption. Nat Genet. 2001;27:79–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent abc transporters. Science. 2000;290:1771–5.

    Article  CAS  PubMed  Google Scholar 

  22. Salen G, Patel S, Batta AK. Sitosterolemia. Cardiovasc Drug Rev. 2002;20:255–70.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Joy T, Mymin D, et al. Phenotypic heterogeneity of sitosterolemia. J Lipid Res. 2004;45:2361–7.

    Article  CAS  PubMed  Google Scholar 

  24. Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, angptl3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pulai JI, Neuman RJ, Groenewegen AW, et al. Genetic heterogeneity in familial hypobetalipoproteinemia: linkage and non-linkage to the apob gene in caucasian families. Am J Med Genet. 1998;76:79–86.

    Article  CAS  PubMed  Google Scholar 

  26. Koishi R, Ando Y, Ono M, et al. Angptl3 regulates lipid metabolism in mice. Nat Genet. 2002;30:151–7.

    Article  CAS  PubMed  Google Scholar 

  27. Shimizugawa T, Ono M, Shimamura M, et al. Angptl3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem. 2002;277:33742–8.

    Article  CAS  PubMed  Google Scholar 

  28. Shimamura M, Matsuda M, Yasumo H, et al. Angiopoietin-like protein3 regulates plasma hdl cholesterol through suppression of endothelial lipase. Arterioscler Thromb Vasc Biol. 2007;27:366–72.

    Article  CAS  PubMed  Google Scholar 

  29. Romeo S, Yin W, Kozlitina J, et al. Rare loss-of-function mutations in angptl family members contribute to plasma triglyceride levels in humans. J Clin Invest. 2009;119:70–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Minicocci I, Santini S, Cantisani V, et al. Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: a pooled analysis. J Lipid Res. 2013;54:3481–90.

    Article  CAS  PubMed  Google Scholar 

  31. Reddy MV, Iatan I, Weissglas-Volkov D, et al. Exome sequencing identifies 2 rare variants for low high-density lipoprotein cholesterol in an extended family. Circ Cardiovasc Genet. 2012;5:538–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Marduel M, Ouguerram K, Serre V, et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the apoe p.Leu167del mutation. Hum Mutat. 2013;34:83–7. This paper identified the same APOE gene mutation in independent families with autosomal dominant hypercholesterolemia.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Awan Z, Choi HY, Stitziel N, et al. Apoe p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis. 2013;231:218–22. This paper identified the same APOE gene mutation in independent families with autosomal dominant hypercholesterolemia.

    Article  CAS  PubMed  Google Scholar 

  34. Rahalkar AR, Wang J, Sirrs S, et al. An unusual case of severe hypertriglyceridemia and splenomegaly. Clin Chem. 2008;54:606–10. discussion 610-11.

    Article  CAS  PubMed  Google Scholar 

  35. Solanas-Barca M, de Castro-Oros I, Mateo-Gallego R, et al. Apolipoprotein e gene mutations in subjects with mixed hyperlipidemia and a clinical diagnosis of familial combined hyperlipidemia. Atherosclerosis. 2012;222:449–55.

    Article  CAS  PubMed  Google Scholar 

  36. Faivre L, Saugier-Veber P, Pais de Barros JP, et al. Variable expressivity of the clinical and biochemical phenotype associated with the apolipoprotein e p.Leu149del mutation. Eur J Hum Genet. 2005;13:1186–91.

    Article  CAS  PubMed  Google Scholar 

  37. Cefalu AB, Pirruccello JP, Noto D, et al. A novel apob mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia. Arterioscler Thromb Vasc Biol. 2013;33:2021–5. Whole-exome sequencing was used to identify a mutation in APOB, indicating that this family had a phenotypic variant of hypobetalipoproteinemia.

    Article  CAS  PubMed  Google Scholar 

  38. Lee J, Hegele RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: A framework for diagnosis and management. J Inherit Metab Dis. 2013

  39. Stitziel NO, Fouchier SW, Sjouke B, et al. Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2013;33:2909–14. Whole exome sequencing was used to identify a mutation in LIPA, indicating that this family with hypercholesterolemia had a phenotypic variant of cholesterol ester storage disease.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Johansen CT, Dube JB, Loyzer MN, et al. Lipidseq: a next-generation clinical resequencing panel for monogenic dyslipidemias. J Lipid Res. 2014. doi:10.1194/jlr.D045963. An example of a high-throughput method that can be used to diagnose patients with monogenic dyslipidemia encountered clinically.

    PubMed Central  PubMed  Google Scholar 

  41. Collins FS, Hamburg MA. First fda authorization for next-generation sequencer. N Engl J Med. 2013;369:2369–71.

    Article  CAS  PubMed  Google Scholar 

  42. Pollex RL, Hegele RA. Genetic determinants of the metabolic syndrome. Nat Clin Pract Cardiovasc Med. 2006;3:482–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hegele RA, Joy TR, Al-Attar SA, et al. Thematic review series: adipocyte biology. Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res. 2007;48:1433–44.

    Article  CAS  PubMed  Google Scholar 

  44. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Edith Schulich Vinet Canada Research -Chair in Human Genetics, the Martha G. Blackburn Chair in Cardiovascular Research, and operating grants from the CIHR (MOP-13430, MOP-79523), the Heart and Stroke Foundation of Ontario (NA-6059, T-000353) and Genome Canada through Genome Quebec award 4530.

Compliance with Ethics Guidelines

Conflict of Interest

Sali M.K. Farhan and Robert A. Hegele declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Hegele.

Additional information

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, S.M.K., Hegele, R.A. Exome Sequencing: New Insights into Lipoprotein Disorders. Curr Cardiol Rep 16, 507 (2014). https://doi.org/10.1007/s11886-014-0507-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0507-2

Keywords

Navigation