Skip to main content

Advertisement

Log in

Role of Pelvic Organ Crosstalk in Dysfunction of the Bowel and Bladder

  • Neurogenic Bladder (C Powell, Section Editor)
  • Published:
Current Bladder Dysfunction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The distal large bowel and urinary bladder are contiguous pelvic organs that share a common embryological origin with potential interaction in health and disease. Literature on the subject remains disorganized and largely unrecognized by clinical guidelines. Understanding this interaction could potentially improve patient outcomes.

Recent Findings

The bladder and bowel interact by several mechanisms that can be broadly classified as peripheral neural, spinal central, supraspinal central, and non-neuronal. In vivo studies show that experimental insults in one organ induce changes in behavior of the other. Laboratory studies have better defined the pathways that underlie these interactions. Clinical data shows an association between bowel and bladder symptoms in a wide spectrum of patient populations. Management of these bowel symptoms could potentially improve lower urinary tract symptoms in the clinical setting. Current clinical guidelines, such as the American Urological Association Guidelines for Overactive Bladder, European Society of Pediatric Urology Guidelines for Pediatric Neurogenic Bladder, European Association of Urology Neuro-Urology Guidelines, or the UK National Institute for Health and Care Excellence Guidelines on Urinary Incontinence and Pelvic Organ Prolapse, need to take better cognizance of this relationship.

Summary

Dysfunctions of the bowel and bladder commonly co-exist. While this interaction occurs at multiple levels, much work remains to be done to improve our understanding especially with regard to management of bowel dysfunction to specifically improve lower urinary tract symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Garson JG, Braune. Displacement of the bladder and peritoneum in the male by distention of the rectum. Edinb Med J. 1878;24(4):300–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Thiele GH. The genito-urinary symptoms of anorectal disease. South Med J. 1946;39:166–71. https://doi.org/10.1097/00007611-194602000-00015.

    Article  CAS  PubMed  Google Scholar 

  3. Bannister JJ, Lawrence WT, Smith A, Thomas DG, Read NW. Urological abnormalities in young women with severe constipation. Gut. 1988;29(1):17–20. https://doi.org/10.1136/gut.29.1.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asfaw TS, Hypolite J, Northington GM, Arya LA, Wein AJ, Malykhina AP. Acute colonic inflammation triggers detrusor instability via activation of TRPV1 receptors in a rat model of pelvic organ cross-sensitization. Am J Phys Regul Integr Comp Phys. 2011;300(6):R1392–400. https://doi.org/10.1152/ajpregu.00804.2010.

    Article  CAS  Google Scholar 

  5. Xia CM, Gulick MA, Yu SJ, et al. Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat. J Neuroinflammation. 2012;9:30. https://doi.org/10.1186/1742-2094-9-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyazato M, Sugaya K, Nishijima S, Ashitomi K, Ohyama C, Ogawa Y. Rectal distention inhibits bladder activity via glycinergic and GABAergic mechanisms in rats. J Urol. 2004;171(3):1353–6. https://doi.org/10.1097/01.ju.0000099840.09816.22.

    Article  PubMed  Google Scholar 

  7. Panayi DC, Khullar V, Digesu GA, Spiteri M, Hendricken C, Fernando R. Rectal distension: the effect on bladder function. Neurourol Urodyn. 2011;30(3):344–7. https://doi.org/10.1002/nau.20944.

    Article  CAS  PubMed  Google Scholar 

  8. Lei Q, Pan XQ, Villamor AN, et al. Lack of transient receptor potential vanilloid 1 channel modulates the development of neurogenic bladder dysfunction induced by cross-sensitization in afferent pathways. J Neuroinflammation. 2013;10:3. https://doi.org/10.1186/1742-2094-10-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang R, Ustinova EE, Patnam R, Fraser MO, Gutkin DW, Pezzone MA. Enhanced expression of mast cell growth factor and mast cell activation in the bladder following the resolution of trinitrobenzenesulfonic acid (TNBS) colitis in female rats. Neurourol Urodyn. 2007;26(6):887–93. https://doi.org/10.1002/nau.20410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fitzgerald JJ, Ustinova E, Koronowski KB, de Groat WC, Pezzone MA. Evidence for the role of mast cells in colon-bladder cross organ sensitization. Auton Neurosci Basic Clin. 2013;173(1-2):6–13. https://doi.org/10.1016/j.autneu.2012.09.002.

    Article  CAS  Google Scholar 

  11. Ustinova EE, Gutkin DW, Pezzone MA. Sensitization of pelvic nerve afferents and mast cell infiltration in the urinary bladder following chronic colonic irritation is mediated by neuropeptides. Am J Physiol Ren Physiol. 2007;292(1):F123–30. https://doi.org/10.1152/ajprenal.00162.2006.

    Article  CAS  Google Scholar 

  12. Lamb K, Zhong F, Gebhart GF, Bielefeldt K. Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G451–7. https://doi.org/10.1152/ajpgi.00353.2005.

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Yu Y, Yu H, et al. The role of brain-derived neurotrophic factor in experimental inflammation of mouse gut. Eur J Pain Lond Engl. 2010;14(6):574–9. https://doi.org/10.1016/j.ejpain.2009.10.007.

    Article  CAS  Google Scholar 

  14. Majima T, Funahashi Y, Kawamorita N, et al. Role of microglia in the spinal cord in colon-to-bladder neural crosstalk in a rat model of colitis. Neurourol Urodyn. 2018;37(4):1320–8. https://doi.org/10.1002/nau.23484.

    Article  CAS  PubMed  Google Scholar 

  15. Pezzone MA, Liang R, Fraser MO. A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders. Gastroenterology. 2005;128(7):1953–64. https://doi.org/10.1053/j.gastro.2005.03.008.

    Article  PubMed  Google Scholar 

  16. Kaddumi EG. The influence of distal colon irritation on the changes of cystometry parameters to esophagus and colon distentions. Int Braz J Urol. 2016;42(3):594–602. https://doi.org/10.1590/S1677-5538.IBJU.2015.0238.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grundy L, Castro J, Harrington A, et al. Colitis-induced chronic colonic hypersensitivity induces cross organ sensitisation of bladder afferent pathways. Neurogastroenterol Motil. 2018;30(S1). https://doi.org/10.1111/nmo.13422.

  18. Kawamorita N, Yoshikawa S, Kashyap M, et al. Liposome based intravesical therapy targeting nerve growth factor ameliorates bladder hypersensitivity in rats with experimental colitis. J Urol. 2016;195(6):1920–6. https://doi.org/10.1016/j.juro.2015.12.090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takai S, Tsuyoshi M, Shimizu T, et al. Therapeutic effects of trpv1targeting gene therapy on bladder overactivity and nociception in a rat model of experimental colitis. Neurourol Urodyn. 2017;36(S3). https://doi.org/10.1002/nau.23386.

  20. Greenwood-Van Meerveld B, Mohammadi E, Tyler K, et al. Mechanisms of visceral organ crosstalk: importance of alterations in permeability in rodent models. J Urol. 2015;194(3):804–11. https://doi.org/10.1016/j.juro.2015.02.2944.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hellstrom P, Sjoqvist A. Involvement of opioid and nicotinic receptors in rectal and anal reflex inhibition of urinary bladder motility in cats. Acta Physiol Scand. Published online 1988.

  22. Wyndaele M, De Wachter S, De Man J, et al. Mechanisms of pelvic organ crosstalk: 1. Peripheral modulation of bladder inhibition by colorectal distention in rats. J Urol. 2013;190(2):765–71. https://doi.org/10.1016/j.juro.2013.03.045.

    Article  PubMed  Google Scholar 

  23. Persyn S, De Wachter S, Wyndaele M, Birder L, Wyndaele JJ. Mechanisms of pelvic organ cross-talk: impact of urethral ligation on the inhibitory rectovesical reflex. J Urol. 2014;192(5):1574–9. https://doi.org/10.1016/j.juro.2014.05.023.

    Article  PubMed  Google Scholar 

  24. Floyd K, McMahon SB, Morrison JF. Inhibitory interactions between colonic and vesical afferents in the micturition reflex of the cat. J Physiol. 1982;322:45–52.

    Article  CAS  Google Scholar 

  25. Kock NG, Pompeius R. Inhibition of vesical motor activity induced by anal stimulation. Acta Chir Scand. Published online September 1963:244-250.

  26. Minagawa T, Wyndaele M, Aizawa N, Igawa Y, Wyndaele JJ. Mechanisms of pelvic organ cross-talk: 2. Impact of colorectal distention on afferent nerve activity of the rat bladder. [Miscellaneous Article]. J Urol. 2013;190(3):1123–30.

    Article  Google Scholar 

  27. Zhang NZ, Ma L, Jun C, Guo YX, Yuan HQ. Changes in mast cell infiltration: a possible mechanism in detrusor overactivity induced by visceral hypersensitivity. Int Braz J Urol. 2016;42(2):373–82. https://doi.org/10.1590/S1677-5538.IBJU.2015.0025.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buntzen S, Nordgren S, Delbro D, Hulten L. Reflex interaction from the urinary bladder and the rectum on anal motility in the cat. J Auton Nerv Syst. 1995;54(1):33–40.

    Article  CAS  Google Scholar 

  29. Chen SS, Yang CC, Chien CT. Colorectal distension enforce acute urinary bladder distension-induced hepatic vasoconstriction in the rat. Neurosci Lett. 2008;443(3):257–60. https://doi.org/10.1016/j.neulet.2008.06.063.

    Article  CAS  PubMed  Google Scholar 

  30. Ligon C, Mohammadi E, Ge P, Hannig G, Higgins C, Greenwood-Van Meerveld B. Linaclotide inhibits colonic and urinary bladder hypersensitivity in adult female rats following unpredictable neonatal stress. Neurogastroenterol Motil. 2018;30(10):e13375. https://doi.org/10.1111/nmo.13375.

    Article  CAS  PubMed  Google Scholar 

  31. Bielefeldt K, Lamb K, Gebhart GF. Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol. 2006;291(4):G658–65. https://doi.org/10.1152/ajpgi.00585.2005.

    Article  CAS  PubMed  Google Scholar 

  32. Thor KB, Muhlhauser MA. Vesicoanal, urethroanal, and urethrovesical reflexes initiated by lower urinary tract irritation in the rat. Am J Phys. 1999;277(4):R1002–12. https://doi.org/10.1152/ajpregu.1999.277.4.R1002.

    Article  CAS  Google Scholar 

  33. Bouvier M, Grimaud JC, Salducci J, Gonella J. Role of vesical afferent nerve fibres involved in the control of internal anal sphincter motility. J Auton Nerv Syst. 1984;10(3-4):243–5. https://doi.org/10.1016/0165-1838(84)90019-5.

    Article  CAS  PubMed  Google Scholar 

  34. Hiraoka T, Mishima H, Semba T. A motor reflex from the urinary bladder to the colon. J Physiol. 1956;6(2):112–7.

    CAS  Google Scholar 

  35. Buntzen S, Nordgren S, Delbro D, Hultén L. Anal and rectal motility responses to distension of the urinary bladder in the cat. J Auton Nerv Syst. 1994;49(3):261–8. https://doi.org/10.1016/0165-1838(94)90172-4.

    Article  CAS  PubMed  Google Scholar 

  36. Vitton V, Grimaud JC, Bouvier M, Abysique A. Supraspinal control of external anal sphincter motility: effects of vesical distension in humans and cats. Neurogastroenterol Motil. 2006;18(11):1031–40. https://doi.org/10.1111/j.1365-2982.2006.00842.x.

    Article  CAS  PubMed  Google Scholar 

  37. Date T, Mishima H, Semba T. Studies on a vesico-anal inhibitory reflex. J Physiol. 1956;6(2):108–11.

    CAS  Google Scholar 

  38. Vereecken RL, De Meirsman J, Puers B, Van Mulders J. Electrophysiological exploration of the sacral conus. J Neurol. 1982;227(3):135–44. https://doi.org/10.1007/BF00313567.

    Article  CAS  PubMed  Google Scholar 

  39. Petersen T, Just-Christensen JE, Kousgaard P, Holmboe B, Klemar B. Anal sphincter maximum functional electrical stimulation in detrusor hyperreflexia. J Urol. 1994;152(5 Pt 1):1460–2. https://doi.org/10.1016/s0022-5347(17)32445-x.

    Article  CAS  PubMed  Google Scholar 

  40. De Wachter S, Wyndaele JJ. Impact of rectal distention on the results of evaluations of lower urinary tract sensation. J Urol. 2003;169(4):1392–4. https://doi.org/10.1097/01.ju.0000053393.45026.4d.

    Article  PubMed  Google Scholar 

  41. Burgers R, Liem O, Canon S, et al. Effect of rectal distention on lower urinary tract function in children. J Urol. 2010;184(4 Suppl):1680–5. https://doi.org/10.1016/j.juro.2010.03.120.

    Article  PubMed  Google Scholar 

  42. Ambartsumyan L, Siddiqui A, Bauer S, Nurko S. Simultaneous urodynamic and anorectal manometry studies in children: insights into the relationship between the lower gastrointestinal and lower urinary tracts. Neurogastroenterol Motil. 2016;28(6):924–33. https://doi.org/10.1111/nmo.12794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carone R, Petrillo M, Vercelli D, Bertapelle P. Mutual influence between vesicourethral and anorectal function in spinal cord injury patients. Paraplegia. 1995;33(1):34–5. https://doi.org/10.1038/sc.1995.8.

    Article  CAS  PubMed  Google Scholar 

  44. Khullar V, Soligo M, Salvatore S. Does rectal distension alter bladder function? (Abstract). Neurourol Urodyn. 21(4).

  45. Akl MN, Jacob K, Klauschie J, Crowell MD, Kho RM, Cornella JL. The effect of rectal distension on bladder function in patients with overactive bladder. Neurourol Urodyn. 2012;31(4):541–3. https://doi.org/10.1002/nau.21241.

    Article  PubMed  Google Scholar 

  46. Knight SL, Edirisinghe N, Leaker B, Susser J, Craggs MD. Conditional neuromodulation of neurogenic detrusor overactivity using transrectal stimulation in patients with spinal cord injury: a proof of principle study. Neurourol Urodyn. 2018;37(1):385–93. https://doi.org/10.1002/nau.23310.

    Article  PubMed  Google Scholar 

  47. Shafik A. The effect of vesical filling and voiding on the anorectal function with evidence of a “vesico-anorectal reflex.”. Neurogastroenterol Motil. 1999;11(2):119–24. https://doi.org/10.1046/j.1365-2982.1999.00143.x.

    Article  CAS  PubMed  Google Scholar 

  48. Crosbie JJ, Eguare E, McGovern B, Keane FBV. The influence of bladder filling on anorectal function. Color Dis. 2003;5(3):251–5. https://doi.org/10.1046/j.1463-1318.2003.00431.x.

    Article  CAS  Google Scholar 

  49. Buntzen S, Nordgren S, Delbro D, Hultén L. Anal and rectal motility responses to distension of the urinary bladder in man. Int J Color Dis. 1995;10(3):148–51. https://doi.org/10.1007/BF00298537.

    Article  CAS  Google Scholar 

  50. De Wachter S, de Jong A, Van Dyck J, Wyndaele JJ. Interaction of filling related sensation between anorectum and lower urinary tract and its impact on the sequence of their evacuation. A study in healthy volunteers. Neurourol Urodyn. 2007;26(4):481–5. https://doi.org/10.1002/nau.20384.

    Article  PubMed  Google Scholar 

  51. Blanco-Suárez E, Caldwell ALM, Allen NJ. Role of astrocyte–synapse interactions in CNS disorders. J Physiol. 2017;595(6):1903–16. https://doi.org/10.1113/JP270988.

    Article  CAS  PubMed  Google Scholar 

  52. Tan TK, Saps M, Lin CL, Wei CC. Risks of irritable bowel syndrome in children with infantile urinary tract infection: a 13-year nationwide cohort study. J Investig Med. 2018;66(6):998–1003. https://doi.org/10.1136/jim-2017-000703.

    Article  PubMed  Google Scholar 

  53. Malykhina AP, Qin C, Greenwood-van Meerveld B, Foreman RD, Lupu F, Akbarali HI. Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: mechanism for pelvic organ cross-talk. Neurogastroenterol Motil. 2006;18(10):936–48. https://doi.org/10.1111/j.1365-2982.2006.00807.x.

    Article  CAS  PubMed  Google Scholar 

  54. •• Qiao LY, Tiwari N. Spinal neuron-glia-immune interaction in cross-organ sensitization. Am J Physiol Gastrointest Liver Physiol. 2020;319(6):G748–60. https://doi.org/10.1152/ajpgi.00323.2020An in-depth review of the current status of spinal and glial mechanisms in crosstalk between organs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2019;25(3):227–40. https://doi.org/10.1177/1073858418783959.

    Article  CAS  Google Scholar 

  56. Qiao LY, Grider JR. Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp Neurol. 2007;204(2):667–79. https://doi.org/10.1016/j.expneurol.2006.12.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malykhina AP, Wilcox DT, Brodie KE. Genitourinary and gastrointestinal co-morbidities in children: the role of neural circuits in regulation of visceral function. J Pediatr Urol. 2017;13(2):177–82. https://doi.org/10.1016/j.jpurol.2016.04.036.

    Article  CAS  PubMed  Google Scholar 

  58. • Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci. 2020;21(9):485–98. https://doi.org/10.1038/s41583-020-0333-zDetails the critical role of glial cells in neuronal systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu P, McLachlan EM. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience. 2002;112(1):23–38. https://doi.org/10.1016/s0306-4522(02)00065-9.

    Article  CAS  PubMed  Google Scholar 

  60. Peters CM, Jimenez-Andrade JM, Jonas BM, et al. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol. 2007;203(1):42–54. https://doi.org/10.1016/j.expneurol.2006.07.022.

    Article  CAS  PubMed  Google Scholar 

  61. Splittgerber R. Snell’s clinical neuroanatomy. 8th ed: Wolters Kluwer; 2019.

    Google Scholar 

  62. Qin C, Foreman RD. Viscerovisceral convergence of urinary bladder and colorectal inputs to lumbosacral spinal neurons in rats. Neuroreport. 2004;15(3):467–71. https://doi.org/10.1097/00001756-200403010-00017.

    Article  PubMed  Google Scholar 

  63. Qin C, Malykhina AP, Akbarali HI, Foreman RD. Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology. 2005;129(6):1967–78. https://doi.org/10.1053/j.gastro.2005.09.013.

    Article  PubMed  Google Scholar 

  64. Harrington AM, Brierley SM, Isaacs N, Hughes PA, Castro J, Blackshaw LA. Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. J Comp Neurol. 2012;520(10):2241–55. https://doi.org/10.1002/cne.23042.

    Article  CAS  PubMed  Google Scholar 

  65. • Halani PK, Andy UU, Rao H, Arya LA. Regions of the brain activated in bladder filling vs rectal distention in healthy adults: a meta-analysis of neuroimaging studies. Neurourol Urodyn. 2020;39(1):58–65. https://doi.org/10.1002/nau.24221Summarizes the neuro-imaging studies on bladder filling and rectal distension.

    Article  PubMed  Google Scholar 

  66. (Bud) Craig A. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13(4):500–5. https://doi.org/10.1016/S0959-4388(03)00090-4.

  67. Komesu YM, Ketai LH, Mayer AR, Teshiba TM, Rogers RG. Functional MRI of the brain in women with overactive bladder: brain activation during urinary urgency. Female Pelvic Med Reconstr Surg. 2011;17(1):50–4. https://doi.org/10.1097/SPV.0b013e3182065507.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Song GH, Venkatraman V, Ho KY, Chee MWL, Yeoh KG, Wilder-Smith CH. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain. 2006;126(1-3):79–90.

    Article  Google Scholar 

  69. Berman SM, Naliboff BD, Suyenobu B, et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J Neurosci. 2008;28(2):349–59. https://doi.org/10.1523/JNEUROSCI.2500-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Elsenbruch S, Rosenberger C, Bingel U, Forsting M, Schedlowski M, Gizewski ER. Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli. Gastroenterology. 2010;139(4):1310–9. https://doi.org/10.1053/j.gastro.2010.06.054.

    Article  PubMed  Google Scholar 

  71. Bonaz B. Visceral sensitivity perturbation integration in the brain-gut axis in functional digestive disorders. J Physiol Pharmacol. 2003;54(Suppl 4):27–42.

    PubMed  Google Scholar 

  72. Dickhaus B, Mayer EA, Firooz N, et al. Irritable bowel syndrome patients show enhanced modulation of visceral perception by auditory stress. Am J Gastroenterol. 2003;98(1):135–43. https://doi.org/10.1111/j.1572-0241.2003.07156.x.

    Article  PubMed  Google Scholar 

  73. MacNeily A. Bowel and bladder dysfunction and vesicocentricity. Can Urol Assoc J J Assoc Urol Can. 2021;15(2):19. https://doi.org/10.5489/cuaj.7101.

    Article  Google Scholar 

  74. Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M. Neuroprotection by estrogen and progesterone in traumatic brain injury and spinal cord injury. Curr Neuropharmacol. 2016;14(6):641–53. https://doi.org/10.2174/1570159X14666160309123554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hubbard CS, Karpowicz JM, Furman AJ, da Silva JT, Seminowicz DA, Traub RJ. Estrogen-dependent visceral hypersensitivity following stress in rats: an fMRI study. Mol Pain. 2016;12. https://doi.org/10.1177/1744806916654145.

  76. Dobberfuhl AD, Schuler C, Leggett RE, Levin RM, De EJB. Estrogen replacement is protective to the effect of in vitro hypoxia on female rabbit bladder and pelvic floor contractile response. Investig Clin Urol. 2020;61(4):432–40. https://doi.org/10.4111/icu.2020.61.4.432.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Malykhina AP, Wyndaele JJ, Andersson KE, De Wachter S, Dmochowski RR. Do the urinary bladder and large bowel interact, in sickness or in health?: ICI-RS 2011. Neurourol Urodyn. 2012;31(3):352–8. https://doi.org/10.1002/nau.21228.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Winnard KP, Dmitrieva N, Berkley KJ. Cross-organ interactions between reproductive, gastrointestinal, and urinary tracts: modulation by estrous stage and involvement of the hypogastric nerve. Am J Phys Regul Integr Comp Phys. 2006;291(6):R1592–601. https://doi.org/10.1152/ajpregu.00455.2006.

    Article  CAS  Google Scholar 

  79. Imamov O, Yakimchuk K, Morani A, et al. Estrogen receptor beta-deficient female mice develop a bladder phenotype resembling human interstitial cystitis. Proc Natl Acad Sci U S A. 2007;104(23):9806–9. https://doi.org/10.1073/pnas.0703410104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57:369–94. https://doi.org/10.1146/annurev.micro.57.030502.090759.

    Article  CAS  PubMed  Google Scholar 

  81. • Kigerl KA, Zane K, Adams K, Sullivan MB, Popovich PG. The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Exp Neurol. 2020;323:113085. https://doi.org/10.1016/j.expneurol.2019.113085Detailed discussion on the spinal mechanisms and association with gut function in a setting of neurogenic lower urinary tract dysfunction secondary to spinal cord injury.

    Article  CAS  PubMed  Google Scholar 

  82. Drake MJ, Morris N, Apostolidis A, Rahnama’i MS, Marchesi JR. The urinary microbiome and its contribution to lower urinary tract symptoms; ICI-RS 2015. Neurourol Urodyn. 2017;36(4):850–3. https://doi.org/10.1002/nau.23006.

    Article  PubMed  Google Scholar 

  83. Okuyama Y, Okamoto T, Sasaki D, et al. The influence of gut microbiome on progression of overactive bladder symptoms: a community-based 3-year longitudinal study in Aomori, Japan. Int Urol Nephrol. Published online October 29, 2021. https://doi.org/10.1007/s11255-021-03044-w

  84. Wang JK, Yao SK. Roles of gut microbiota and metabolites in pathogenesis of functional constipation. Evid-Based Complement Altern Med. 2021;2021:5560310. https://doi.org/10.1155/2021/5560310.

    Article  Google Scholar 

  85. Rahnama’i MS, Van Koeveringe GA, Van Kerrebroeck PE. Overactive bladder syndrome and the potential role of prostaglandins and phosphodiesterases: an introduction. Nephro-Urol Mon. 2013;5(4):934–45. https://doi.org/10.5812/numonthly.14087.

    Article  Google Scholar 

  86. Crifo B, MacNaughton WK. Cells and mediators of inflammation as effectors of epithelial repair in the inflamed intestine. Am J Physiol Gastrointest Liver Physiol. Published online December 8, 2021. https://doi.org/10.1152/ajpgi.00194.2021.

  87. Stromberga Z, Chess-Williams R, Moro C. The five primary prostaglandins stimulate contractions and phasic activity of the urinary bladder urothelium, lamina propria and detrusor. BMC Urol. 2020;20(1):48. https://doi.org/10.1186/s12894-020-00619-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Averbeck MA, Madersbacher H. Constipation and LUTS - how do they affect each other? Int Braz J Urol. 2011;37(1):16–28. https://doi.org/10.1590/S1677-55382011000100003.

    Article  PubMed  Google Scholar 

  89. van Summeren JJGT, Holtman GA, van Ommeren SC, Kollen BJ, Dekker JH, Berger MY. Bladder symptoms in children with functional constipation: a systematic review. J Pediatr Gastroenterol Nutr. 2018;67(5):552–60. https://doi.org/10.1097/MPG.0000000000002138.

    Article  PubMed  Google Scholar 

  90. White BA, Linder BJ, Szarka LA, Prichard DO. In constipated young men acquired voiding disorders are common and suggest dyssynergic defecation. Gastroenterology. 2020;158(6 Supplement 1):S-386. https://doi.org/10.1016/S0016-5085%2820%2931657-7.

    Article  Google Scholar 

  91. Yang S, Chua ME, Bauer S, et al. Diagnosis and management of bladder bowel dysfunction in children with urinary tract infections: a position statement from the International Children’s Continence Society. Pediatr Nephrol. 2018;33(12):2207–19. https://doi.org/10.1007/s00467-017-3799-9.

    Article  PubMed  Google Scholar 

  92. Loening-Baucke V. Prevalence rates for constipation and faecal and urinary incontinence. Arch Dis Child. 2007;92(6):486–9. https://doi.org/10.1136/adc.2006.098335.

    Article  PubMed  Google Scholar 

  93. Mugie SM, Benninga MA, Di Lorenzo C. Epidemiology of constipation in children and adults: a systematic review. Best Pract Res Clin Gastroenterol. 2011;25(1):3–18. https://doi.org/10.1016/j.bpg.2010.12.010.

    Article  PubMed  Google Scholar 

  94. de Abreu GE, Dias Souto Schmitz AP, Dourado ER, Barroso U. Association between a constipation scoring system adapted for use in children and the dysfunctional voiding symptom score in children and adolescents with lower urinary tract symptoms. J Pediatr Urol. 2019;15(5):529.e1–7. https://doi.org/10.1016/j.jpurol.2019.07.021.

    Article  Google Scholar 

  95. Sampaio C, Sousa AS, Fraga LGA, Veiga ML, Bastos Netto JM, Barroso U. Constipation and lower urinary tract dysfunction in children and adolescents: a population-based study. Front Pediatr. 2016;4. https://doi.org/10.3389/fped.2016.00101.

  96. •• Meena J, Mathew G, Hari P, Sinha A, Bagga A. Prevalence of bladder and bowel dysfunction in toilet-trained children with urinary tract infection and/or primary vesicoureteral reflux: a systematic review and meta-analysis. Front Pediatr. 2020;8. https://doi.org/10.3389/fped.2020.00084. Systematic review comprising 43 studies examining the prevalence of bowel and bladder dysfunction in children with urinary tract infections with and without vesicoureteral reflux.

  97. Borch L, Hagstroem S, Bower WF, Siggaard Rittig C, Rittig S. Bladder and bowel dysfunction and the resolution of urinary incontinence with successful management of bowel symptoms in children. Acta Paediatr Oslo Nor 1992. 2013;102(5):e215-e220. doi:https://doi.org/10.1111/apa.12158

  98. Bush NC, Shah A, Barber T, Yang M, Bernstein I, Snodgrass W. Randomized, double-blind, placebo-controlled trial of polyethylene glycol (MiraLAX®) for urinary urge symptoms. J Pediatr Urol. 2013;9(5):597–604. https://doi.org/10.1016/j.jpurol.2012.10.011.

    Article  PubMed  Google Scholar 

  99. Cameron AP, Rodriguez GM, Gursky A, He C, Clemens JQ, Stoffel JT. The severity of bowel dysfunction in patients with neurogenic bladder. J Urol. 2015;194(5):1336–41. https://doi.org/10.1016/j.juro.2015.04.100.

    Article  PubMed  Google Scholar 

  100. Milivojevic S, Milic N, Lazovic JM, Radojicic Z. The influence of bowel management on urodynamic findings in spina bifida children with detrusor overactivity and detrusor sphincter dyssynergia. J Pediatr Urol. 2020;16(5):556.e1–7. https://doi.org/10.1016/j.jpurol.2020.04.013.

    Article  Google Scholar 

  101. Radojicic Z, Milivojevic S, Milic N, Lazovic JM, Lukac M, Sretenovic A. Impact of bowel management in alleviating symptoms of urinary incontinence in patients with spina bifida associated with overactive bladder and detrusor sphincter dyssynergia. BJU Int. 2019;123(1):118–23. https://doi.org/10.1111/bju.14414.

    Article  PubMed  Google Scholar 

  102. Eid AA, Badawy H, Elmissiry M, Foad A, Ebada M, Koraitim A. Prospective evaluation of the management of bowel dysfunction in children with neuropathic lower urinary tract dysfunction and its effect on bladder dynamics. J Pediatr Surg. 2019;54(4):805–8. https://doi.org/10.1016/j.jpedsurg.2018.12.015.

    Article  PubMed  Google Scholar 

  103. Jericevic DK, Peyronnet B, Palmerola R, et al. Exploring the bowel and bladder dysfunction relationship in a multiple sclerosis population. Neurourol Urodyn. 2019;38(Supplement 1):S125–6. https://doi.org/10.1002/nau.23949.

    Article  Google Scholar 

  104. Vaughan CP, KathrynL B, Goode PS, et al. Behavioral therapy for urinary symptoms in Parkinson’s disease: a randomized clinical trial. Neurourol Urodyn. 2019;38(6):1737–44. https://doi.org/10.1002/nau.24052.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Roberts RO, Jacobsen SJ, Reilly WT, Pemberton JH, Lieber MM, Talley NJ. Prevalence of combined fecal and urinary incontinence: a community-based study. J Am Geriatr Soc. 1999;47(7):837–41. https://doi.org/10.1111/j.1532-5415.1999.tb03841.x.

    Article  CAS  PubMed  Google Scholar 

  106. Botlero R, Bell RJ, Urquhart DM, Davis SR. Prevalence of fecal incontinence and its relationship with urinary incontinence in women living in the community. Menopause. 2011;18(6):685–9. https://doi.org/10.1097/gme.0b013e3181fee03b.

    Article  PubMed  Google Scholar 

  107. Wyndaele M, De Winter B, Van Outryve M, Pelckmans P, Wyndaele J. Storage symptoms of bladder and bowel and their correlation in anal continent, flatal incontinent and fecal incontinent women. ICS Conference Abstract. Published June 2011. https://www.ics.org/Abstracts/Publish/105/000442.pdf.

  108. • Alhababi N, Magnus MC, Drake MJ, Fraser A, Joinson C. The association between constipation and lower urinary tract symptoms in parous middle-aged women: a prospective cohort study. J Women's Health. 2021;30(8):1171–81. https://doi.org/10.1089/jwh.2020.8624Large population-based cohort study examining the association of constipation and lower urinary tract symptoms in women from the Avon Longitudinal Study.

    Article  Google Scholar 

  109. •• Lian WQ, Li FJ, Huang HX, Zheng YQ, Chen LH. Constipation and risk of urinary incontinence in women: a meta-analysis. Int Urogynecol J. 2019;30(10):1629–34. https://doi.org/10.1007/s00192-019-03941-wSystematic review of 16 observational studies showing the significant association of constipation with the risk of urinary incontinence in women.

    Article  PubMed  Google Scholar 

  110. •• Li Z, Huang W, Wang X, Zhang Y. The relationship between lower urinary tract symptoms and irritable bowel syndrome: a meta-analysis of cross-sectional studies. Minerva Urol E Nefrol Ital J Urol Nephrol. 2018;70(4):386–92. https://doi.org/10.23736/S0393-2249.18.03044-8Systematic review of 9 studies showing the increased risk of lower urinary tract symptoms in both men and women with irritable bowel syndrome.

    Article  Google Scholar 

  111. Coyne KS, Cash B, Kopp Z, et al. The prevalence of chronic constipation and faecal incontinence among men and women with symptoms of overactive bladder. BJU Int. 2011;107(2):254–61. https://doi.org/10.1111/j.1464-410X.2010.09446.x.

    Article  PubMed  Google Scholar 

  112. Bae J, Yoon HS. Constipation can affect the voiding dysfunction of old hospitalized patients. Int Urogynecol J. 2018;29(Supplement 1):S92–3. https://doi.org/10.1007/s00192-018-3752-x.

    Article  Google Scholar 

  113. Vaghar MI. An investigation into the effect of biofeedback on urinary and fecal incontinence in patients with anal sphincter dysfunction. J Fam Med Prim Care. 2019;8(7):2264–7. https://doi.org/10.4103/jfmpc.jfmpc_222_19.

    Article  Google Scholar 

  114. Lightner DJ, Gomelsky A, Souter L, Vasavada SP. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU guideline amendment 2019. J Urol. 2019;202(3):558–63. https://doi.org/10.1097/JU.0000000000000309.

    Article  PubMed  Google Scholar 

  115. Ginsberg DA, Boone TB, Cameron AP, et al. The AUA/SUFU guideline on adult neurogenic lower urinary tract dysfunction: diagnosis and evaluation. J Urol. 2021;206(5):1097–105. https://doi.org/10.1097/JU.0000000000002235.

    Article  PubMed  Google Scholar 

  116. Kavanagh A, Baverstock R, Campeau L, et al. Canadian Urological Association guideline: diagnosis, management, and surveillance of neurogenic lower urinary tract dysfunction – Full text. Can Urol Assoc J. 2019;13(6):E157–76. https://doi.org/10.5489/cuaj.5912.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Corcos J, Przydacz M, Campeau L, et al. CUA guideline on adult overactive bladder. Can Urol Assoc J. 2017;11(5):E142–73. https://doi.org/10.5489/cuaj.4586.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bettez M, Tu LM, Carlson K, et al. 2012 update: guidelines for adult urinary incontinence collaborative consensus document for the Canadian Urological Association. Can Urol Assoc J. 2012;6(5):354–63. https://doi.org/10.5489/cuaj.12248.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nickel JC, Aaron L, Barkin J, Elterman D, Nachabé M, Zorn KC. Canadian Urological Association guideline on male lower urinary tract symptoms/benign prostatic hyperplasia (MLUTS/BPH): 2018 update. Can Urol Assoc J. 2018;12(10):303–12. https://doi.org/10.5489/cuaj.5616.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gravas S, Cornu JN, Gacci M, Gratzke C, Herrmann TRW, Mamoulakis C, Rieken M, Speakman MJ, Tikkinen KAO. Non-neurogenic male LUTS. European Association of Urology Guidelines. Published online 2021. Accessed December 16, 2021. https://uroweb.org/guideline/treatment-of-non-neurogenic-male-luts/.

  121. Harding CK, Lapitan MC, Arlandis S, Bo K, Costantini E, Groen J, Nambiar AK, Omar MI, Phe V,. Non-neurogenic female LUTS. European Association of Urology Guidelines. Published online 2021. Accessed December 16, 2021. https://uroweb.org/guideline/non-neurogenic-female-luts.

  122. Stein R, Bogaert G, Dogan HS, et al. EAU/ESPU guidelines on the management of neurogenic bladder in children and adolescent part I diagnostics and conservative treatment. Neurourol Urodyn. 2020;39(1):45–57. https://doi.org/10.1002/nau.24211.

    Article  PubMed  Google Scholar 

  123. Radmayr C, Bogaert G, Dogan H, et al. Pediatric Urology. EAU guidelines. Published online 2021. Accessed December 16, 2021. https://uroweb.org/guideline/paediatric-urology/.

  124. Blok B, Castro-Diaz D, Del Popolo G, et al. Neuro-urology. EAU guidelines. Published online 2021. Accessed December 16, 2021. https://uroweb.org/guideline/neuro-urology/.

  125. Sinha S, Agarwal MM, Vasudeva P, et al. The Urological Society of India guidelines for the evaluation and management of nonneurogenic urinary incontinence in adults (Executive Summary). Indian J Urol IJU J Urol Soc India. 2019;35(3):185–8. https://doi.org/10.4103/iju.IJU_125_19.

    Article  Google Scholar 

  126. Takahashi S, Takei M, Asakura H, et al. Clinical guidelines for female lower urinary tract symptoms (second edition). Int J Urol. 2021;28(5):474–92. https://doi.org/10.1111/iju.14492.

    Article  PubMed  Google Scholar 

  127. Homma Y, Gotoh M, Kawauchi A, et al. Clinical guidelines for male lower urinary tract symptoms and benign prostatic hyperplasia. Int J Urol. 2017;24(10):716–29. https://doi.org/10.1111/iju.13401.

    Article  PubMed  Google Scholar 

  128. Sekido N, Igawa Y, Kakizaki H, et al. Clinical guidelines for the diagnosis and treatment of lower urinary tract dysfunction in patients with spinal cord injury. Int J Urol. 2020;27(4):276–88. https://doi.org/10.1111/iju.14186.

    Article  PubMed  Google Scholar 

  129. Lower urinary tract symptoms in men. NICE UK guidelines. Accessed December 16, 2021. https://www.nice.org.uk/guidance/cg97.

  130. Urinary incontinence and pelvic organ prolapse in women: management. NICE UK Guidelines. Published online 2019:76.

  131. Vriesman MH, Koppen IJN, Camilleri M, Di Lorenzo C, Benninga MA. Management of functional constipation in children and adults. Nat Rev Gastroenterol Hepatol. 2020;17(1):21–39. https://doi.org/10.1038/s41575-019-0222-y.

    Article  PubMed  Google Scholar 

  132. Pijpers M, a. M, Bongers MEJ, Benninga MA, Berger MY. Functional constipation in children: a systematic review on prognosis and predictive factors. J Pediatr Gastroenterol Nutr. 2010;50(3):256–68. https://doi.org/10.1097/MPG.0b013e3181afcdc3.

    Article  CAS  PubMed  Google Scholar 

  133. Kajbafzadeh AM, Moosavi S, Tajik P, et al. Intravesical injection of botulinum toxin type A: management of neuropathic bladder and bowel dysfunction in children with myelomeningocele. Urology. 2006;68(5):1091–6. https://doi.org/10.1016/j.urology.2006.05.056.

    Article  PubMed  Google Scholar 

  134. Chaichanavichkij P, Vollebregt PF, Scott SM, Knowles CH. Botulinum toxin type A for the treatment of dyssynergic defaecation in adults: a systematic review. Color Dis. 2020;22(12):1832–41. https://doi.org/10.1111/codi.15120.

    Article  CAS  Google Scholar 

  135. Zar-Kessler C, Kuo B, Belkind-Gerson J. Botulinum toxin injection for childhood constipation is safe and can be effective regardless of anal sphincter dynamics. J Pediatr Surg. 2018;53(4):693–7. https://doi.org/10.1016/j.jpedsurg.2017.12.007.

    Article  PubMed  Google Scholar 

  136. Halleran DR, Lu PL, Ahmad H, et al. Anal sphincter botulinum toxin injection in children with functional anorectal and colonic disorders: a large institutional study and review of the literature focusing on complications. J Pediatr Surg. 2019;54(11):2305–10. https://doi.org/10.1016/j.jpedsurg.2019.03.020.

    Article  PubMed  Google Scholar 

  137. Moore CK, Rueb JJ, Derisavifard S. What is new in neuromodulation? Curr Urol Rep. 2019;20(9):55. https://doi.org/10.1007/s11934-019-0920-6.

    Article  PubMed  Google Scholar 

  138. Tutolo M, Ammirati E, Heesakkers J, et al. Efficacy and safety of sacral and percutaneous tibial neuromodulation in non-neurogenic lower urinary tract dysfunction and chronic pelvic pain: a systematic review of the literature. Eur Urol. 2018;73(3):406–18. https://doi.org/10.1016/j.eururo.2017.11.002.

    Article  PubMed  Google Scholar 

  139. Janssen PTJ, Kuiper SZ, Stassen LPS, Bouvy ND, Breukink SO, Melenhorst J. Fecal incontinence treated by sacral neuromodulation: long-term follow-up of 325 patients. Surgery. 2017;161(4):1040–8. https://doi.org/10.1016/j.surg.2016.10.038.

    Article  PubMed  Google Scholar 

  140. Ho FCS, He C, Yao HHI, O’Connell HE, Gani J. Efficacy of sacral neuromodulation and percutaneous tibial nerve stimulation in the treatment of chronic nonobstructive urinary retention: a systematic review. Neurourol Urodyn. Published online May 11, 2021. https://doi.org/10.1002/nau.24694.

  141. Southwell BR. Electro-neuromodulation for colonic disorders-review of meta-analyses, systematic reviews, and RCTs. Neuromodulation. 2020;23(8):1061–81. https://doi.org/10.1111/ner.13099.

    Article  PubMed  Google Scholar 

  142. Thaha MA, Abukar AA, Thin NN, Ramsanahie A, Knowles CH. Sacral nerve stimulation for faecal incontinence and constipation in adults. Cochrane Database Syst Rev. 2015;(8):CD004464. https://doi.org/10.1002/14651858.CD004464.pub3.

  143. •• Assmann R, Douven P, Kleijnen J, et al. Stimulation parameters for sacral neuromodulation on lower urinary tract and bowel dysfunction-related clinical outcome: a systematic review. Neuromodulation. 2020;23(8):1082–93. https://doi.org/10.1111/ner.13255Systematic review of 17 studies showing benefit of sacral neuromodulation in the treatment of bowel and bladder dysfunction and the impact of stimulation parameters.

    Article  PubMed  PubMed Central  Google Scholar 

  144. • Parittotokkaporn S, Varghese C, O’Grady G, Svirskis D, Subramanian S, O’Carroll SJ. Non-invasive neuromodulation for bowel, bladder and sexual restoration following spinal cord injury: a systematic review. Clin Neurol Neurosurg. 2020;194:105822. https://doi.org/10.1016/j.clineuro.2020.105822Systematic review of 46 studies examining the efficacy of non-invasive neuromodulation in neurogenic lower urinary tract dysfunction following spinal injury.

    Article  PubMed  Google Scholar 

  145. Dewberry L, Trecartin A, Peña A, Pierre MS, Bischoff A. Systematic review: sacral nerve stimulation in the treatment of constipation and fecal incontinence in children with emphasis in anorectal malformation. Pediatr Surg Int. 2019;35(9):1009–12. https://doi.org/10.1007/s00383-019-04515-z.

    Article  PubMed  Google Scholar 

  146. Chen G, Liao L, Deng H. The effect of sacral neuromodulation in ambulatory spina bifida patients with neurogenic bladder and bowel dysfunction. Urology. Published online February 6, 2021. https://doi.org/10.1016/j.urology.2020.11.075.

  147. Groen LA, Hoebeke P, Loret N, et al. Sacral neuromodulation with an implantable pulse generator in children with lower urinary tract symptoms: 15-year experience. J Urol. 2012;188(4):1313–8. https://doi.org/10.1016/j.juro.2012.06.039.

    Article  PubMed  Google Scholar 

  148. Veiga ML, Lordêlo P, Farias T, Barroso U. Evaluation of constipation after parasacral transcutaneous electrical nerve stimulation in children with lower urinary tract dysfunction--a pilot study. J Pediatr Urol. 2013;9(5):622–6. https://doi.org/10.1016/j.jpurol.2012.06.006.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Sinha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurogenic Bladder

Supplementary Information

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Vasudeva, P., Bharadwaj, S. et al. Role of Pelvic Organ Crosstalk in Dysfunction of the Bowel and Bladder. Curr Bladder Dysfunct Rep 17, 91–103 (2022). https://doi.org/10.1007/s11884-022-00645-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11884-022-00645-8

Keywords

Navigation