Skip to main content

Advertisement

Log in

The Intersection Between COVID-19, Cardiovascular Disease, and Diet: a Review

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular disease (CVD) is one of the top comorbidities associated with COVID-19—both pre- and post-infection. This review examines the relationships between COVID-19 infection and cardiovascular health, with a specific focus on diet as an important modifiable risk factor.

Recent Findings

Pandemic era studies of individuals battling and recovering from COVID-19 infection suggest a strong link between metabolic diseases, such as CVD, and SARS-CoV-2 infection susceptibility and severity. Other studies also demonstrate how COVID-19 lockdown policies and quarantine recommendations led to drastic lifestyle changes associated with increased CVD risk, such as reduced physical activity and lower diet quality. At the same time, new research is emerging that plant-based diets, which have previously been associated with lower CVD risk, may lower COVID-19 infection rates and severity of symptoms.

Summary

Diet, COVID-19, and CVD intersect through complex biological mechanisms and related behavioral factors evidenced by clinical trials and epidemiological studies. Diet may be a critical tool for modifying risk of communicable and non-communicable conditions in the post-pandemic world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weekly epidemiological update on COVID-19 - 6 July 2023, Edition 150. 2023. World Health Organization https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---6-july-2023. Accessed 07 Aug 2023.

  2. Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17:135–49.

    Article  CAS  PubMed  Google Scholar 

  3. Singh AK, Gillies CL, Singh R, Singh A, Chudasama Y, Coles B, et al. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: a systematic review and meta-analysis. Diabetes Obes Metab. 2020;22:1915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bajgain KT, Badal S, Bajgain BB, Santana MJ. Prevalence of comorbidities among individuals with COVID-19: a rapid review of current literature. Am J Infect Control. 2021;49:238–46.

    Article  CAS  PubMed  Google Scholar 

  5. Kompaniyets L, Pennington AF, Goodman AB, et al. Underlying medical conditions and severe illness among 540,667 adults hospitalized with COVID-19, March 2020–March 2021. Prev Chronic Dis. 2021;18:E66. https://doi.org/10.5888/pcd18.210123A review of underlying medical conditions and comorbidities among almost 5 million hospitalized COVID-19 patients in the U.S., to predict risk factors of severe infection.

  6. Tian W, Jiang W, Yao J, Nicholson CJ, Li RH, Sigurslid HH, et al. Predictors of mortality in hospitalized COVID-19 patients: a systematic review and meta-analysis. J Med Virol. 2020;92:1875–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021;21:855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:811–8.

    Article  PubMed  Google Scholar 

  9. Magadum A, Kishore R. Cardiovascular manifestations of COVID-19 infection. Cells. 2020;9:2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pina A, Castelletti S. COVID-19 and cardiovascular disease: a global perspective. Curr Cardiol Rep. 2021;23:135.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Task Force for the management of COVID-19 of the European Society of Cardiology. European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 1—epidemiology, pathophysiology, and diagnosis. Eur Heart J 2021:ehab696. https://doi.org/10.1093/eurheartj/ehab696.

  12. Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun. 2020;87:53–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merino J, Joshi AD, Nguyen LH, Leeming ER, Mazidi M, Drew DA, et al. Diet quality and risk and severity of COVID-19: a prospective cohort study. Gut. 2021;70:2096–104. This is one of the largest cohort studies that examined the relationship between dietary factors and COVID-19 symptoms.

    Article  CAS  PubMed  Google Scholar 

  14. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596-646.

    PubMed  PubMed Central  Google Scholar 

  15. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726.

    Article  CAS  PubMed  Google Scholar 

  16. Azevedo RB, Botelho BG, de Hollanda JVG, Ferreira LVL, de Junqueira Andrade LZ, Oei SSML, et al. Covid-19 and the cardiovascular system: a comprehensive review. J Hum Hypertens. 2021;35:4–11. A review of the pathophysiology of COVID-19 and its impact and implications on cardiovascular disease and the cardiovascular system.

    Article  CAS  PubMed  Google Scholar 

  17. Liang C, Zhang W, Li S, Qin G. Coronary heart disease and COVID-19: a meta-analysis. Med Clin (Barc). 2021;156:547–54.

    Article  CAS  PubMed  Google Scholar 

  18. Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am J Hypertens. 2020;33:373–4.

    Article  CAS  PubMed  Google Scholar 

  19. Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:1–8.

    Article  Google Scholar 

  20. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and cardiovascular disease. Circulation. 2020;141:1648–55.

    Article  CAS  PubMed  Google Scholar 

  21. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17:543–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395:1054–62.

    Article  CAS  Google Scholar 

  23. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan. China JAMA Cardiol. 2020;5:802–10.

    Article  PubMed  Google Scholar 

  24. Soumya RS, Unni TG, Raghu KG. Impact of COVID-19 on the cardiovascular system: a review of available reports. Cardiovasc Drugs Ther. 2021;35:411–25.

    Article  CAS  PubMed  Google Scholar 

  25. Maestrini V, Birtolo LI, Francone M, Galardo G, Galea N, Severino P, et al. Cardiac involvement in consecutive unselected hospitalized COVID-19 population: in-hospital evaluation and one-year follow-up. Int J Cardiol. 2021;339:235–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pourfridoni M, Abbasnia SM, Shafaei F, Razaviyan J, Heidari-Soureshjani R. Fluid and electrolyte disturbances in COVID-19 and their complications. BioMed Res Int. 2021;2021:6667047.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Severino P, D’Amato A, Prosperi S, Myftari V, Labbro Francia A, Önkaya M, et al. The mutual relationship among cardiovascular diseases and COVID-19: focus on micronutrients imbalance. Nutrients. 2022;14:3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chimenti C, Magnocavallo M, Ballatore F, Bernardini F, Alfarano M, Della Rocca DG, et al. Prevalence and clinical implications of COVID-19 myocarditis. Card Electrophysiol Clin. 2022;14:53–62.

    Article  PubMed  Google Scholar 

  29. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarkisian L, Saaby L, Poulsen TS, Gerke O, Jangaard N, Hosbond S, et al. Clinical characteristics and outcomes of patients with myocardial infarction, myocardial injury, and nonelevated troponins. Am J Med. 2016;129:446.e5-446.e21.

    Article  PubMed  Google Scholar 

  31. Sandoval Y, Smith SW, Sexter A, Thordsen SE, Bruen CA, Carlson MD, et al. Type 1 and 2 myocardial infarction and myocardial injury: clinical transition to high-sensitivity cardiac troponin I. Am J Med. 2017;130:1431-1439.e4.

    Article  CAS  PubMed  Google Scholar 

  32. Luo J, Zhu X, Jian J, Chen X, Yin K. Cardiovascular disease in patients with COVID-19: evidence from cardiovascular pathology to treatment. Acta Biochim Biophys Sin. 2021;53:273–82.

    Article  CAS  PubMed  Google Scholar 

  33. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China JAMA. 2020;323:1061–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword. Circulation. 2020;142:426–8.

    Article  CAS  PubMed  Google Scholar 

  35. Yu W, Rohli KE, Yang S, Jia P. Impact of obesity on COVID-19 patients. J Diabetes Complicat. 2021;35:107817.

    Article  CAS  Google Scholar 

  36. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet (London, England). Lancet. 2021;398:957–80. https://doi.org/10.1016/S0140-6736(21)01330-1.

  37. Iaccarino G, Grassi G, Borghi C, Ferri C, Salvetti M, Volpe M, et al. Age and multimorbidity predict death among COVID-19 patients: results of the SARS-RAS Study of the Italian Society of Hypertension. Hypertens Dallas Tex. 1979;2020(76):366–72.

    Google Scholar 

  38. Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2021;40:905–19.

    Article  CAS  Google Scholar 

  39. Lima-Martínez MM, Carrera Boada C, Madera-Silva MD, Marín W, Contreras M. COVID-19 and diabetes: a bidirectional relationship. Clin E Investig En Arterioscler Publicacion Soc Espanola Arterioscler. 2021;33:151–7.

    Article  Google Scholar 

  40. de Almeida-Pititto B, Dualib PM, Zajdenverg L, Dantas JR, de Souza FD, Rodacki M, et al. Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetol Metab Syndr. 2020;12:75.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sattar N, McInnes IB, McMurray JJV. Obesity is a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation. 2020;142:4–6.

    Article  CAS  PubMed  Google Scholar 

  42. Powell-Wiley TM, Poirier P, Burke LE, Després J-P, Gordon-Larsen P, Lavie CJ, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;143:e984-1010.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Freuer D, Linseisen J, Meisinger C. Impact of body composition on COVID-19 susceptibility and severity: a two-sample multivariable Mendelian randomization study. Metabolism. 2021;118:154732. A two-sample Mendelian randomization study suggesting obesity, a common CVD comorbidity, to be a strong risk factor for severe COVID-19 infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang J-F, Wang X-B, Zheng KI, Liu W-Y, Chen J-J, George J, et al. Letter to the editor: obesity hypoventilation syndrome and severe COVID-19. Metabolism. 2020;108:154249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Honce R, Schultz-Cherry S. Impact of obesity on influenza A virus pathogenesis, immune response, and evolution. Front Immunol. 2019;10:1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dietary Guidelines for Americans, 2020-2025, 9th edition. U.S. Department of Agriculture and U.S. Department of Health and Human Services; 2020. https://www.DietaryGuidelines.gov. Accessed 07 Aug 2023.

  47. Lichtenstein AH, Appel LJ, Vadiveloo M, Hu FB, Kris-Etherton PM, Rebholz CM, et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation. 2021;144:e472–87. This is a scientific statement from the American Heart Association with comprehensive evidence-based guidance on dietary recommendations for cardiovascular health.

    Article  PubMed  Google Scholar 

  48. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378:e34.

    Article  CAS  PubMed  Google Scholar 

  49. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.

    Article  CAS  PubMed  Google Scholar 

  50. Conlin PR, Erlinger TP, Bohannon A, Miller ER, Appel LJ, Svetkey LP, et al. The DASH diet enhances the blood pressure response to losartan in hypertensive patients. Am J Hypertens. 2003;16:337–42.

    Article  CAS  PubMed  Google Scholar 

  51. Louca P, Murray B, Klaser K, Graham MS, Mazidi M, Leeming ER, et al. Modest effects of dietary supplements during the COVID-19 pandemic: insights from 445 850 users of the COVID-19 Symptom Study app. BMJ Nutr Prev Health. 2021;4:149–57.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Daboul SM, Abusamak M, Mohammad BA, Alsayed AR, Habash M, Mosleh I, et al. The effect of omega-3 supplements on the serum levels of ACE/ACE2 ratio as a potential key in cardiovascular disease: a randomized clinical trial in participants with vitamin D deficiency. Pharm Pract. 2023;21:2761.

    Google Scholar 

  53. Olczak-Pruc M, Szarpak L, Navolokina A, Chmielewski J, Panasiuk L, Juárez-Vela R, et al. The effect of zinc supplementation on the course of COVID-19 - a systematic review and meta-analysis. Ann Agric Environ Med AAEM. 2022;29:568–74.

    Article  CAS  PubMed  Google Scholar 

  54. Olczak-Pruc M, Swieczkowski D, Ladny JR, Pruc M, Juarez-Vela R, Rafique Z, et al. Vitamin C supplementation for the treatment of COVID-19: a systematic review and meta-analysis. Nutrients. 2022;14:4217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hosseini B, El Abd A, Ducharme FM. Effects of vitamin D supplementation on COVID-19 related outcomes: a systematic review and meta-analysis. Nutrients. 2022;14:2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Li J, Yang M, Wang Q. Effect of vitamin D supplementation on COVID-19 patients: a systematic review and meta-analysis. Front Nutr. 2023;10:1131103.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kümmel LS, Krumbein H, Fragkou PC, Hünerbein BL, Reiter R, Papathanasiou KA, et al. Vitamin D supplementation for the treatment of COVID-19: a systematic review and meta-analysis of randomized controlled trials. Front Immunol. 2022;13:1023903.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zamanian A, Yari Z, Soltanieh S, Salavatizadeh M, Karimi S, Ardestani SK, et al. The association of dietary approach to stop hypertension (DASH) diet with hospitalization risk in patients with COVID-19. Clin Nutr Open Sci. 2023;48:55–63. A study on the Dietary Approaches to Stop Hypertension (DASH) diet among 141 COVID-19 patients that provided strong association between adherence to the diet and lower COVID-19 severity.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ponzo V, Pellegrini M, D’Eusebio C, Bioletto F, Goitre I, Buscemi S, et al. Mediterranean diet and SARS-CoV-2 infection: is there any association? A proof-of-concept study. Nutrients. 2021;13:1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perez-Araluce R, Martinez-Gonzalez MA, Fernández-Lázaro CI, Bes-Rastrollo M, Gea A, Carlos S. Mediterranean diet and the risk of COVID-19 in the “Seguimiento Universidad de Navarra” cohort. Clin Nutr Edinb Scotl. 2022;41:3061–8. A study on the Seguimiento Universidad de Navarra (SUN) cohort with over 5,100 participants that showed an association between Mediterranean Diet adherence and lower COVID-19 infection severity.

    Article  CAS  Google Scholar 

  61. Perez-Araluce R, Martínez-González MÁ, Gea A, Carlos S. Components of the Mediterranean diet and risk of COVID-19. Front Nutr. 2021;8:805533.

    Article  PubMed  Google Scholar 

  62. Ebrahimzadeh A, Taghizadeh M, Milajerdi A. Major dietary patterns in relation to disease severity, symptoms, and inflammatory markers in patients recovered from COVID-19. Front Nutr. 2022;9:929384.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zargarzadeh N, Tadbir Vajargah K, Ebrahimzadeh A, Mousavi SM, Khodaveisi H, Akhgarjand C, et al. Higher adherence to the Mediterranean dietary pattern is inversely associated with severity of COVID-19 and related symptoms: a cross-sectional study. Front Med. 2022;9:911273.

    Article  Google Scholar 

  64. Tadbir Vajargah K, Zargarzadeh N, Ebrahimzadeh A, Mousavi SM, Mobasheran P, Mokhtari P, et al. Association of fruits, vegetables, and fiber intake with COVID-19 severity and symptoms in hospitalized patients: a cross-sectional study. Front Nutr. 2022;9:934568.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yue Y, Ma W, Accorsi EK, Ding M, Hu F, Willett WC, et al. Long-term diet and risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) severity. Am J Clin Nutr. 2022;116:1672–81.

    Article  PubMed  Google Scholar 

  66. Rahmati M, Fatemi R, Yon DK, Lee SW, Koyanagi A, Il Shin J, et al. The effect of adherence to high-quality dietary pattern on COVID-19 outcomes: a systematic review and meta-analysis. J Med Virol. 2023;95:e28298.

    Article  CAS  PubMed  Google Scholar 

  67. Kamyari N, Soltanian AR, Mahjub H, Moghimbeigi A. Diet, nutrition, obesity, and their implications for COVID-19 mortality: development of a marginalized two-part model for semicontinuous data. JMIR Public Health Surveill. 2021;7:e22717.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li F, Hou L, Chen W, Chen P, Lei C, Wei Q, et al. Associations of dietary patterns with the risk of all-cause, CVD and stroke mortality: a meta-analysis of prospective cohort studies. Br J Nutr. 2015;113:16–24.

    Article  CAS  PubMed  Google Scholar 

  69. Jayedi A, Soltani S, Abdolshahi A, Shab-Bidar S. Healthy and unhealthy dietary patterns and the risk of chronic disease: an umbrella review of meta-analyses of prospective cohort studies. Br J Nutr. 2020;124:1133–44.

    Article  CAS  PubMed  Google Scholar 

  70. Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10:432.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tashiro H, Takahashi K, Sadamatsu H, Kato G, Kurata K, Kimura S, et al. Saturated fatty acid increases lung macrophages and augments house dust mite-induced airway inflammation in mice fed with high-fat diet. Inflammation. 2017;40:1072–86.

    Article  CAS  PubMed  Google Scholar 

  72. Milner JJ, Rebeles J, Dhungana S, Stewart DA, Sumner SCJ, Meyers MH, et al. Obesity increases mortality and modulates the lung metabolome during pandemic H1N1 influenza virus infection in mice. J Immunol Baltim Md. 1950;2015(194):4846–59.

    Google Scholar 

  73. Green WD, Beck MA. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc. 2017;14:S406–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fardet A, Boirie Y. Associations between diet-related diseases and impaired physiological mechanisms: a holistic approach based on meta-analyses to identify targets for preventive nutrition. Nutr Rev. 2013;71:643–56.

    Article  PubMed  Google Scholar 

  75. Panagiotakos DB, Pitsavos C, Arvaniti F, Stefanadis C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prev Med. 2007;44:335–40.

    Article  PubMed  Google Scholar 

  76. Skrajnowska D, Brumer M, Kankowska S, Matysek M, Miazio N, Bobrowska-Korczak B. Covid 19: Diet composition and health. Nutrients. 2021;13:2980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mignogna C, Costanzo S, Ghulam A, Cerletti C, Donati MB, de Gaetano G, et al. Impact of nationwide lockdowns resulting from the first wave of the COVID-19 pandemic on food intake, eating behaviours and diet quality: a systematic review. Adv Nutr Bethesda Md. 2021;13:388–423. Review of dietary habit and eating behavior changes worldwide as a result of COVID-19 pandemic lockdowns that showed greater food intake and overall moderate improvement in diet quality.

    Article  Google Scholar 

  78. Di Renzo L, Gualtieri P, Pivari F, Soldati L, Attinà A, Cinelli G, et al. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med. 2020;18:229.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ruiz-Roso MB, de Carvalho PP, Mantilla-Escalante DC, Ulloa N, Brun P, Acevedo-Correa D, et al. Covid-19 confinement and changes of adolescent’s dietary trends in Italy, Spain, Chile Colombia and Brazil. Nutrients. 2020;12:1807.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Karatzi K, Poulia K-A, Papakonstantinou E, Zampelas A. The impact of nutritional and lifestyle changes on body weight, body composition and cardiometabolic risk factors in children and adolescents during the pandemic of COVID-19: a systematic review. Child Basel Switz. 2021;8:1130.

    Google Scholar 

  81. Daniels NF, Burrin C, Chan T, Fusco F. A systematic review of the impact of the first year of COVID-19 on obesity risk factors: a pandemic fueling a pandemic? Curr Dev Nutr. 2022;6:nzac011.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mattioli AV, Sciomer S, Cocchi C, Maffei S, Gallina S. Quarantine during COVID-19 outbreak: changes in diet and physical activity increase the risk of cardiovascular disease. Nutr Metab Cardiovasc Dis NMCD. 2020;30:1409–17.

    Article  CAS  PubMed  Google Scholar 

  83. Crowder SL, Beckie T, Stern M. A review of food insecurity and chronic cardiovascular disease: implications during the COVID-19 pandemic. Ecol Food Nutr. 2021;60:596–611. A review examining the social determinants of health and food access that affect cardiovascular disease management during the COVID-19 pandemic.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Niles MT, Bertmann F, Belarmino EH, Wentworth T, Biehl E, Neff R. The early food insecurity impacts of COVID-19. Nutrients. 2020;12:2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. O’Kane G. COVID-19 puts the spotlight on food insecurity in rural and remote Australia. Aust J Rural Health. 2020;28:319–20.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Larson N, Slaughter-Acey J, Alexander T, Berge J, Harnack L, Neumark-Sztainer D. Emerging adults’ intersecting experiences of food insecurity, unsafe neighbourhoods and discrimination during the coronavirus disease 2019 (COVID-19) outbreak. Public Health Nutr. 2021;24:519–30.

    Article  PubMed  Google Scholar 

  87. Duska F, Andel M, Kubena A, Macdonald IA. Effects of acute starvation on insulin resistance in obese patients with and without type 2 diabetes mellitus. Clin Nutr Edinb Scotl. 2005;24:1056–64.

    Article  CAS  Google Scholar 

  88. Wang SY, Eberly LA, Roberto CA, Venkataramani AS, Groeneveld PW, Khatana SAM. Food insecurity and cardiovascular mortality for nonelderly adults in the United States from 2011 to 2017: a county-level longitudinal analysis. Circ Cardiovasc Qual Outcomes. 2021;14:e007473.

    Article  PubMed  Google Scholar 

  89. Tenforde MW, Kim SS, Lindsell CJ, Billig Rose E, Shapiro NI, Files DC, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network - United States, March-June 2020. MMWR Morb Mortal Wkly Rep. 2020;69:993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Collins FS. NIH launches new initiative to study “Long COVID”. National Institutes of Health (NIH).  https://www.nih.gov/about-nih/who-we-are/nih-director/statements/nih-launches-new-initiative-study-long-covid. Accessed 22 Aug 2023.

  91. Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of post-acute covid-19 in primary care. BMJ. 2020;370:m3026.

  92. Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R, et al. Autonomic dysfunction in “long COVID”: rationale, physiology and management strategies. Clin Med Lond Engl. 2021;21:e63–7.

    Article  Google Scholar 

  93. Halpin SJ, McIvor C, Whyatt G, Adams A, Harvey O, McLean L, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol. 2021;93:1013–22.

    Article  CAS  PubMed  Google Scholar 

  94. Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2022;10:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu E, Xie Y, Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2023;11:120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa N. Bhupathiraju.

Ethics declarations

Conflict of Interest

Shilpa N. Bhupathiraju has a patent that is pending titled “Systems and Methods for Conducting Nutritional Health Risk Assessments and Adapting Risk Analyses Based on Actual Health Outcomes” (US Application No. 63/344,293). The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tholla, T.S., Sawicki, C.M. & Bhupathiraju, S. The Intersection Between COVID-19, Cardiovascular Disease, and Diet: a Review. Curr Atheroscler Rep 25, 643–652 (2023). https://doi.org/10.1007/s11883-023-01138-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-023-01138-7

Keywords

Navigation